1
|
Zhao R, Zhao JR, Xue X, Ma D. Deciphering the etiology of congenital scoliosis: A genetic and epigenetic perspective. World J Orthop 2025; 16:104853. [DOI: 10.5312/wjo.v16.i6.104853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/24/2025] [Accepted: 05/21/2025] [Indexed: 06/18/2025] Open
Abstract
Congenital scoliosis (CS) is a prevalent spinal deformity with a multifaceted etiology that remains incompletely understood. Recent advances in genetic and epigenetic research have provided novel insights into CS pathogenesis. Herein, we review the current progress in genetics and epigenetics to examine genetic variants, susceptibility factors, and the epigenetic regulatory mechanisms implicated in CS. Through an analysis of diverse genetic markers, chromosomal abnormalities, and epigenetic modifications, the correlation between genetic predisposition and environmental influences in CS pathogenesis is elucidated. By integrating these genetic and epigenetic findings, this study aims to clarify the underlying etiology of CS to provide guidance on future clinical interventions and promote the development of personalized therapeutic strategies.
Collapse
Affiliation(s)
- Rui Zhao
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Ji-Rong Zhao
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Xu Xue
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Dong Ma
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| |
Collapse
|
2
|
Wang H, Syed AA, Krijgsveld J, Sigismondo G. Isolation of Proteins on Chromatin Reveals Signaling Pathway-Dependent Alterations in the DNA-Bound Proteome. Mol Cell Proteomics 2025; 24:100908. [PMID: 39842777 PMCID: PMC11889358 DOI: 10.1016/j.mcpro.2025.100908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 01/03/2025] [Accepted: 01/17/2025] [Indexed: 01/24/2025] Open
Abstract
Signaling pathways often convergence on transcription factors and other DNA-binding proteins that regulate chromatin structure and gene expression, thereby governing a broad range of essential cellular functions. However, the repertoire of DNA-binding proteins is incompletely understood even for the best-characterized pathways. Here, we optimized a strategy for the isolation of Proteins on Chromatin (iPOC) exploiting tagged nucleoside analogs to label the DNA and capture associated proteins, thus enabling the comprehensive, sensitive, and unbiased characterization of the DNA-bound proteome. We then applied iPOC to investigate chromatome changes upon perturbation of the cancer-relevant PI3K-AKT-mTOR pathway. Our results show distinct dynamics of the DNA-bound proteome upon selective inhibition of PI3K, AKT, or mTOR, and we provide evidence how this signaling cascade regulates the DNA-bound status of SUZ12, thereby modulating H3K27me3 levels. Collectively, iPOC is a powerful approach to study the composition of the DNA-bound proteome operating downstream of signaling cascades, thereby both expanding our knowledge of the mechanism of action of the pathway and unveiling novel chromatin modulators that can potentially be targeted pharmacologically.
Collapse
Affiliation(s)
- Huiyu Wang
- Division of Proteomics of Stem Cell and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Azmal Ali Syed
- Division of Proteomics of Stem Cell and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jeroen Krijgsveld
- Division of Proteomics of Stem Cell and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; Medical Faculty, Heidelberg University, Heidelberg, Germany.
| | - Gianluca Sigismondo
- Division of Proteomics of Stem Cell and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; Medical Faculty, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
3
|
Foden CJ, Durant K, Mellet J, Joubert F, van Rensburg J, Masemola K, Velaphi SC, Nakwa FL, Horn AR, Pillay S, Kali G, Coetzee M, Ballot DE, Kalua T, Babbo C, Pepper MS. Genetic Variants Associated with Suspected Neonatal Hypoxic Ischaemic Encephalopathy: A Study in a South African Context. Int J Mol Sci 2025; 26:2075. [PMID: 40076698 PMCID: PMC11900005 DOI: 10.3390/ijms26052075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Neonatal encephalopathy suspected to be due to hypoxic ischaemic encephalopathy (NESHIE) carries the risk of death or severe disability (cognitive defects and cerebral palsy). Previous genetic studies on NESHIE have predominantly focused on exomes or targeted genes. The objective of this study was to identify genetic variants associated with moderate-severe NESHIE through whole-genome, unbiased analysis. Variant filtering and prioritization were performed, followed by association testing both on a case-control basis and to compare the grades of severity and/or progression. Association testing on neonates with NESHIE (N = 172) and ancestry-matched controls (N = 288) produced 71 significant genetic variants (false discovery rate corrected p-value < 6.2 × 10-4), all located in non-coding regions and not previously implicated in NESHIE. Disease-associated variants in non-coding regions are considered to affect regulatory functions, possibly by modifying gene expression, promoters, enhancers, or DNA structure. The most significant variant was at position 6:162010973 in the Parkin RBR E3 ubiquitin protein ligase (PRKN) intron. Intronic variants were also identified in genes involved in inflammatory processes (SLCO3A1), DNA repair (ZGRF1), synaptogenesis (CNTN5), haematopoiesis (ASXL2), and the transcriptional response to hypoxia (PADI4). Ten variants were associated with a higher severity or lack of improvement in NESHIE, including one in ADAMTS3, which encodes a procollagen amino protease with a role in angiogenesis and lymphangiogenesis. This analysis represents one of the first efforts to analyze whole-genome data to investigate the genetic complexity of NESHIE in diverse ethnolinguistic groups of African origin and provides direction for further study.
Collapse
Affiliation(s)
- Caroline J. Foden
- Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0084, South Africa; (C.J.F.); (J.M.); (J.v.R.); (T.K.); (C.B.)
| | | | - Juanita Mellet
- Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0084, South Africa; (C.J.F.); (J.M.); (J.v.R.); (T.K.); (C.B.)
| | - Fourie Joubert
- Centre for Bioinformatics and Computational Biology, Genomics Research Institute, Department of Biochemistry, Genetics, and Microbiology, University of Pretoria, Pretoria 0002, South Africa;
| | - Jeanne van Rensburg
- Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0084, South Africa; (C.J.F.); (J.M.); (J.v.R.); (T.K.); (C.B.)
| | - Khomotso Masemola
- Department of Paediatrics and Child Health, Kalafong Hospital and Faculty of Health Sciences, University of Pretoria, Pretoria 0084, South Africa;
| | - Sithembiso C. Velaphi
- Department of Paediatrics and Child Health, Chris Hani Baragwanath Academic Hospital, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa; (S.C.V.); (F.L.N.)
| | - Firdose L. Nakwa
- Department of Paediatrics and Child Health, Chris Hani Baragwanath Academic Hospital, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa; (S.C.V.); (F.L.N.)
| | - Alan R. Horn
- Division of Neonatal Medicine, Department of Paediatrics and Child Health, Groote Schuur Hospital, University of Cape Town, Cape Town 7701, South Africa; (A.R.H.); (S.P.)
| | - Shakti Pillay
- Division of Neonatal Medicine, Department of Paediatrics and Child Health, Groote Schuur Hospital, University of Cape Town, Cape Town 7701, South Africa; (A.R.H.); (S.P.)
| | - Gugu Kali
- Tygerberg Hospital Neonatal Unit, Department of Paediatrics and Child Health, Stellenbosch University, Cape Town 7600, South Africa;
| | - Melantha Coetzee
- Division of Neonatology, Department of Paediatrics and Child Health, Steve Biko Academic Hospital, Faculty of Health Sciences, University of Pretoria, Pretoria 0084, South Africa;
| | - Daynia E. Ballot
- Department of Paediatrics and Child Health, Charlotte Maxeke Johannesburg Academic Hospital, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa;
| | - Thumbiko Kalua
- Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0084, South Africa; (C.J.F.); (J.M.); (J.v.R.); (T.K.); (C.B.)
| | - Carina Babbo
- Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0084, South Africa; (C.J.F.); (J.M.); (J.v.R.); (T.K.); (C.B.)
| | - Michael S. Pepper
- Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0084, South Africa; (C.J.F.); (J.M.); (J.v.R.); (T.K.); (C.B.)
| |
Collapse
|
4
|
Wang XH, Zhang SF, Wu HY, Gao J, Wang L, Yin Y, Wang X. Alteration of chromatin states perturb the transcription regulation of gene during hydronephrosis. Front Genet 2025; 16:1396073. [PMID: 40034749 PMCID: PMC11873066 DOI: 10.3389/fgene.2025.1396073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 01/23/2025] [Indexed: 03/05/2025] Open
Abstract
Background Gene expression is abnormal in disease compared to normal tissue same as the regulatory elements. Regulatory element binding with transcription factors managed transcription of gene, which usually require chromatin accessible. Methods To reveal potential epigenetic mechanism during hydronephrosis, we first used RNA-seq to finger out the disfunction genes during hydronephrosis, then combined with ATAC-seq, and BS-seq to reveal the related disfunction regulatory elements. Results Finally, we find that 860 differentially genes and 2429 dynamic chromatin open regions between normal and hydronephrosis tissue. Though, most of disfunction genes and regulatory elements significantly enriched in chronic kidney disease GO term, only small part of regulatory element target genes overlapped with truly disfunction genes. And we also find out an important gene OTUD6B, which overexpression in disease tissue is manipulated by distal regulatory element through chromatin loop, and confirm the importance of epigenetic mechanism in disease. Conclusion In summary, we found many hub genes and potential therapeutic target during hydronephrosis, and also confirmed that epigenetic play important role in gene expression and relevant in disease progress.
