1
|
Bush K, Cervantes V, Yee JQ, Klein RH, Knoepfler PS. A knockout-first model of H3f3a gene targeting leads to developmental lethality. Genesis 2023; 61:e23507. [PMID: 36656301 PMCID: PMC10038898 DOI: 10.1002/dvg.23507] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 01/20/2023]
Abstract
Histone variant H3.3 is encoded by two genes, H3f3a and H3f3b, which can be expressed differentially depending on tissue type. Previous work in our lab has shown that knockout of H3f3b causes some neonatal lethality and infertility in mice, and chromosomal defects in mouse embryonic fibroblasts (MEFs). Studies of H3f3a and H3f3b null mice by others have produced generally similar phenotypes to what we found in our H3f3b nulls, but the relative impacts of the loss of either H3f3a or H3f3b have varied depending on the approach and genetic background. Here we used a knockout-first approach to target the H3f3a gene for inactivation in C57BL6 mice. Homozygous H3f3a targeting produced a lethal phenotype at or before birth. E13.5 null embryos had some potential morphological differences from WT littermates including smaller size and reduced head size. An E18.5 null embryo was smaller than its control littermates with several potential defects including small head and brain size as well as small lungs, which would be consistent with a late gestation lethal phenotype. Despite a reduction in H3.3 and total H3 protein levels, the only histone H3 post-translational modification in the small panel assessed that was significantly altered was the unique H3.3 mark phospho-Serine31, which was consistently increased in null neurospheres. H3f3a null neurospheres also exhibited consistent gene expression changes including in protocadherins. Overall, our findings are consistent with the model that there are differential, cell-type-specific contributions of H3f3a and H3f3b to H3.3 functions in epigenetic and developmental processes.
Collapse
Affiliation(s)
- Kelly Bush
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, California, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, Sacramento, California, USA
- Genome Center, University of California Davis, Davis, California, USA
| | - Vanessa Cervantes
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, California, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, Sacramento, California, USA
- Genome Center, University of California Davis, Davis, California, USA
| | - Jennifer Q Yee
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, California, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, Sacramento, California, USA
- Genome Center, University of California Davis, Davis, California, USA
| | - Rachel H Klein
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, California, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, Sacramento, California, USA
- Genome Center, University of California Davis, Davis, California, USA
| | - Paul S Knoepfler
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, California, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, Sacramento, California, USA
- Genome Center, University of California Davis, Davis, California, USA
| |
Collapse
|
2
|
miR675 Accelerates Malignant Transformation of Mesenchymal Stem Cells by Blocking DNA Mismatch Repair. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 14:171-183. [PMID: 30594073 PMCID: PMC6307386 DOI: 10.1016/j.omtn.2018.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 12/18/2022]
Abstract
miR675 is highly expressed in several human tumor tissues and positively regulates cell progression. Herein, we demonstrate that miR675 promotes malignant transformation of human mesenchymal stem cells. Mechanistically, we reveal that miR675 enhances the expression of the polyubiquitin-binding protein p62. Intriguingly, P62 competes with SETD2 to bind histone H3 and then significantly reduces SETD2-binding capacity to substrate histone H3, triggering drastically the reduction of three methylation on histone H3 36th lysine (H3K36me3). Thereby, the H3K36me3-hMSH6-SKP2 triplex complex is significantly decreased. Notably, the ternary complex’s occupancy capacity on chromosome is absolutely reduced, preventing it from DNA damage repair. By virtue of the reductive degradation ability of SKP2 for aging histone H3.3 bound to mismatch DNA, the aging histone H3.3 repair is delayed. Therefore, the mismatch DNA escapes from repair, triggering the abnormal expression of several cell cycle-related genes and causing the malignant transformation of mesenchymal stem cells. These observations strongly suggest understanding the novel functions of miR675 will help in the development of novel therapeutic approaches in a broad range of cancer types.
