1
|
Nelson JO, Slicko A, Raz AA, Yamashita YM. Insulin signaling regulates R2 retrotransposon expression to orchestrate transgenerational rDNA copy number maintenance. Nat Commun 2025; 16:399. [PMID: 39755735 DOI: 10.1038/s41467-024-55725-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 12/20/2024] [Indexed: 01/06/2025] Open
Abstract
Preserving a large number of essential yet highly unstable ribosomal DNA (rDNA) repeats is critical for the germline to perpetuate the genome through generations. Spontaneous rDNA loss must be countered by rDNA copy number (CN) expansion. Germline rDNA CN expansion is best understood in Drosophila melanogaster, which relies on unequal sister chromatid exchange (USCE) initiated by DNA breaks at rDNA. The rDNA-specific retrotransposon R2 responsible for USCE-inducing DNA breaks is typically expressed only when rDNA CN is low to minimize the danger of DNA breaks; however, the underlying mechanism of R2 regulation remains unclear. Here we identify the insulin receptor (InR) as a major repressor of R2 expression, limiting unnecessary R2 activity. Through single-cell RNA sequencing, we find that male germline stem cells (GSCs), the major cell type that undergoes rDNA CN expansion, have reduced InR expression when rDNA CN is low. Reduced InR activity in turn leads to R2 expression and CN expansion. We further find that dietary manipulation alters R2 expression and rDNA CN expansion activity. This work reveals that the insulin pathway integrates rDNA CN surveying with environmental sensing, revealing a potential mechanism by which diet exerts heritable changes to genomic content.
Collapse
Affiliation(s)
- Jonathan O Nelson
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA.
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Cambridge, MA, USA.
| | - Alyssa Slicko
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| | - Amelie A Raz
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| | - Yukiko M Yamashita
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Cambridge, MA, USA.
- Department of Biology, MIT, Cambridge, MA, USA.
| |
Collapse
|
2
|
Burghardt E, McDonald JA. An RNAi screen for ribosome biogenesis genes required for Drosophila border cell collective migration. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001292. [PMID: 39185014 PMCID: PMC11344226 DOI: 10.17912/micropub.biology.001292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/09/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024]
Abstract
Ribosome biogenesis is critical for the proper production of proteins in cells and has emerged as a regulator of cell invasion and migration in development and in cancer. The Drosophila border cells form a collective that invades and migrates through the surrounding tissue during oogenesis. We previously found that a significant number of ribosome biogenesis genes are differentially expressed from early to late migration stages. Here, we performed a small-scale RNAi screen of a subset of these ribosome genes. Knockdown of seven genes disrupted border cell migration, thus revealing a role for ribosome biogenesis genes in regulating collective cell migration.
Collapse
Affiliation(s)
- Emily Burghardt
- Division of Biology, Kansas State University, Manhattan, Kansas, United States
| | - Jocelyn A. McDonald
- Division of Biology, Kansas State University, Manhattan, Kansas, United States
| |
Collapse
|
3
|
Sklias A, Cruciani S, Marchand V, Spagnuolo M, Lavergne G, Bourguignon V, Brambilla A, Dreos R, Marygold S, Novoa E, Motorin Y, Roignant JY. Comprehensive map of ribosomal 2'-O-methylation and C/D box snoRNAs in Drosophila melanogaster. Nucleic Acids Res 2024; 52:2848-2864. [PMID: 38416577 PMCID: PMC11014333 DOI: 10.1093/nar/gkae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 02/09/2024] [Accepted: 02/26/2024] [Indexed: 03/01/2024] Open
Abstract
During their maturation, ribosomal RNAs (rRNAs) are decorated by hundreds of chemical modifications that participate in proper folding of rRNA secondary structures and therefore in ribosomal function. Along with pseudouridine, methylation of the 2'-hydroxyl ribose moiety (Nm) is the most abundant modification of rRNAs. The majority of Nm modifications in eukaryotes are placed by Fibrillarin, a conserved methyltransferase belonging to a ribonucleoprotein complex guided by C/D box small nucleolar RNAs (C/D box snoRNAs). These modifications impact interactions between rRNAs, tRNAs and mRNAs, and some are known to fine tune translation rates and efficiency. In this study, we built the first comprehensive map of Nm sites in Drosophila melanogaster rRNAs using two complementary approaches (RiboMethSeq and Nanopore direct RNA sequencing) and identified their corresponding C/D box snoRNAs by whole-transcriptome sequencing. We de novo identified 61 Nm sites, from which 55 are supported by both sequencing methods, we validated the expression of 106 C/D box snoRNAs and we predicted new or alternative rRNA Nm targets for 31 of them. Comparison of methylation level upon different stresses show only slight but specific variations, indicating that this modification is relatively stable in D. melanogaster. This study paves the way to investigate the impact of snoRNA-mediated 2'-O-methylation on translation and proteostasis in a whole organism.