Collapse
Affiliation(s)
- Xiao-Hui Wang
- Department of Pediatric Surgery, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Shu-Feng Zhang
- Department of Pediatric Surgery, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Hai-Ying Wu
- Department of Obstetrics, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Jian Gao
- Department of Pediatric Surgery, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Lin Wang
- Department of Pediatric Surgery, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Yao Yin
- Department of Medical Affairs, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Xuhui Wang
- Department of Pediatric Surgery, Henan Provincial People’s Hospital, Zhengzhou, China
| |
Collapse
|
5
|
Murgas L, Pollastri G, Riquelme E, Sáez M, Martin AJM. Understanding relationships between epigenetic marks and their application to robust assignment of chromatin states. Brief Bioinform 2024; 26:bbae638. [PMID: 39658206 PMCID: PMC11631260 DOI: 10.1093/bib/bbae638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 09/09/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024] Open
Abstract
Structural changes of chromatin modulate access to DNA for the molecular machinery involved in the control of transcription. These changes are linked to variations in epigenetic marks that allow to classify chromatin in different functional states depending on the pattern of these histone marks. Importantly, alterations in chromatin states are known to be linked with various diseases, and their changes are known to explain processes such as cellular proliferation. For most of the available samples, there are not enough epigenomic data available to accurately determine chromatin states for the cells affected in each of them. This is mainly due to high costs of performing this type of experiments but also because of lack of a sufficient amount of sample or its degradation. In this work, we describe a cascade method based on a random forest algorithm to infer epigenetic marks, and by doing so, to identify relationships between different histone marks. Importantly, our approach also reduces the number of experimentally determined marks required to assign chromatin states. Moreover, in this work we have identified several relationships between patterns of different histone marks, which strengthens the evidence in favor of a redundant epigenetic code.
Collapse
Affiliation(s)
- Leandro Murgas
- Programa de Doctorado en Genómica Integrativa, Vicerrectoría de investigación, Universidad Mayor, Camino La Pirámide 5750, 8580745 Huechuraba, Chile
- Laboratorio de Redes Biológicas, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avda. del Valle 725, 8580702 Huechuraba, Chile
| | - Gianluca Pollastri
- School of Computer Science, University College Dublin, Belfield, Dublin 4, Dublin D04 C1P1, Ireland
| | - Erick Riquelme
- Department of Respiratory Diseases, Facultad de Medicina, Pontificia Universidad Católica, Avda. Libertador Bernando O’Higgins 340, 8331150 Santiago, Chile
| | - Mauricio Sáez
- Laboratorio de Investigación en Salud de Precisión, Departamento de Procesos Diagnósticos y Evaluación, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Manuel Montt 56, 4813302 Temuco, Chile
| | - Alberto J M Martin
- Laboratorio de Redes Biológicas, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avda. del Valle 725, 8580702 Huechuraba, Chile
- Escuela de Ingeniería, Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, 8420524 Santiago, Chile
| |
Collapse
|
6
|
Jain S, Xun G, Zhao H. Impact of Chromatin Organization and Epigenetics on CRISPR-Cas and TALEN Genome Editing. ACS Synth Biol 2024; 13:3056-3068. [PMID: 39315937 DOI: 10.1021/acssynbio.4c00099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
DNA lies at the heart of the central dogma of life. Altering DNA can modify the flow of information in fundamental cellular processes such as transcription and translation. The ability to precisely manipulate DNA has led to remarkable advances in treating incurable human genetic ailments and has changed the landscape of biological research. Genome editors such as CRISPR-Cas nucleases and TALENs have become ubiquitous tools in basic and applied biological research and have been translated to the clinic to treat patients. The specificity and modularity of these genome editors have made it possible to efficiently engineer genomic DNA; however, underlying principles governing editing outcomes in eukaryotes are still being uncovered. Editing efficiency can vary from cell type to cell type for the same DNA target sequence, necessitating de novo design and validation efforts. Chromatin structure and epigenetic modifications have been shown to affect the activity of genome editors because of the role they play in hierarchical organization of the underlying DNA. Understanding the nuclear search mechanism of genome editors and their molecular interactions with higher order chromatin will lead to improved models for predicting precise genome editing outcomes. Insights from such studies will unlock the entire genome to be engineered for the creation of novel therapies to treat critical illnesses.
Collapse
Affiliation(s)
- Surbhi Jain
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Guanhua Xun
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Huimin Zhao
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
7
|
Cheng S, Miao B, Li T, Zhao G, Zhang B. Review and Evaluate the Bioinformatics Analysis Strategies of ATAC-seq and CUT&Tag Data. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae054. [PMID: 39255248 PMCID: PMC11464419 DOI: 10.1093/gpbjnl/qzae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/28/2024] [Accepted: 07/18/2024] [Indexed: 09/12/2024]
Abstract
Efficient and reliable profiling methods are essential to study epigenetics. Tn5, one of the first identified prokaryotic transposases with high DNA-binding and tagmentation efficiency, is widely adopted in different genomic and epigenomic protocols for high-throughputly exploring the genome and epigenome. Based on Tn5, the Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) and the Cleavage Under Targets and Tagmentation (CUT&Tag) were developed to measure chromatin accessibility and detect DNA-protein interactions. These methodologies can be applied to large amounts of biological samples with low-input levels, such as rare tissues, embryos, and sorted single cells. However, fast and proper processing of these epigenomic data has become a bottleneck because massive data production continues to increase quickly. Furthermore, inappropriate data analysis can generate biased or misleading conclusions. Therefore, it is essential to evaluate the performance of Tn5-based ATAC-seq and CUT&Tag data processing bioinformatics tools, many of which were developed mostly for analyzing chromatin immunoprecipitation followed by sequencing (ChIP-seq) data. Here, we conducted a comprehensive benchmarking analysis to evaluate the performance of eight popular software for processing ATAC-seq and CUT&Tag data. We compared the sensitivity, specificity, and peak width distribution for both narrow-type and broad-type peak calling. We also tested the influence of the availability of control IgG input in CUT&Tag data analysis. Finally, we evaluated the differential analysis strategies commonly used for analyzing the CUT&Tag data. Our study provided comprehensive guidance for selecting bioinformatics tools and recommended analysis strategies, which were implemented into Docker/Singularity images for streamlined data analysis.
Collapse
Affiliation(s)
- Siyuan Cheng
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Benpeng Miao
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63108, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Tiandao Li
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Guoyan Zhao
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63108, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63108, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Bo Zhang
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63108, USA
| |
Collapse
|
8
|
Roth GV, Gengaro IR, Qi LS. Precision epigenetic editing: Technological advances, enduring challenges, and therapeutic applications. Cell Chem Biol 2024; 31:S2451-9456(24)00309-X. [PMID: 39137782 PMCID: PMC11799355 DOI: 10.1016/j.chembiol.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/31/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024]
Abstract
The epigenome is a complex framework through which gene expression is precisely and flexibly modulated to incorporate heritable memory and responses to environmental stimuli. It governs diverse cellular processes, including cell fate, disease, and aging. The need to understand this system and precisely control gene expression outputs for therapeutic purposes has precipitated the development of a diverse set of epigenetic editing tools. Here, we review the existing toolbox for targeted epigenetic editing, technical considerations of the current technologies, and opportunities for future development. We describe applications of therapeutic epigenetic editing and their potential for treating disease, with a discussion of ongoing delivery challenges that impede certain clinical interventions, particularly in the brain. With simultaneous advancements in available engineering tools and appropriate delivery technologies, we predict that epigenetic editing will increasingly cement itself as a powerful approach for safely treating a wide range of disorders in all tissues of the body.