Collapse
|
3
|
Merlo MA, Iziga R, Portela-Bens S, Cross I, Kosyakova N, Liehr T, Manchado M, Rebordinos L. Analysis of the histone cluster in Senegalese sole (Solea senegalensis): evidence for a divergent evolution of two canonical histone clusters. Genome 2016; 60:441-453. [PMID: 28177835 DOI: 10.1139/gen-2016-0143] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The Senegalese sole (Solea senegalensis) is commercially very important and a priority species for aquaculture product diversification. The main histone cluster was identified within two BAC clones. However, two replacement histones (H1.0 and H3.3) were found in another BAC clone. Different types of canonical histones H2A and H2B were found within the same species for the first time. Phylogenetic analysis demonstrated that the different types of H1, H2A, and H2B histones were all more similar to each other than to canonical histones from other species. The canonical histone H3 of S. senegalensis differs from subtypes H3.1 and H3.2 in humans at the site of residue 96, where a serine is found instead of an alanine. This same polymorphism has been found only in Danio rerio. The karyotype of S. senegalensis comprises 21 pairs of chromosomes, distributed in 3 metacentric pairs, 2 submetacentric pairs, 4 subtelocentric pairs, and 12 acrocentric pairs. The two BAC clones that contain the clusters of canonical histones were both mapped on the largest metacentric pair, and mFISH analysis confirmed the co-location with the dmrt1 gene in that pair. Three chromosome markers have been identified which, in addition to those previously described, account for 18 chromosome pairs in S. senegalensis.
Collapse
Affiliation(s)
- Manuel Alejandro Merlo
- a Área de Genética, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510 Cádiz, Spain
| | - Roger Iziga
- a Área de Genética, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510 Cádiz, Spain
| | - Silvia Portela-Bens
- a Área de Genética, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510 Cádiz, Spain
| | - Ismael Cross
- a Área de Genética, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510 Cádiz, Spain
| | - Nadezda Kosyakova
- b Institut für Humangenetik, Universitätsklinikum Jena, 07743 Jena, Germany
| | - Thomas Liehr
- b Institut für Humangenetik, Universitätsklinikum Jena, 07743 Jena, Germany
| | - Manuel Manchado
- c Centro IFAPA "El Toruño", 11500 Puerto de Santa María, Cádiz, Spain
| | - Laureana Rebordinos
- a Área de Genética, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510 Cádiz, Spain
| |
Collapse
|
4
|
Tang MCW, Jacobs SA, Mattiske DM, Soh YM, Graham AN, Tran A, Lim SL, Hudson DF, Kalitsis P, O’Bryan MK, Wong LH, Mann JR. Contribution of the two genes encoding histone variant h3.3 to viability and fertility in mice. PLoS Genet 2015; 11:e1004964. [PMID: 25675407 PMCID: PMC4335506 DOI: 10.1371/journal.pgen.1004964] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 12/22/2014] [Indexed: 12/29/2022] Open
Abstract
Histones package DNA and regulate epigenetic states. For the latter, probably the most important histone is H3. Mammals have three near-identical H3 isoforms: canonical H3.1 and H3.2, and the replication-independent variant H3.3. This variant can accumulate in slowly dividing somatic cells, replacing canonical H3. Some replication-independent histones, through their ability to incorporate outside S-phase, are functionally important in the very slowly dividing mammalian germ line. Much remains to be learned of H3.3 functions in germ cell development. Histone H3.3 presents a unique genetic paradigm in that two conventional intron-containing genes encode the identical protein. Here, we present a comprehensive analysis of the developmental effects of null mutations in each of these genes. H3f3a mutants were viable to adulthood. Females were fertile, while males were subfertile with dysmorphic spermatozoa. H3f3b mutants were growth-deficient, dying at birth. H3f3b heterozygotes were also growth-deficient, with males being sterile because of arrest of round spermatids. This sterility was not accompanied by abnormalities in sex chromosome inactivation in meiosis I. Conditional ablation of H3f3b at the beginning of folliculogenesis resulted in zygote cleavage failure, establishing H3f3b as a maternal-effect gene, and revealing a requirement for H3.3 in the first mitosis. Simultaneous ablation of H3f3a and H3f3b in folliculogenesis resulted in early primary oocyte death, demonstrating a crucial role for H3.3 in oogenesis. These findings reveal a heavy reliance on H3.3 for growth, gametogenesis, and fertilization, identifying developmental processes that are particularly susceptible to H3.3 deficiency. They also reveal partial redundancy in function of H3f3a and H3f3b, with the latter gene being generally the most important.
Collapse
Affiliation(s)
- Michelle C. W. Tang
- Department of Zoology, The University of Melbourne, Melbourne, Victoria, Australia
- Genetics Theme, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
| | - Shelley A. Jacobs
- Genetics Theme, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
| | - Deidre M. Mattiske
- Genetics Theme, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
| | - Yu May Soh
- Genetics Theme, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
| | - Alison N. Graham
- Genetics Theme, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
| | - An Tran
- Genetics Theme, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
| | - Shu Ly Lim
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Damien F. Hudson
- Genetics Theme, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
| | - Paul Kalitsis
- Genetics Theme, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
| | - Moira K. O’Bryan
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Lee H. Wong
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Jeffrey R. Mann
- Genetics Theme, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|