Collapse
Affiliation(s)
- Athena Sklias
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Sonia Cruciani
- Center For Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain
| | - Virginie Marchand
- Université de Lorraine, CNRS, INSERM, Epitranscriptomics and RNA sequencing (EpiRNA-Seq) Core Facility (UAR2008/US40 IBSLor) and UMR7365 IMoPA, Nancy, France
| | - Mariangela Spagnuolo
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Guillaume Lavergne
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Valérie Bourguignon
- Université de Lorraine, CNRS, INSERM, Epitranscriptomics and RNA sequencing (EpiRNA-Seq) Core Facility (UAR2008/US40 IBSLor) and UMR7365 IMoPA, Nancy, France
| | - Alessandro Brambilla
- Proteomics and Modomics Experimental Core (PROMEC), Norwegian University of Science and Technology and the Central Norway Regional Health Authority, Trondheim, Norway
| | - René Dreos
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Steven J Marygold
- FlyBase, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - Eva Maria Novoa
- Center For Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain
- University Pompeu Fabra (UPF), Dr Aiguader 88, 08003 Barcelona, Spain
| | - Yuri Motorin
- Université de Lorraine, CNRS, INSERM, Epitranscriptomics and RNA sequencing (EpiRNA-Seq) Core Facility (UAR2008/US40 IBSLor) and UMR7365 IMoPA, Nancy, France
| | - Jean-Yves Roignant
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| |
Collapse
|
4
|
Nelson JO, Slicko A, Raz AA, Yamashita YM. Insulin signaling regulates R2 retrotransposon expression to orchestrate transgenerational rDNA copy number maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582629. [PMID: 38464041 PMCID: PMC10925281 DOI: 10.1101/2024.02.28.582629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Preserving a large number of essential yet highly unstable ribosomal DNA (rDNA) repeats is critical for the germline to perpetuate the genome through generations. Spontaneous rDNA loss must be countered by rDNA copy number (CN) expansion. Germline rDNA CN expansion is best understood in Drosophila melanogaster, which relies on unequal sister chromatid exchange (USCE) initiated by DNA breaks at rDNA. The rDNA-specific retrotransposon R2 responsible for USCE-inducing DNA breaks is typically expressed only when rDNA CN is low to minimize the danger of DNA breaks; however, the underlying mechanism of R2 regulation remains unclear. Here we identify the insulin receptor (InR) as a major repressor of R2 expression, limiting unnecessary R2 activity. Through single-cell RNA sequencing we find that male germline stem cells (GSCs), the major cell type that undergoes rDNA CN expansion, have reduced InR expression when rDNA CN is low. Reduced InR activity in turn leads to R2 expression and CN expansion. We further find that dietary manipulation alters R2 expression and rDNA CN expansion activity. This work reveals that the insulin pathway integrates rDNA CN surveying with environmental sensing, revealing a potential mechanism by which diet exerts heritable changes to genomic content.
Collapse
Affiliation(s)
- Jonathan O Nelson
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY
- Whitehead Institute for Biomedical Research, Cambridge, MA
- Howard Hughes Medical Institute, Cambridge, MA
| | - Alyssa Slicko
- Whitehead Institute for Biomedical Research, Cambridge, MA
- Howard Hughes Medical Institute, Cambridge, MA
| | - Amelie A Raz
- Whitehead Institute for Biomedical Research, Cambridge, MA
- Howard Hughes Medical Institute, Cambridge, MA
| | - Yukiko M Yamashita
- Whitehead Institute for Biomedical Research, Cambridge, MA
- Howard Hughes Medical Institute, Cambridge, MA
- Department of Biology, MIT, Cambridge, MA
| |
Collapse
|
5
|
Kindelay SM, Maggert KA. Under the magnifying glass: The ups and downs of rDNA copy number. Semin Cell Dev Biol 2023; 136:38-48. [PMID: 35595601 PMCID: PMC9976841 DOI: 10.1016/j.semcdb.2022.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/27/2022] [Accepted: 05/09/2022] [Indexed: 11/22/2022]
Abstract
The ribosomal DNA (rDNA) in Drosophila is found as two additive clusters of individual 35 S cistrons. The multiplicity of rDNA is essential to assure proper translational demands, but the nature of the tandem arrays expose them to copy number variation within and between populations. Here, we discuss means by which a cell responds to insufficient rDNA copy number, including a historical view of rDNA magnification whose mechanism was inferred some 35 years ago. Recent work has revealed that multiple conditions may also result in rDNA loss, in response to which rDNA magnification may have evolved. We discuss potential models for the mechanism of magnification, and evaluate possible consequences of rDNA copy number variation.