Collapse
Affiliation(s)
- Goldie V Roth
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Isabella R Gengaro
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA; Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Lei S Qi
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA; Chan Zuckerberg Biohub - San Francisco, San Francisco, CA, USA.
| |
Collapse
|
9
|
Song L, Li Q, Xia L, Sahay AE, Qiu Q, Li Y, Li H, Sasaki K, Susztak K, Wu H, Wan L. Single-cell multiomics reveals ENL mutation perturbs kidney developmental trajectory by rewiring gene regulatory landscape. Nat Commun 2024; 15:5937. [PMID: 39009564 PMCID: PMC11250843 DOI: 10.1038/s41467-024-50171-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 07/02/2024] [Indexed: 07/17/2024] Open
Abstract
How disruptions to normal cell differentiation link to tumorigenesis remains incompletely understood. Wilms tumor, an embryonal tumor associated with disrupted organogenesis, often harbors mutations in epigenetic regulators, but their role in kidney development remains unexplored. Here, we show at single-cell resolution that a Wilms tumor-associated mutation in the histone acetylation reader ENL disrupts kidney differentiation in mice by rewiring the gene regulatory landscape. Mutant ENL promotes nephron progenitor commitment while restricting their differentiation by dysregulating transcription factors such as Hox clusters. It also induces abnormal progenitors that lose kidney-associated chromatin identity. Furthermore, mutant ENL alters the transcriptome and chromatin accessibility of stromal progenitors, resulting in hyperactivation of Wnt signaling. The impacts of mutant ENL on both nephron and stroma lineages lead to profound kidney developmental defects and postnatal mortality in mice. Notably, a small molecule inhibiting mutant ENL's histone acetylation binding activity largely reverses these defects. This study provides insights into how mutations in epigenetic regulators disrupt kidney development and suggests a potential therapeutic approach.
Collapse
Affiliation(s)
- Lele Song
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Qinglan Li
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lingbo Xia
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of the School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Arushi Eesha Sahay
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Qi Qiu
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yuanyuan Li
- MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, School of Medicine, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Haitao Li
- MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, School of Medicine, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Kotaro Sasaki
- Department of Biomedical Sciences, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA, 19104, USA
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Katalin Susztak
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Hao Wu
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Liling Wan
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
10
|
Song L, Li Q, Xia L, Sahay A, Qiu Q, Li Y, Li H, Sasaki K, Susztak K, Wu H, Wan L. Single-Cell multiomics reveals ENL mutation perturbs kidney developmental trajectory by rewiring gene regulatory landscape. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.591709. [PMID: 38766219 PMCID: PMC11100752 DOI: 10.1101/2024.05.09.591709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Cell differentiation during organogenesis relies on precise epigenetic and transcriptional control. Disruptions to this regulation can result in developmental abnormalities and malignancies, yet the underlying mechanisms are not well understood. Wilms tumors, a type of embryonal tumor closely linked to disrupted organogenesis, harbor mutations in epigenetic regulators in 30-50% of cases. However, the role of these regulators in kidney development and pathogenesis remains unexplored. By integrating mouse modeling, histological characterizations, and single-cell transcriptomics and chromatin accessibility profiling, we show that a Wilms tumor-associated mutation in the chromatin reader protein ENL disrupts kidney development trajectory by rewiring the gene regulatory landscape. Specifically, the mutant ENL promotes the commitment of nephron progenitors while simultaneously restricting their differentiation by dysregulating key transcription factor regulons, particularly the HOX clusters. It also induces the emergence of abnormal progenitor cells that lose their chromatin identity associated with kidney specification. Furthermore, the mutant ENL might modulate stroma-nephron interactions via paracrine Wnt signaling. These multifaceted effects caused by the mutation result in severe developmental defects in the kidney and early postnatal mortality in mice. Notably, transient inhibition of the histone acetylation binding activity of mutant ENL with a small molecule displaces transcriptional condensates formed by mutant ENL from target genes, abolishes its gene activation function, and restores developmental defects in mice. This work provides new insights into how mutations in epigenetic regulators can alter the gene regulatory landscape to disrupt kidney developmental programs at single-cell resolution in vivo . It also offers a proof-of-concept for the use of epigenetics-targeted agents to rectify developmental defects.
Collapse
|
11
|
Yagci ZB, Kelkar GR, Johnson TJ, Sen D, Keung AJ. Designing Epigenome Editors: Considerations of Biochemical and Locus Specificities. Methods Mol Biol 2024; 2842:23-55. [PMID: 39012589 DOI: 10.1007/978-1-0716-4051-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The advent of locus-specific protein recruitment technologies has enabled a new class of studies in chromatin biology. Epigenome editors (EEs) enable biochemical modifications of chromatin at almost any specific endogenous locus. Their locus-specificity unlocks unique information including the functional roles of distinct modifications at specific genomic loci. Given the growing interest in using these tools for biological and translational studies, there are many specific design considerations depending on the scientific question or clinical need. Here, we present and discuss important design considerations and challenges regarding the biochemical and locus specificities of epigenome editors. These include how to: account for the complex biochemical diversity of chromatin; control for potential interdependency of epigenome editors and their resultant modifications; avoid sequestration effects; quantify the locus specificity of epigenome editors; and improve locus-specificity by considering concentration, affinity, avidity, and sequestration effects.
Collapse
Affiliation(s)
- Z Begum Yagci
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Gautami R Kelkar
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Tyler J Johnson
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Dilara Sen
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Albert J Keung
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
12
|
Colón-Caraballo M, Flores-Caldera I. Translational aspects of the endometriosis epigenome. EPIGENETICS IN HUMAN DISEASE 2024:883-929. [DOI: 10.1016/b978-0-443-21863-7.00008-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
13
|
Yin ZT, Li XQ, Sun YX, Smith J, Hincke M, Yang N, Hou ZC. Selection on the promoter regions plays an important role in complex traits during duck domestication. BMC Biol 2023; 21:303. [PMID: 38129834 PMCID: PMC10740227 DOI: 10.1186/s12915-023-01801-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Identifying the key factors that underlie complex traits during domestication is a great challenge for evolutionary and biological studies. In addition to the protein-coding region differences caused by variants, a large number of variants are located in the noncoding regions containing multiple types of regulatory elements. However, the roles of accumulated variants in gene regulatory elements during duck domestication and economic trait improvement are poorly understood. RESULTS We constructed a genomics, transcriptomics, and epigenomics map of the duck genome and assessed the evolutionary forces that have been in play across the whole genome during domestication. In total, 304 (42.94%) gene promoters have been specifically selected in Pekin duck among all selected genes. Joint multi-omics analysis reveals that 218 genes (72.01%) with selected promoters are located in open and active chromatin, and 267 genes (87.83%) with selected promoters were highly and differentially expressed in domestic trait-related tissues. One important candidate gene ELOVL3, with a strong signature of differentiation on the core promoter region, is known to regulate fatty acid elongation. Functional experiments showed that the nearly fixed variants in the top selected ELOVL3 promoter in Pekin duck decreased binding ability with HLF and increased gene expression, with the overexpression of ELOVL3 able to increase lipid deposition and unsaturated fatty acid enrichment. CONCLUSIONS This study presents genome resequencing, RNA-Seq, Hi-C, and ATAC-Seq data of mallard and Pekin duck, showing that selection of the gene promoter region plays an important role in gene expression and phenotypic changes during domestication and highlights that the variants of the ELOVL3 promoter may have multiple effects on fat and long-chain fatty acid content in ducks.