Collapse
Affiliation(s)
- Selina M Kindelay
- Genetics Graduate Interdisciplinary Program, The University of Arizona, Tucson, AZ 85724, USA
| | - Keith A Maggert
- Genetics Graduate Interdisciplinary Program, The University of Arizona, Tucson, AZ 85724, USA; Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ 85724, USA.
| |
Collapse
|
6
|
Fefelova EA, Pleshakova IM, Mikhaleva EA, Pirogov SA, Poltorachenko V, Abramov Y, Romashin D, Shatskikh A, Blokh R, Gvozdev V, Klenov M. Impaired function of rDNA transcription initiation machinery leads to derepression of ribosomal genes with insertions of R2 retrotransposon. Nucleic Acids Res 2022; 50:867-884. [PMID: 35037046 PMCID: PMC8789037 DOI: 10.1093/nar/gkab1276] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/21/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic genomes harbor hundreds of rRNA genes, many of which are transcriptionally silent. However, little is known about selective regulation of individual rDNA units. In Drosophila melanogaster, some rDNA repeats contain insertions of the R2 retrotransposon, which is capable to be transcribed only as part of pre-rRNA molecules. rDNA units with R2 insertions are usually inactivated, although R2 expression may be beneficial in cells with decreased rDNA copy number. Here we found that R2-inserted rDNA units are enriched with HP1a and H3K9me3 repressive mark, whereas disruption of the heterochromatin components slightly affects their silencing in ovarian germ cells. Surprisingly, we observed a dramatic upregulation of R2-inserted rRNA genes in ovaries lacking Udd (Under-developed) or other subunits (TAF1b and TAF1c-like) of the SL1-like complex, which is homologues to mammalian Selective factor 1 (SL1) involved in rDNA transcription initiation. Derepression of rRNA genes with R2 insertions was accompanied by a reduction of H3K9me3 and HP1a enrichment. We suggest that the impairment of the SL1-like complex affects a mechanism of selective activation of intact rDNA units which competes with heterochromatin formation. We also propose that R2 derepression may serve as an adaptive response to compromised rRNA synthesis.
Collapse
Affiliation(s)
- Elena A Fefelova
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», Moscow 123182, Russia
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena 91125, USA
| | - Irina M Pleshakova
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», Moscow 123182, Russia
- Laboratory for Neurobiology of Memory, P.K. Anokhin Institute of Normal Physiology, Moscow 125315, Russia
| | - Elena A Mikhaleva
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», Moscow 123182, Russia
| | - Sergei A Pirogov
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», Moscow 123182, Russia
| | - Valentin A Poltorachenko
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», Moscow 123182, Russia
| | - Yuri A Abramov
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», Moscow 123182, Russia
| | - Daniil D Romashin
- Laboratory of Precision Biosystems, V. N. Orekhovich Institute of Biomedical Chemistry, 10 Pogodinskaya St., Moscow 119121, Russia
| | - Aleksei S Shatskikh
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», Moscow 123182, Russia
| | - Roman S Blokh
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», Moscow 123182, Russia
- Department of Functional Genomics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova Street, Moscow 119334, Russia
| | - Vladimir A Gvozdev
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», Moscow 123182, Russia
| | - Mikhail S Klenov
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», Moscow 123182, Russia
| |
Collapse
|
7
|
Bizarro J, Deryusheva S, Wacheul L, Gupta V, Ernst FGM, Lafontaine DLJ, Gall JG, Meier UT. Nopp140-chaperoned 2'-O-methylation of small nuclear RNAs in Cajal bodies ensures splicing fidelity. Genes Dev 2021; 35:1123-1141. [PMID: 34301768 PMCID: PMC8336889 DOI: 10.1101/gad.348660.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/29/2021] [Indexed: 12/27/2022]
Abstract
In this study, Bizarro et al. sought to understand the function and subcellular site of snRNA modification, and found that Cajal body (CB) localization of the protein Nopp140 is essential for concentration of small Cajal body-specific ribonucleoproteins (scaRNPs) in nuclear condensate and that phosphorylation by casein kinase 2 (CK2) at ∼80 serines targets Nopp140 to CBs. Nopp140 knockdown-mediated release of scaRNPs from CBs severely compromises 2′-O-methylation of spliceosomal snRNAs, identifying CBs as the site of scaRNP catalysis. Spliceosomal small nuclear RNAs (snRNAs) are modified by small Cajal body (CB)-specific ribonucleoproteins (scaRNPs) to ensure snRNP biogenesis and pre-mRNA splicing. However, the function and subcellular site of snRNA modification are largely unknown. We show that CB localization of the protein Nopp140 is essential for concentration of scaRNPs in that nuclear condensate; and that phosphorylation by casein kinase 2 (CK2) at ∼80 serines targets Nopp140 to CBs. Transiting through CBs, snRNAs are apparently modified by scaRNPs. Indeed, Nopp140 knockdown-mediated release of scaRNPs from CBs severely compromises 2′-O-methylation of spliceosomal snRNAs, identifying CBs as the site of scaRNP catalysis. Additionally, alternative splicing patterns change indicating that these modifications in U1, U2, U5, and U12 snRNAs safeguard splicing fidelity. Given the importance of CK2 in this pathway, compromised splicing could underlie the mode of action of small molecule CK2 inhibitors currently considered for therapy in cholangiocarcinoma, hematological malignancies, and COVID-19.
Collapse
Affiliation(s)
| | | | - Ludivine Wacheul
- RNA Molecular Biology, Fonds National de la Recherche Scientifique (FRS/FNRS), Université Libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Varun Gupta
- Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Felix G M Ernst
- RNA Molecular Biology, Fonds National de la Recherche Scientifique (FRS/FNRS), Université Libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Denis L J Lafontaine
- RNA Molecular Biology, Fonds National de la Recherche Scientifique (FRS/FNRS), Université Libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Joseph G Gall
- Carnegie Institution for Science, Baltimore, Maryland 21218, USA
| | - U Thomas Meier
- Albert Einstein College of Medicine, Bronx, New York 10461, USA
| |
Collapse
|
8
|
Drosophila to Explore Nucleolar Stress. Int J Mol Sci 2021; 22:ijms22136759. [PMID: 34201772 PMCID: PMC8267670 DOI: 10.3390/ijms22136759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 01/29/2023] Open
Abstract
Nucleolar stress occurs when ribosome production or function declines. Nucleolar stress in stem cells or progenitor cells often leads to disease states called ribosomopathies. Drosophila offers a robust system to explore how nucleolar stress causes cell cycle arrest, apoptosis, or autophagy depending on the cell type. We provide an overview of nucleolar stress in Drosophila by depleting nucleolar phosphoprotein of 140 kDa (Nopp140), a ribosome biogenesis factor (RBF) in nucleoli and Cajal bodies (CBs). The depletion of Nopp140 in eye imaginal disc cells generates eye deformities reminiscent of craniofacial deformities associated with the Treacher Collins syndrome (TCS), a human ribosomopathy. We show the activation of c-Jun N-terminal Kinase (JNK) in Drosophila larvae homozygous for a Nopp140 gene deletion. JNK is known to induce the expression of the pro-apoptotic Hid protein and autophagy factors Atg1, Atg18.1, and Atg8a; thus, JNK is a central regulator in Drosophila nucleolar stress. Ribosome abundance declines upon Nopp140 loss, but unusual cytoplasmic granules accumulate that resemble Processing (P) bodies based on marker proteins, Decapping Protein 1 (DCP1) and Maternal expression at 31B (Me31B). Wild type brain neuroblasts (NBs) express copious amounts of endogenous coilin, but coilin levels decline upon nucleolar stress in most NB types relative to the Mushroom body (MB) NBs. MB NBs exhibit resilience against nucleolar stress as they maintain normal coilin, Deadpan, and EdU labeling levels.