Collapse
Affiliation(s)
- Zhong-Tao Yin
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, MARA, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Xiao-Qin Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, MARA, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Yun-Xiao Sun
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, MARA, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Jacqueline Smith
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Maxwell Hincke
- Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, MARA, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China.
| | - Zhuo-Cheng Hou
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, MARA, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China.
| |
Collapse
|
14
|
Radzisheuskaya A, Peña‐Rømer I, Lorenzini E, Koche R, Zhan Y, Shliaha PV, Cooper AJ, Fan Z, Shlyueva D, Johansen JV, Hendrickson RC, Helin K. An alternative NURF complex sustains acute myeloid leukemia by regulating the accessibility of insulator regions. EMBO J 2023; 42:e114221. [PMID: 37987160 PMCID: PMC10711654 DOI: 10.15252/embj.2023114221] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 10/19/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023] Open
Abstract
Efficient treatment of acute myeloid leukemia (AML) patients remains a challenge despite recent therapeutic advances. Here, using a CRISPRi screen targeting chromatin factors, we identified the nucleosome-remodeling factor (NURF) subunit BPTF as an essential regulator of AML cell survival. We demonstrate that BPTF forms an alternative NURF chromatin remodeling complex with SMARCA5 and BAP18, which regulates the accessibility of a large set of insulator regions in leukemic cells. This ensures efficient CTCF binding and boundary formation between topologically associated domains that is essential for maintaining the leukemic transcriptional programs. We also demonstrate that the well-studied PHD2-BROMO chromatin reader domains of BPTF, while contributing to complex recruitment to chromatin, are dispensable for leukemic cell growth. Taken together, our results uncover how the alternative NURF complex contributes to leukemia and provide a rationale for its targeting in AML.
Collapse
Affiliation(s)
- Aliaksandra Radzisheuskaya
- Division of Cancer BiologyThe Institute of Cancer ResearchLondonUK
- Biotech Research & Innovation CentreUniversity of CopenhagenCopenhagenDenmark
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem)University of CopenhagenCopenhagenDenmark
- Center for Epigenetics ResearchMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
- Cell Biology ProgramMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Isabel Peña‐Rømer
- Division of Cancer BiologyThe Institute of Cancer ResearchLondonUK
- Biotech Research & Innovation CentreUniversity of CopenhagenCopenhagenDenmark
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem)University of CopenhagenCopenhagenDenmark
| | - Eugenia Lorenzini
- Biotech Research & Innovation CentreUniversity of CopenhagenCopenhagenDenmark
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem)University of CopenhagenCopenhagenDenmark
| | - Richard Koche
- Center for Epigenetics ResearchMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Yingqian Zhan
- Center for Epigenetics ResearchMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Pavel V Shliaha
- Microchemistry & Proteomics CoreMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | | | - Zheng Fan
- Division of Cancer BiologyThe Institute of Cancer ResearchLondonUK
- Biotech Research & Innovation CentreUniversity of CopenhagenCopenhagenDenmark
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem)University of CopenhagenCopenhagenDenmark
| | - Daria Shlyueva
- Biotech Research & Innovation CentreUniversity of CopenhagenCopenhagenDenmark
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem)University of CopenhagenCopenhagenDenmark
- Center for Epigenetics ResearchMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
- Cell Biology ProgramMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Jens V Johansen
- Biotech Research & Innovation CentreUniversity of CopenhagenCopenhagenDenmark
| | - Ronald C Hendrickson
- Microchemistry & Proteomics CoreMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Kristian Helin
- Division of Cancer BiologyThe Institute of Cancer ResearchLondonUK
- Biotech Research & Innovation CentreUniversity of CopenhagenCopenhagenDenmark
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem)University of CopenhagenCopenhagenDenmark
- Center for Epigenetics ResearchMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
- Cell Biology ProgramMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| |
Collapse
|
15
|
Fujimura A, Ishida H, Nozaki T, Terada S, Azumaya Y, Ishiguro T, Kamimura YR, Kujirai T, Kurumizaka H, Kono H, Yamatsugu K, Kawashima SA, Kanai M. Designer Adaptor Proteins for Functional Conversion of Peptides to Small-Molecule Ligands toward In-Cell Catalytic Protein Modification. ACS CENTRAL SCIENCE 2023; 9:2115-2128. [PMID: 38033808 PMCID: PMC10683481 DOI: 10.1021/acscentsci.3c00930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/19/2023] [Accepted: 10/12/2023] [Indexed: 12/02/2023]
Abstract
Peptides are privileged ligands for diverse biomacromolecules, including proteins; however, their utility is often limited due to low membrane permeability and in-cell instability. Here, we report peptide ligand-inserted eDHFR (PLIED) fusion protein as a universal adaptor for targeting proteins of interest (POI) with cell-permeable and stable synthetic functional small molecules (SFSM). PLIED binds to POI through the peptide moiety, properly orienting its eDHFR moiety, which then recruits trimethoprim (TMP)-conjugated SFSM to POI. Using a lysine-acylating BAHA catalyst as SFSM, we demonstrate that POI (MDM2 and chromatin histone) are post-translationally and synthetically acetylated at specific lysine residues. The residue-selectivity is predictable in an atomic resolution from molecular dynamics simulations of the POI/PLIED/TMP-BAHA (MTX was used as a TMP model) ternary complex. This designer adaptor approach universally enables functional conversion of impermeable peptide ligands to permeable small-molecule ligands, thus expanding the in-cell toolbox of chemical biology.
Collapse
Affiliation(s)
- Akiko Fujimura
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, Tokyo 113-0033, Japan
| | - Hisashi Ishida
- Institute
for Quantum Life Science, National Institutes
for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Tamiko Nozaki
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, Tokyo 113-0033, Japan
| | - Shuhei Terada
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, Tokyo 113-0033, Japan
| | - Yuto Azumaya
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, Tokyo 113-0033, Japan
| | - Tadashi Ishiguro
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, Tokyo 113-0033, Japan
| | - Yugo R. Kamimura
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, Tokyo 113-0033, Japan
| | - Tomoya Kujirai
- Institute
for Quantitative Biosciences, The University
of Tokyo, Tokyo 113-0032, Japan
| | - Hitoshi Kurumizaka
- Institute
for Quantitative Biosciences, The University
of Tokyo, Tokyo 113-0032, Japan
| | - Hidetoshi Kono
- Institute
for Quantum Life Science, National Institutes
for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Kenzo Yamatsugu
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, Tokyo 113-0033, Japan
| | - Shigehiro A. Kawashima
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, Tokyo 113-0033, Japan
| | - Motomu Kanai
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
16
|
Rogers MF, Marshall OJ, Secombe J. KDM5-mediated activation of genes required for mitochondrial biology is necessary for viability in Drosophila. Development 2023; 150:dev202024. [PMID: 37800333 PMCID: PMC10651110 DOI: 10.1242/dev.202024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/29/2023] [Indexed: 10/07/2023]
Abstract
Histone-modifying proteins play important roles in the precise regulation of the transcriptional programs that coordinate development. KDM5 family proteins interact with chromatin through demethylation of H3K4me3 as well as demethylase-independent mechanisms that remain less understood. To gain fundamental insights into the transcriptional activities of KDM5 proteins, we examined the essential roles of the single Drosophila Kdm5 ortholog during development. KDM5 performs crucial functions in the larval neuroendocrine prothoracic gland, providing a model to study its role in regulating key gene expression programs. Integrating genome binding and transcriptomic data, we identify that KDM5 regulates the expression of genes required for the function and maintenance of mitochondria, and we find that loss of KDM5 causes morphological changes to mitochondria. This is key to the developmental functions of KDM5, as expression of the mitochondrial biogenesis transcription factor Ets97D, homolog of GABPα, is able to suppress the altered mitochondrial morphology as well as the lethality of Kdm5 null animals. Together, these data establish KDM5-mediated cellular functions that are important for normal development and could contribute to KDM5-linked disorders when dysregulated.