Collapse
|
9
|
Baral SS, Lieux ME, DiMario PJ. Nucleolar stress in Drosophila neuroblasts, a model for human ribosomopathies. Biol Open 2020; 9:bio046565. [PMID: 32184230 PMCID: PMC7197718 DOI: 10.1242/bio.046565] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 03/03/2020] [Indexed: 12/11/2022] Open
Abstract
Different stem cells or progenitor cells display variable threshold requirements for functional ribosomes. This is particularly true for several human ribosomopathies in which select embryonic neural crest cells or adult bone marrow stem cells, but not others, show lethality due to failures in ribosome biogenesis or function (now known as nucleolar stress). To determine if various Drosophila neuroblasts display differential sensitivities to nucleolar stress, we used CRISPR-Cas9 to disrupt the Nopp140 gene that encodes two splice variant ribosome biogenesis factors (RBFs). Disruption of Nopp140 induced nucleolar stress that arrested larvae in the second instar stage. While the majority of larval neuroblasts arrested development, the mushroom body (MB) neuroblasts continued to proliferate as shown by their maintenance of deadpan, a neuroblast-specific transcription factor, and by their continued EdU incorporation. MB neuroblasts in wild-type larvae appeared to contain more fibrillarin and Nopp140 in their nucleoli as compared to other neuroblasts, indicating that MB neuroblasts stockpile RBFs as they proliferate in late embryogenesis while other neuroblasts normally enter quiescence. A greater abundance of Nopp140 encoded by maternal transcripts in Nopp140-/- MB neuroblasts of 1----2-day-old larvae likely rendered these cells more resilient to nucleolar stress.
Collapse
Affiliation(s)
- Sonu Shrestha Baral
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Molly E Lieux
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Patrick J DiMario
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
10
|
The Nopp140 gene in Drosophila melanogaster displays length polymorphisms in its large repetitive second exon. Mol Genet Genomics 2019; 294:1073-1083. [PMID: 31006039 DOI: 10.1007/s00438-019-01568-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 04/10/2019] [Indexed: 12/21/2022]
Abstract
Nopp140, often called the nucleolar and Cajal body phosphoprotein (NOLC1), is an evolutionarily conserved chaperone for the transcription and processing of rRNA during ribosome subunit assembly. Metazoan Nopp140 contains an amino terminal LisH dimerization domain and a highly conserved carboxyl domain. A large central domain consists of alternating basic and acidic motifs of low sequence complexity. Orthologous versions of Nopp140 contain variable numbers of repeating basic-acidic units. While vertebrate Nopp140 genes use multiple exons to encode the central domain, the Nopp140 gene in Drosophila uses exclusively exon 2 to encode the central domain. Here, we define three overlapping repeat sequence patterns (P, P', and P″) within the central domain of D. melanogaster Nopp140. These repeat patterns are poorly conserved in other Drosophila species. We also describe a length polymorphism in exon 2 that pertains specifically to the P' pattern in D. melanogaster. The pattern displays either two or three 96 base pair repeats, respectively, referred to as Nopp140-Short and Nopp140-Long. Fly lines homozygous for one or the other allele, or heterozygous for both alleles, show no discernible phenotypes. PCR characterization of the long and short alleles shows a poorly defined, artifactual bias toward amplifying the long allele over the short allele. The significance of this polymorphism will be in discerning the largely unknown properties of Nopp140's large central domain in rDNA transcription and ribosome biogenesis.
Collapse
|
11
|
The nucleolar transcriptome regulates Piwi shuttling between the nucleolus and the nucleoplasm. Chromosome Res 2018; 27:141-152. [DOI: 10.1007/s10577-018-9595-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/25/2018] [Accepted: 11/29/2018] [Indexed: 01/25/2023]
|
12
|
Raje HS, Lieux ME, DiMario PJ. R1 retrotransposons in the nucleolar organizers of Drosophila melanogaster are transcribed by RNA polymerase I upon heat shock. Transcription 2018; 9:273-285. [PMID: 30063880 DOI: 10.1080/21541264.2018.1506682] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The ribosomal RNA genes (rDNA) of Drosophila melanogaster reside within centromere-proximal nucleolar organizers on both the X and Y chromosomes. Each locus contains between 200-300 tandem repeat rDNA units that encode 18S, 5.8S, 2S, and 28S ribosomal RNAs (rRNAs) necessary for ribosome biogenesis. In arthropods like Drosophila, about 60% of the rDNA genes have R1 and/or R2 retrotransposons inserted at specific sites within their 28S regions; these units likely fail to produce functional 28S rRNA. We showed earlier that R2 expression increases upon nucleolar stress caused by the loss of the ribosome assembly factor, Nucleolar Phosphoprotein of 140 kDa (Nopp140). Here we show that R1 expression is selectively induced by heat shock. Actinomycin D, but not α-amanitin, blocked R1 expression in S2 cells upon heat shock, indicating that R1 elements are transcribed by Pol I. A series of RT-PCRs established read-through transcription by Pol I from the 28S gene region into R1. Sequencing the RT-PCR products confirmed the 28S-R1 RNA junction and the expression of R1 elements within nucleolar rDNA rather than R1 elements known to reside in centromeric heterochromatin. Using a genome-wide precision run-on sequencing (PRO-seq) data set available at NCBI-GEO, we show that Pol I activity on R1 elements is negligible under normal non-heat shock conditions but increases upon heat shock. We propose that prior to heat shock Pol I pauses within the 5' end of R1 where we find a consensus "pause button", and that heat shock releases Pol I for read-through transcription farther into R1.
Collapse
Affiliation(s)
- Himanshu S Raje
- a Department of Biological Sciences , Louisiana State University , Baton Rouge , LA , USA
| | - Molly E Lieux
- a Department of Biological Sciences , Louisiana State University , Baton Rouge , LA , USA
| | - Patrick J DiMario
- a Department of Biological Sciences , Louisiana State University , Baton Rouge , LA , USA
| |
Collapse
|
13
|
Martins T, Eusebio N, Correia A, Marinho J, Casares F, Pereira PS. TGFβ/Activin signalling is required for ribosome biogenesis and cell growth in Drosophila salivary glands. Open Biol 2017; 7:rsob.160258. [PMID: 28123053 PMCID: PMC5303274 DOI: 10.1098/rsob.160258] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/16/2016] [Indexed: 12/30/2022] Open
Abstract
Signalling by TGFβ superfamily factors plays an important role in tissue growth and cell proliferation. In Drosophila, the activity of the TGFβ/Activin signalling branch has been linked to the regulation of cell growth and proliferation, but the cellular and molecular basis for these functions are not fully understood. In this study, we show that both the RII receptor Punt (Put) and the R-Smad Smad2 are strongly required for cell and tissue growth. Knocking down the expression of Put or Smad2 in salivary glands causes alterations in nucleolar structure and functions. Cells with decreased TGFβ/Activin signalling accumulate intermediate pre-rRNA transcripts containing internal transcribed spacer 1 regions accompanied by the nucleolar retention of ribosomal proteins. Thus, our results show that TGFβ/Activin signalling is required for ribosomal biogenesis, a key aspect of cellular growth control. Importantly, overexpression of Put enhanced cell growth induced by Drosophila Myc, a well-characterized inducer of nucleolar hypertrophy and ribosome biogenesis.
Collapse
Affiliation(s)
- Torcato Martins
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4150-180, Portugal .,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto 4150-180, Portugal.,Cell Cycle Development Group, Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Nadia Eusebio
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4150-180, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto 4150-180, Portugal
| | - Andreia Correia
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4150-180, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto 4150-180, Portugal
| | - Joana Marinho
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4150-180, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto 4150-180, Portugal
| | - Fernando Casares
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-JA-Universidad Pablo de Olavide. Ctra. de Utrera km1, Seville 41013, Spain
| | - Paulo S Pereira
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4150-180, Portugal .,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto 4150-180, Portugal
| |
Collapse
|
14
|
Poole AR, Vicino I, Adachi H, Yu YT, Hebert MD. Regulatory RNPs: a novel class of ribonucleoproteins that potentially contribute to ribosome heterogeneity. Biol Open 2017; 6:1342-1354. [PMID: 28808137 PMCID: PMC5612246 DOI: 10.1242/bio.028092] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Many ribonucleoproteins (RNPs), which are comprised of noncoding RNA and associated proteins, are involved in essential cellular processes such as translation and pre-mRNA splicing. One class of RNP is the small Cajal body-specific RNP (scaRNP), which contributes to the biogenesis of small nuclear RNPs (snRNPs) that are central components of the spliceosome. Three scaRNAs are internally processed, generating stable nucleolus-enriched RNAs of unknown function. Here, we provide data that show that these RNAs become part of RNPs we term regulatory RNPs (regRNPs). Most modifications within rRNA (predominantly pseudouridylation and ribose 2′-O-methylation) are conducted by small nucleolar RNPs (snoRNPs), and we provide evidence that the activity of at least some of these snoRNPs is under the control of regRNPs. Because modifications within rRNA can vary in different physiological or pathological situations, rRNA modifications are thought to be the major source of ribosome heterogeneity. Our identification of regRNPs thus provides a potential mechanism for how ribosome heterogeneity may be accomplished. This work also provides additional functional connections between the Cajal body and the nucleolus. Summary: Processed scaRNAs give rise to a novel regulatory RNP, which regulates the modification of ribosomal RNA. These findings provide insight into the mechanisms governing ribosome heterogeneity.