Collapse
Affiliation(s)
- Michael F. Rogers
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Owen J. Marshall
- Menzies Institute for Medical Research, University of Tasmania, Hobart TAS 7000, Australia
| | - Julie Secombe
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
17
|
Habazaki M, Mizumoto S, Kajino H, Kujirai T, Kurumizaka H, Kawashima SA, Yamatsugu K, Kanai M. A chemical catalyst enabling histone acylation with endogenous acyl-CoA. Nat Commun 2023; 14:5790. [PMID: 37737243 PMCID: PMC10517024 DOI: 10.1038/s41467-023-41426-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/29/2023] [Indexed: 09/23/2023] Open
Abstract
Life emerges from a network of biomolecules and chemical reactions catalyzed by enzymes. As enzyme abnormalities are often connected to various diseases, a chemical catalyst promoting physiologically important intracellular reactions in place of malfunctional endogenous enzymes would have great utility in understanding and treating diseases. However, research into such small-molecule chemical enzyme surrogates remains limited, due to difficulties in developing a reactive catalyst capable of activating inert cellular metabolites present at low concentrations. Herein, we report a small-molecule catalyst, mBnA, as a surrogate for a histone acetyltransferase. A hydroxamic acid moiety of suitable electronic characteristics at the catalytic site, paired with a thiol-thioester exchange process, enables mBnA to activate endogenous acyl-CoAs present in low concentrations and promote histone lysine acylations in living cells without the addition of exogenous acyl donors. An enzyme surrogate utilizing cellular metabolites will be a unique tool for elucidation of and synthetic intervention in the chemistry of life and disease.
Collapse
Affiliation(s)
- Misuzu Habazaki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shinsuke Mizumoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hidetoshi Kajino
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tomoya Kujirai
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Hitoshi Kurumizaka
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Shigehiro A Kawashima
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Kenzo Yamatsugu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
18
|
Litwin I, Nowicka M, Markowska K, Maciaszczyk-Dziubińska E, Tomaszewska P, Wysocki R, Kramarz K. ISW1a modulates cohesin distribution in centromeric and pericentromeric regions. Nucleic Acids Res 2023; 51:9101-9121. [PMID: 37486771 PMCID: PMC10516642 DOI: 10.1093/nar/gkad612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 06/28/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023] Open
Abstract
Cohesin is a highly conserved, multiprotein complex whose canonical function is to hold sister chromatids together to ensure accurate chromosome segregation. Cohesin association with chromatin relies on the Scc2-Scc4 cohesin loading complex that enables cohesin ring opening and topological entrapment of sister DNAs. To better understand how sister chromatid cohesion is regulated, we performed a proteomic screen in budding yeast that identified the Isw1 chromatin remodeler as a cohesin binding partner. In addition, we found that Isw1 also interacts with Scc2-Scc4. Lack of Isw1 protein, the Ioc3 subunit of ISW1a or Isw1 chromatin remodeling activity resulted in increased accumulation of cohesin at centromeres and pericentromeres, suggesting that ISW1a may promote efficient translocation of cohesin from the centromeric site of loading to neighboring regions. Consistent with the role of ISW1a in the chromatin organization of centromeric regions, Isw1 was found to be recruited to centromeres. In its absence we observed changes in the nucleosomal landscape at centromeres and pericentromeres. Finally, we discovered that upon loss of RSC functionality, ISW1a activity leads to reduced cohesin binding and cohesion defect. Taken together, our results support the notion of a key role of chromatin remodelers in the regulation of cohesin distribution on chromosomes.
Collapse
Affiliation(s)
- Ireneusz Litwin
- Academic Excellence Hub - Research Centre for DNA Repair and Replication, Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland
| | - Małgorzata Nowicka
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland
| | - Katarzyna Markowska
- Academic Excellence Hub - Research Centre for DNA Repair and Replication, Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland
| | - Ewa Maciaszczyk-Dziubińska
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland
| | - Paulina Tomaszewska
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Robert Wysocki
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland
| | - Karol Kramarz
- Academic Excellence Hub - Research Centre for DNA Repair and Replication, Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland
| |
Collapse
|
19
|
St John M, Tripathi T, Morgan AT, Amor DJ. To speak may draw on epigenetic writing and reading: Unravelling the complexity of speech and language outcomes across chromatin-related neurodevelopmental disorders. Neurosci Biobehav Rev 2023; 152:105293. [PMID: 37353048 DOI: 10.1016/j.neubiorev.2023.105293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/11/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Speech and language development are complex neurodevelopmental processes that are incompletely understood, yet current evidence suggests that speech and language disorders are prominent in those with disorders of chromatin regulation. This review aimed to unravel what is known about speech and language outcomes for individuals with chromatin-related neurodevelopmental disorders. A systematic literature search following PRISMA guidelines was conducted on 70 chromatin genes, to identify reports of speech/language outcomes across studies, including clinical reports, formal subjective measures, and standardised/objective measures. 3932 studies were identified and screened and 112 were systematically reviewed. Communication impairment was core across chromatin disorders, and specifically, chromatin writers and readers appear to play an important role in motor speech development. Identification of these relationships is important because chromatin disorders show promise as therapeutic targets due to the capacity for epigenetic modification. Further research is required using standardised and formal assessments to understand the nuanced speech/language profiles associated with variants in each gene, and the influence of chromatin dysregulation on the neurobiology of speech and language development.
Collapse
Affiliation(s)
- Miya St John
- Speech and Language, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Audiology and Speech Pathology, University of Melbourne, VIC, Australia.
| | - Tanya Tripathi
- Neurodisability and Rehabilitation, Murdoch Children's Research Institute, Parkville, VIC, Australia.
| | - Angela T Morgan
- Speech and Language, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Audiology and Speech Pathology, University of Melbourne, VIC, Australia; Speech Genomics Clinic, Royal Children's Hospital, Parkville, VIC, Australia.
| | - David J Amor
- Neurodisability and Rehabilitation, Murdoch Children's Research Institute, Parkville, VIC, Australia; Speech Genomics Clinic, Royal Children's Hospital, Parkville, VIC, Australia; Department of Paediatrics, University of Melbourne, VIC, Australia.
| |
Collapse
|
20
|
Bure IV, Nemtsova MV. Mutual Regulation of ncRNAs and Chromatin Remodeling Complexes in Normal and Pathological Conditions. Int J Mol Sci 2023; 24:ijms24097848. [PMID: 37175555 PMCID: PMC10178202 DOI: 10.3390/ijms24097848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Chromatin remodeling is the one of the main epigenetic mechanisms of gene expression regulation both in normal cells and in pathological conditions. In recent years, a growing number of investigations have confirmed that epigenetic regulators are tightly connected and form a comprehensive network of regulatory pathways and feedback loops. Genes encoding protein subunits of chromatin remodeling complexes are often mutated and change their expression in diseases, as well as non-coding RNAs (ncRNAs). Moreover, different mechanisms of their mutual regulation have already been described. Further understanding of these processes may help apply their clinical potential for establishment of the diagnosis, prognosis, and treatment of the diseases. The therapeutic targeting of the chromatin structure has many limitations because of the complexity of its regulation, with the involvement of a large number of genes, proteins, non-coding transcripts, and other intermediary molecules. However, several successful strategies have been proposed to target subunits of chromatin remodeling complexes and genes encoding them, as well as the ncRNAs that regulate the operation of these complexes and direct them to the target gene regions. In our review, we focus on chromatin remodeling complexes and ncRNAs, their mutual regulation, role in cellular processes and potential clinical application.
Collapse
Affiliation(s)
- Irina V Bure
- Laboratory of Medical Genetics, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Marina V Nemtsova
- Laboratory of Medical Genetics, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Epigenetics, Research Centre for Medical Genetics, 115522 Moscow, Russia
| |
Collapse
|
21
|
Sato G, Kuroda K. Overcoming the Limitations of CRISPR-Cas9 Systems in Saccharomyces cerevisiae: Off-Target Effects, Epigenome, and Mitochondrial Editing. Microorganisms 2023; 11:microorganisms11041040. [PMID: 37110464 PMCID: PMC10145089 DOI: 10.3390/microorganisms11041040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Modification of the genome of the yeast Saccharomyces cerevisiae has great potential for application in biological research and biotechnological advancements, and the CRISPR-Cas9 system has been increasingly employed for these purposes. The CRISPR-Cas9 system enables the precise and simultaneous modification of any genomic region of the yeast to a desired sequence by altering only a 20-nucleotide sequence within the guide RNA expression constructs. However, the conventional CRISPR-Cas9 system has several limitations. In this review, we describe the methods that were developed to overcome these limitations using yeast cells. We focus on three types of developments: reducing the frequency of unintended editing to both non-target and target sequences in the genome, inducing desired changes in the epigenetic state of the target region, and challenging the expansion of the CRISPR-Cas9 system to edit genomes within intracellular organelles such as mitochondria. These developments using yeast cells to overcome the limitations of the CRISPR-Cas9 system are a key factor driving the advancement of the field of genome editing.
Collapse
Affiliation(s)
- Genki Sato
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kouichi Kuroda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
- Department of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
22
|
PerezGrovas-Saltijeral A, Rajkumar AP, Knight HM. Differential expression of m 5C RNA methyltransferase genes NSUN6 and NSUN7 in Alzheimer's disease and traumatic brain injury. Mol Neurobiol 2023; 60:2223-2235. [PMID: 36646969 PMCID: PMC9984329 DOI: 10.1007/s12035-022-03195-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/23/2022] [Indexed: 01/18/2023]
Abstract
Epigenetic processes have become increasingly relevant in understanding disease-modifying mechanisms. 5-Methylcytosine methylations of DNA (5mC) and RNA (m5C) have functional transcriptional and RNA translational consequences and are tightly regulated by writer, reader and eraser effector proteins. To investigate the involvement of 5mC/5hmC and m5C effector proteins contributing to the development of dementia neuropathology, RNA sequencing data of 31 effector proteins across four brain regions was examined in 56 aged non-affected and 51 Alzheimer's disease (AD) individuals obtained from the Aging, Dementia and Traumatic Brain Injury Study. Gene expression profiles were compared between AD and controls, between neuropathological Braak and CERAD scores and in individuals with a history of traumatic brain injury (TBI). We found an increase in the DNA methylation writers DNMT1, DNMT3A and DNMT3B messenger RNA (mRNA) and a decrease in the reader UHRF1 mRNA in AD samples across three brain regions whilst the DNA erasers GADD45B and AICDA showed changes in mRNA abundance within neuropathological load groupings. RNA methylation writers NSUN6 and NSUN7 showed significant expression differences with AD and, along with the reader ALYREF, differences in expression for neuropathologic ranking. A history of TBI was associated with a significant increase in the DNA readers ZBTB4 and MeCP2 (p < 0.05) and a decrease in NSUN6 (p < 0.001) mRNA. These findings implicate regulation of protein pathways disrupted in AD and TBI via multiple pre- and post-transcriptional mechanisms including potentially acting upon transfer RNAs, enhancer RNAs as well as nuclear-cytoplasmic shuttling and cytoplasmic translational control. The targeting of such processes provides new therapeutic avenues for neurodegenerative brain conditions.
Collapse
Affiliation(s)
| | - Anto P Rajkumar
- Institute of Mental Health, Mental Health and Clinical Neurosciences Academic Unit, School of Medicine, University of Nottingham, Nottingham, UK.,Mental Health Services for Older People, Nottinghamshire Healthcare NHS Foundation Trust, Nottingham, UK
| | - Helen Miranda Knight
- Division of Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, UK.
| |
Collapse
|
23
|
Shukla PK, Bissell JE, Kumar S, Pokhrel S, Palani S, Radmall K, Obidi O, Parnell TJ, Brasch J, Shrieve D, Chandrasekharan M. Structure and functional determinants of Rad6-Bre1 subunits in the histone H2B ubiquitin-conjugating complex. Nucleic Acids Res 2023; 51:2117-2136. [PMID: 36715322 PMCID: PMC10018343 DOI: 10.1093/nar/gkad012] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/31/2023] Open
Abstract
The conserved complex of the Rad6 E2 ubiquitin-conjugating enzyme and the Bre1 E3 ubiquitin ligase catalyzes histone H2B monoubiquitination (H2Bub1), which regulates chromatin dynamics during transcription and other nuclear processes. Here, we report a crystal structure of Rad6 and the non-RING domain N-terminal region of Bre1, which shows an asymmetric homodimer of Bre1 contacting a conserved loop on the Rad6 'backside'. This contact is distant from the Rad6 catalytic site and is the location of mutations that impair telomeric silencing in yeast. Mutational analyses validated the importance of this contact for the Rad6-Bre1 interaction, chromatin-binding dynamics, H2Bub1 formation and gene expression. Moreover, the non-RING N-terminal region of Bre1 is sufficient to confer nucleosome binding ability to Rad6 in vitro. Interestingly, Rad6 P43L protein, an interaction interface mutant and equivalent to a cancer mutation in the human homolog, bound Bre1 5-fold more tightly than native Rad6 in vitro, but showed reduced chromatin association of Bre1 and reduced levels of H2Bub1 in vivo. These surprising observations imply conformational transitions of the Rad6-Bre1 complex during its chromatin-associated functional cycle, and reveal the differential effects of specific disease-relevant mutations on the chromatin-bound and unbound states. Overall, our study provides structural insights into Rad6-Bre1 interaction through a novel interface that is important for their biochemical and biological responses.
Collapse
Affiliation(s)
- Prakash K Shukla
- Department of Radiation Oncology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Jesse E Bissell
- Department of Radiation Oncology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Sanjit Kumar
- Centre for Bioseparation Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Srijana Pokhrel
- Department of Radiation Oncology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Sowmiya Palani
- Department of Radiation Oncology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Kaitlin S Radmall
- Department of Radiation Oncology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Onyeka Obidi
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Timothy J Parnell
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Julia Brasch
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Dennis C Shrieve
- Department of Radiation Oncology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Mahesh B Chandrasekharan
- Department of Radiation Oncology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| |
Collapse
|
24
|
Heo SJ, Thakur S, Chen X, Loebel C, Xia B, McBeath R, Burdick JA, Shenoy VB, Mauck RL, Lakadamyali M. Aberrant chromatin reorganization in cells from diseased fibrous connective tissue in response to altered chemomechanical cues. Nat Biomed Eng 2023; 7:177-191. [PMID: 35996026 PMCID: PMC10053755 DOI: 10.1038/s41551-022-00910-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 06/14/2022] [Indexed: 11/09/2022]
Abstract
Changes in the micro-environment of fibrous connective tissue can lead to alterations in the phenotypes of tissue-resident cells, yet the underlying mechanisms are poorly understood. Here, by visualizing the dynamics of histone spatial reorganization in tenocytes and mesenchymal stromal cells from fibrous tissue of human donors via super-resolution microscopy, we show that physiological and pathological chemomechanical cues can directly regulate the spatial nanoscale organization and density of chromatin in these tissue-resident cell populations. Specifically, changes in substrate stiffness, altered oxygen tension and the presence of inflammatory signals drive chromatin relocalization and compaction into the nuclear boundary, mediated by the activity of the histone methyltransferase EZH2 and an intact cytoskeleton. In healthy cells, chemomechanically triggered changes in the spatial organization and density of chromatin are reversible and can be attenuated by dynamically stiffening the substrate. In diseased human cells, however, the link between mechanical or chemical inputs and chromatin remodelling is abrogated. Our findings suggest that aberrant chromatin organization in fibrous connective tissue may be a hallmark of disease progression that could be leveraged for therapeutic intervention.
Collapse
Affiliation(s)
- Su-Jin Heo
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Shreyasi Thakur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xingyu Chen
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Materials Science Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Claudia Loebel
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Boao Xia
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Rowena McBeath
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jason A Burdick
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
- BioFrontiers Institute and Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Vivek B Shenoy
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Materials Science Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert L Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA.