Collapse
Affiliation(s)
- Aaron R Poole
- Department of Biochemistry, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Ian Vicino
- Department of Biochemistry, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Hironori Adachi
- Department of Biochemistry and Biophysics, The University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Yi-Tao Yu
- Department of Biochemistry and Biophysics, The University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Michael D Hebert
- Department of Biochemistry, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| |
Collapse
|
15
|
Wang JL, Saha TT, Zhang Y, Zhang C, Raikhel AS. Juvenile hormone and its receptor methoprene-tolerant promote ribosomal biogenesis and vitellogenesis in the Aedes aegypti mosquito. J Biol Chem 2017; 292:10306-10315. [PMID: 28446607 DOI: 10.1074/jbc.m116.761387] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 04/24/2017] [Indexed: 12/24/2022] Open
Abstract
Juvenile hormone (JH) controls many biological activities in insects, including development, metamorphosis, and reproduction. In the Aedes aegypti mosquito, a vector of dengue, yellow fever, chikungunya, and zika viruses, the metabolic tissue (the fat body, which is an analogue of the vertebrate liver) produces yolk proteins for developing oocytes. JH is important for the fat body to acquire competence for yolk protein production. However, the molecular mechanisms of how JH promotes mosquito reproduction are not completely understood. In this study we show that stimulation of the JH receptor methoprene-tolerant (Met) activates expression of genes encoding the regulator of ribosome synthesis 1 (RRS1) and six ribosomal proteins (two ribosomal large subunit proteins, two ribosomal small subunit proteins, and two mitochondrial ribosomal proteins). Moreover, RNAi-mediated depletion of RRS1 decreased biosynthesis of the ribosomal protein L32 (RpL32). Depletion of Met, RRS1, or RpL32 led to retardation of ovarian growth and reduced mosquito fecundity, which may at least in part have resulted from decreased vitellogenin protein production in the fat body. In summary, our results indicate that JH is critical for inducing the expression of ribosomal protein genes and demonstrate that RRS1 mediates the JH signal to enhance both ribosomal biogenesis and vitellogenesis.
Collapse
Affiliation(s)
- Jia-Lin Wang
- From the Department of Entomology, University of California, Riverside, California 92521.,Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Tusar T Saha
- From the Department of Entomology, University of California, Riverside, California 92521.,Institute for Integrative Genomic Biology, University of California, Riverside, California 92521
| | - Yang Zhang
- From the Department of Entomology, University of California, Riverside, California 92521.,Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China, and
| | - Changyu Zhang
- From the Department of Entomology, University of California, Riverside, California 92521.,Guizhou Key Laboratory for Plant Pest Management of Mountain Region, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Alexander S Raikhel
- From the Department of Entomology, University of California, Riverside, California 92521, .,Institute for Integrative Genomic Biology, University of California, Riverside, California 92521
| |
Collapse
|
16
|
Moulton MJ, Letsou A. Modeling congenital disease and inborn errors of development in Drosophila melanogaster. Dis Model Mech 2016; 9:253-69. [PMID: 26935104 PMCID: PMC4826979 DOI: 10.1242/dmm.023564] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fly models that faithfully recapitulate various aspects of human disease and human health-related biology are being used for research into disease diagnosis and prevention. Established and new genetic strategies in Drosophila have yielded numerous substantial successes in modeling congenital disorders or inborn errors of human development, as well as neurodegenerative disease and cancer. Moreover, although our ability to generate sequence datasets continues to outpace our ability to analyze these datasets, the development of high-throughput analysis platforms in Drosophila has provided access through the bottleneck in the identification of disease gene candidates. In this Review, we describe both the traditional and newer methods that are facilitating the incorporation of Drosophila into the human disease discovery process, with a focus on the models that have enhanced our understanding of human developmental disorders and congenital disease. Enviable features of the Drosophila experimental system, which make it particularly useful in facilitating the much anticipated move from genotype to phenotype (understanding and predicting phenotypes directly from the primary DNA sequence), include its genetic tractability, the low cost for high-throughput discovery, and a genome and underlying biology that are highly evolutionarily conserved. In embracing the fly in the human disease-gene discovery process, we can expect to speed up and reduce the cost of this process, allowing experimental scales that are not feasible and/or would be too costly in higher eukaryotes.