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA.
| | - Melike Lakadamyali
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
25
|
Sehgal P, Chaturvedi P. Chromatin and Cancer: Implications of Disrupted Chromatin Organization in Tumorigenesis and Its Diversification. Cancers (Basel) 2023; 15:cancers15020466. [PMID: 36672415 PMCID: PMC9856863 DOI: 10.3390/cancers15020466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
A hallmark of cancers is uncontrolled cell proliferation, frequently associated with an underlying imbalance in gene expression. This transcriptional dysregulation observed in cancers is multifaceted and involves chromosomal rearrangements, chimeric transcription factors, or altered epigenetic marks. Traditionally, chromatin dysregulation in cancers has been considered a downstream effect of driver mutations. However, here we present a broader perspective on the alteration of chromatin organization in the establishment, diversification, and therapeutic resistance of cancers. We hypothesize that the chromatin organization controls the accessibility of the transcriptional machinery to regulate gene expression in cancerous cells and preserves the structural integrity of the nucleus by regulating nuclear volume. Disruption of this large-scale chromatin in proliferating cancerous cells in conventional chemotherapies induces DNA damage and provides a positive feedback loop for chromatin rearrangements and tumor diversification. Consequently, the surviving cells from these chemotherapies become tolerant to higher doses of the therapeutic reagents, which are significantly toxic to normal cells. Furthermore, the disorganization of chromatin induced by these therapies accentuates nuclear fragility, thereby increasing the invasive potential of these tumors. Therefore, we believe that understanding the changes in chromatin organization in cancerous cells is expected to deliver more effective pharmacological interventions with minimal effects on non-cancerous cells.
Collapse
|
26
|
Blanco E, Ballaré C, Di Croce L, Aranda S. Quantitative Comparison of Multiple Chromatin Immunoprecipitation-Sequencing (ChIP-seq) Experiments with spikChIP. Methods Mol Biol 2023; 2624:55-72. [PMID: 36723809 DOI: 10.1007/978-1-0716-2962-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The chromatin immunoprecipitation coupled with the next-generation sequencing (ChIP-seq) is a powerful technique that enables to characterize the genomic distribution of chromatin-associated proteins, histone posttranslational modifications, and histone variants. However, in the absence of a reference control for monitoring experimental and biological variations, the standard ChIP-seq scheme is unable to accurately assess changes in the abundance of chromatin targets across different experimental samples. To overcome this limitation, the combination of external spike-in material with the experimental chromatin is offered as an effective solution for quantitative comparison of ChIP-seq data across different conditions. Here, we detail (i) the experimental protocol for preparing quality control spike-in chromatin from Drosophila melanogaster cells and (ii) the computational protocol to compare ChIP-seq samples with spike-in based on the use of the spikChIP software.
Collapse
Affiliation(s)
- Enrique Blanco
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Cecilia Ballaré
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- ICREA, Barcelona, Spain.
| | - Sergi Aranda
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain.
| |
Collapse
|
27
|
Kawashima SA, Kanai M. Live Cell Synthetic Histone Acetylation by Chemical Catalyst. Methods Mol Biol 2023; 2519:155-161. [PMID: 36066720 DOI: 10.1007/978-1-0716-2433-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Posttranslational modifications (PTMs) of histones, such as lysine acetylation and ubiquitination, regulate chromatin structure and gene expression. In living organisms, histone PTMs are catalyzed by histone-modifying enzymes. Here, we describe an entirely chemical method to introduce histone modifications in living cells without genetic manipulation. The chemical catalyst PEG-LANA-DSSMe activates a thioester acetyl donor, N,S-diacetylcysteamine (NAC-Ac), and promotes regioselective, synthetic histone acetylation at H2BK120 in living cells.
Collapse
Affiliation(s)
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
28
|
Aranda S, Di Croce L. Isolation of Chromatin Proteins by Genome Capture. Methods Mol Biol 2023; 2655:91-99. [PMID: 37212991 DOI: 10.1007/978-1-0716-3143-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Control of gene expression and the faithful transmission of genetic and epigenetic information rely on chromatin-bound proteins. These include the polycomb group of proteins, which can display a remarkable variability in their composition. Alterations in the chromatin-bound protein compositions are relevant for physiology and human disease. Thus, chromatin-bound proteomic profiling can be instrumental for understanding fundamental cellular processes and for identifying therapeutic targets. Inspired by biochemical strategies for the isolation of proteins on nascent DNA (iPOND) and the very similar DNA-mediated chromatin pull-down (Dm-ChP), we described a method for the identification of Protein on Total DNA (iPOTD) for bulk chromatome profiling. Here, we update our iPOTD method and, in particular, detail the experimental procedure for the isolation of chromatin proteins for mass spectrometry-based proteomic analysis.
Collapse
Affiliation(s)
- Sergi Aranda
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain.
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- ICREA, Barcelona, Spain.
| |
Collapse
|
29
|
Dai YW, Chen HB, Pan YT, Lv LX, Wang WM, Chen XH, Zhou X. Characterization of chromatin regulators identified prognosis and heterogeneity in hepatocellular carcinoma. Front Oncol 2022; 12:1002781. [PMID: 36158697 PMCID: PMC9505021 DOI: 10.3389/fonc.2022.1002781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Liver carcinogenesis is a multiprocess that involves complicated interactions between genetics, epigenetics, and transcriptomic alterations. Aberrant chromatin regulator (CR) expressions, which are vital regulatory epigenetics, have been found to be associated with multiple biological processes. Nevertheless, the impression of CRs on tumor microenvironment remodeling and hepatocellular carcinoma (HCC) prognosis remains obscure. Thus, this study aimed to systematically analyze CR-related patterns and their correlation with genomic features, metabolism, cuproptosis activity, and clinicopathological features of patients with HCC in The Cancer Genome Atlas, International Cancer Genome Consortium-LIRI-JP cohort, and GSE14520 that utilized unsupervised consensus clustering. Three CR-related patterns were recognized, and the CRs phenotype-related gene signature (CRsscore) was developed using the least absolute shrinkage and selection operator-Cox regression and multivariate Cox algorithms to represent the individual CR-related pattern. Additionally, the CRsscore was an independent prognostic index that served as a fine predictor for energy metabolism and cuproptosis activity in HCC. Accordingly, describing a wide landscape of CR characteristics may assist us to illustrate the sealed association between epigenetics, energy metabolism, and cuproptosis activity. This study may discern new tumor therapeutic targets and exploit personalized therapy for patients.
Collapse
Affiliation(s)
- Yin-wei Dai
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Han-bin Chen
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ya-ting Pan
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lin-xi Lv
- Wenzhou Medical University, Wenzhou, China
| | - Wei-ming Wang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-Hu Chen
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Xiao-Hu Chen, ; Xiang Zhou,
| | - Xiang Zhou
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Xiao-Hu Chen, ; Xiang Zhou,
| |
Collapse
|
30
|
Yamamoto R, Sato G, Amai T, Ueda M, Kuroda K. Development of Artificial System to Induce Chromatin Loosening in Saccharomyces cerevisiae. Biomolecules 2022; 12:1138. [PMID: 36009033 PMCID: PMC9406041 DOI: 10.3390/biom12081138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/16/2022] [Indexed: 12/05/2022] Open
Abstract
In eukaryotic cells, loosening of chromatin causes changes in transcription and DNA replication. The artificial conversion of tightly packed chromatin (heterochromatin) to loosely packed chromatin (euchromatin) enables gene expression and regulates cell differentiation. Although some chemicals convert chromatin structures through histone modifications, they lack sequence specificity. This study attempted to establish a novel technology for inducing chromatin loosening in target regions of Saccharomyces cerevisiae. We focused on histone acetylation, which is one of the mechanisms of euchromatin induction. The sequence-recognizing ability of the dead Cas9 (dCas9) and guide RNA (gRNA) complex was used to promote histone acetylation at a targeted genomic locus. We constructed a plasmid to produce a fusion protein consisting of dCas9 and histone acetyltransferase Gcn5 and a plasmid to express gRNA recognizing the upstream region of heterochromatic URA3. Confocal microscopy revealed that the fusion proteins were localized in the nucleus. The yeast strain producing the fusion protein and gRNA grew well in the uracil-deficient medium, while the strain harboring empty plasmids or the strain containing the mutations that cause loss of nucleosomal histone acetylation activity of Gcn5 did not. This suggests that the heterochromatin was loosened as much as euchromatin through nucleosomal histone acetylation. The amount of euchromatic DNA at the target locus increased, indicating that chromatin loosening was induced by our system. Nucleosomal histone acetylation in heterochromatic loci by our developed system is a promising method for inducing euchromatic state in a target locus.