Collapse
Affiliation(s)
- Matthew J Moulton
- Department of Human Genetics, University of Utah, 15 North 2030 East, Room 5100, Salt Lake City, UT 84112-5330, USA
| | - Anthea Letsou
- Department of Human Genetics, University of Utah, 15 North 2030 East, Room 5100, Salt Lake City, UT 84112-5330, USA
| |
Collapse
|
17
|
Hebert MD, Poole AR. Towards an understanding of regulating Cajal body activity by protein modification. RNA Biol 2016; 14:761-778. [PMID: 27819531 DOI: 10.1080/15476286.2016.1243649] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The biogenesis of small nuclear ribonucleoproteins (snRNPs), small Cajal body-specific RNPs (scaRNPs), small nucleolar RNPs (snoRNPs) and the telomerase RNP involves Cajal bodies (CBs). Although many components enriched in the CB contain post-translational modifications (PTMs), little is known about how these modifications impact individual protein function within the CB and, in concert with other modified factors, collectively regulate CB activity. Since all components of the CB also reside in other cellular locations, it is also important that we understand how PTMs affect the subcellular localization of CB components. In this review, we explore the current knowledge of PTMs on the activity of proteins known to enrich in CBs in an effort to highlight current progress as well as illuminate paths for future investigation.
Collapse
Affiliation(s)
- Michael D Hebert
- a Department of Biochemistry , The University of Mississippi Medical Center , Jackson , MS , USA
| | - Aaron R Poole
- a Department of Biochemistry , The University of Mississippi Medical Center , Jackson , MS , USA
| |
Collapse
|
18
|
Wang Y, DiMario P. Loss of Drosophila nucleostemin 2 (NS2) blocks nucleolar release of the 60S subunit leading to ribosome stress. Chromosoma 2016; 126:375-388. [PMID: 27150106 DOI: 10.1007/s00412-016-0597-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 04/18/2016] [Accepted: 04/25/2016] [Indexed: 12/24/2022]
Abstract
Four nucleostemin-like proteins (nucleostemin (NS) 1-4) were identified previously in Drosophila melanogaster. NS1 and NS2 are nucleolar proteins, while NS3 and NS4 are cytoplasmic proteins. We showed earlier that NS1 (homologous to human GNL3) enriches within the granular components (GCs) of Drosophila nucleoli and is required for efficient maturation or nucleolar release of the 60S subunit. Here, we show that NS2 is homologous to the human nucleostemin-like protein, Ngp1 (GNL2), and that endogenous NS2 is expressed in both progenitor and terminally differentiated cell types. Exogenous GFP-NS2 enriched within nucleolar GCs versus endogenous fibrillarin that marked the dense fibrillar components (DFCs). Like NS1, depletion of NS2 in midgut cells blocked the release of the 60S subunit as detected by the accumulation of GFP-RpL11 within nucleoli, and this likely led to the general loss of 60S subunits as shown by immunoblot analyses of RpL23a and RpL34. At the ultrastructural level, nucleoli in midgut cells depleted of NS2 displayed enlarged GCs not only on the nucleolar periphery but interspersed within the DFCs. Depletion of NS2 caused ribosome stress: larval midgut cells displayed prominent autophagy marked by the appearance of autolysosomes containing mCherry-ATG8a and the appearance of rough endoplasmic reticulum (rER)-derived isolation membranes. Larval imaginal wing disc cells depleted of NS2 induced apoptosis as marked by anti-caspase 3 labeling; loss of these progenitor cells resulted in defective adult wings. We conclude that nucleolar proteins NS1 and NS2 have similar but non-overlapping roles in the final maturation or nucleolar release of 60S ribosomal subunits.
Collapse
Affiliation(s)
- Yubo Wang
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA, 70803-1715, USA
| | - Patrick DiMario
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA, 70803-1715, USA.
| |
Collapse
|