Collapse
Affiliation(s)
| | | | | | | | - Kouichi Kuroda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
31
|
Park J, Lee K, Kim K, Yi SJ. The role of histone modifications: from neurodevelopment to neurodiseases. Signal Transduct Target Ther 2022; 7:217. [PMID: 35794091 PMCID: PMC9259618 DOI: 10.1038/s41392-022-01078-9] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/11/2022] [Accepted: 06/21/2022] [Indexed: 12/24/2022] Open
Abstract
Epigenetic regulatory mechanisms, including DNA methylation, histone modification, chromatin remodeling, and microRNA expression, play critical roles in cell differentiation and organ development through spatial and temporal gene regulation. Neurogenesis is a sophisticated and complex process by which neural stem cells differentiate into specialized brain cell types at specific times and regions of the brain. A growing body of evidence suggests that epigenetic mechanisms, such as histone modifications, allow the fine-tuning and coordination of spatiotemporal gene expressions during neurogenesis. Aberrant histone modifications contribute to the development of neurodegenerative and neuropsychiatric diseases. Herein, recent progress in understanding histone modifications in regulating embryonic and adult neurogenesis is comprehensively reviewed. The histone modifications implicated in neurodegenerative and neuropsychiatric diseases are also covered, and future directions in this area are provided.
Collapse
Affiliation(s)
- Jisu Park
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyubin Lee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyunghwan Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| | - Sun-Ju Yi
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| |
Collapse
|
32
|
Acke A, Van Belle S, Louis B, Vitale R, Rocha S, Voet T, Debyser Z, Hofkens J. Expansion microscopy allows high resolution single cell analysis of epigenetic readers. Nucleic Acids Res 2022; 50:e100. [PMID: 35716125 PMCID: PMC9508849 DOI: 10.1093/nar/gkac521] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 05/04/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
Interactions between epigenetic readers and histone modifications play a pivotal role in gene expression regulation and aberrations can enact etiopathogenic roles in both developmental and acquired disorders like cancer. Typically, epigenetic interactions are studied by mass spectrometry or chromatin immunoprecipitation sequencing. However, in these methods, spatial information is completely lost. Here, we devise an expansion microscopy based method, termed Expansion Microscopy for Epigenetics or ExEpi, to preserve spatial information and improve resolution. We calculated relative co-localization ratios for two epigenetic readers, lens epithelium derived growth factor (LEDGF) and bromodomain containing protein 4 (BRD4), with marks for heterochromatin (H3K9me3 and H3K27me3) and euchromatin (H3K36me2, H3K36me3 and H3K9/14ac). ExEpi confirmed their preferred epigenetic interactions, showing co-localization for LEDGF with H3K36me3/me2 and for BRD4 with H3K9/14ac. Moreover addition of JQ1, a known BET-inhibitor, abolished BRD4 interaction with H3K9/14ac with an IC50 of 137 nM, indicating ExEpi could serve as a platform for epigenetic drug discovery. Since ExEpi retains spatial information, the nuclear localization of marks and readers was determined, which is one of the main advantages of ExEpi. The heterochromatin mark, H3K9me3, is located in the nuclear rim whereas LEDGF co-localization with H3K36me3 and BRD4 co-localization with H3K9/14ac occur further inside the nucleus.
Collapse
Affiliation(s)
- Aline Acke
- Laboratory for Photochemistry and Spectroscopy, Department of Chemistry, KU Leuven, Leuven, Flanders, Belgium
| | - Siska Van Belle
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Flanders, Belgium
| | - Boris Louis
- Laboratory for Photochemistry and Spectroscopy, Department of Chemistry, KU Leuven, Leuven, Flanders, Belgium.,Division of Chemical Physics and NanoLund, Lund University, Lund, Sweden
| | - Raffaele Vitale
- Dynamics, Nanoscopy and Chemometrics (DYNACHEM) Group, U. Lille, CNRS, LASIRE, Laboratoire Avancé de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, Cité Scientifique, F-59000Lille, France
| | - Susana Rocha
- Laboratory for Photochemistry and Spectroscopy, Department of Chemistry, KU Leuven, Leuven, Flanders, Belgium
| | - Thierry Voet
- Department of Human Genetics, KU Leuven, Leuven, Flanders, Belgium.,LISCO, KU Leuven Institute for Single-Cell Omics, Leuven 3000, Belgium
| | - Zeger Debyser
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Flanders, Belgium
| | - Johan Hofkens
- Laboratory for Photochemistry and Spectroscopy, Department of Chemistry, KU Leuven, Leuven, Flanders, Belgium.,Max Plank Institute for Polymer Research, Ackermannweg 10, Mainz, D-55128, Germany.,LISCO, KU Leuven Institute for Single-Cell Omics, Leuven 3000, Belgium
| |
Collapse
|
33
|
Ang GCK, Gupta A, Surana U, Yap SXL, Taneja R. Potential Therapeutics Targeting Upstream Regulators and Interactors of EHMT1/2. Cancers (Basel) 2022; 14:2855. [PMID: 35740522 PMCID: PMC9221123 DOI: 10.3390/cancers14122855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
Euchromatin histone lysine methyltransferases (EHMTs) are epigenetic regulators responsible for silencing gene transcription by catalyzing H3K9 dimethylation. Dysregulation of EHMT1/2 has been reported in multiple cancers and is associated with poor clinical outcomes. Although substantial insights have been gleaned into the downstream targets and pathways regulated by EHMT1/2, few studies have uncovered mechanisms responsible for their dysregulated expression. Moreover, EHMT1/2 interacting partners, which can influence their function and, therefore, the expression of target genes, have not been extensively explored. As none of the currently available EHMT inhibitors have made it past clinical trials, understanding upstream regulators and EHMT protein complexes may provide unique insights into novel therapeutic avenues in EHMT-overexpressing cancers. Here, we review our current understanding of the regulators and interacting partners of EHMTs. We also discuss available therapeutic drugs that target the upstream regulators and binding partners of EHMTs and could potentially modulate EHMT function in cancer progression.
Collapse
Affiliation(s)
- Gareth Chin Khye Ang
- Healthy Longevity Translational Research Program, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (G.C.K.A.); (A.G.)
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore;
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research A*STAR, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Amogh Gupta
- Healthy Longevity Translational Research Program, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (G.C.K.A.); (A.G.)
| | - Uttam Surana
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore;
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research A*STAR, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Shirlyn Xue Ling Yap
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Reshma Taneja
- Healthy Longevity Translational Research Program, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (G.C.K.A.); (A.G.)
| |
Collapse
|
34
|
Krajewski WA. Histone Modifications, Internucleosome Dynamics, and DNA Stresses: How They Cooperate to “Functionalize” Nucleosomes. Front Genet 2022; 13:873398. [PMID: 35571051 PMCID: PMC9096104 DOI: 10.3389/fgene.2022.873398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/28/2022] [Indexed: 12/25/2022] Open
Abstract
Tight packaging of DNA in chromatin severely constrains DNA accessibility and dynamics. In contrast, nucleosomes in active chromatin state are highly flexible, can exchange their histones, and are virtually “transparent” to RNA polymerases, which transcribe through gene bodies at rates comparable to that of naked DNA. Defining mechanisms that revert nucleosome repression, in addition to their value for basic science, is of key importance for the diagnosis and treatment of genetic diseases. Chromatin activity is largely regulated by histone posttranslational modifications, ranging from small chemical groups up to the yet understudied “bulky” ubiquitylation and sumoylation. However, it is to be revealed how histone marks are “translated” to permissive or repressive changes in nucleosomes: it is a general opinion that histone modifications act primarily as “signals” for recruiting the regulatory proteins or as a “neutralizer” of electrostatic shielding of histone tails. Here, we would like to discuss recent evidence suggesting that histone ubiquitylation, in a DNA stress–dependent manner, can directly regulate the dynamics of the nucleosome and their primary structure and can promote nucleosome decomposition to hexasome particles or additionally stabilize nucleosomes against unwrapping. In addition, nucleosome repression/ derepression studies are usually performed with single mononucleosomes as a model. We would like to review and discuss recent findings showing that internucleosomal interactions could strongly modulate the dynamics and rearrangements of nucleosomes. Our hypothesis is that bulky histone modifications, nucleosome inherent dynamics, internucleosome interactions, and DNA torsions could act in cooperation to orchestrate the formation of different dynamic states of arrayed nucleosomes and thus promote chromatin functionality and diversify epigenetic programming methods.
Collapse
|
35
|
Abstract
The past decade illuminated the H2A-H2B acidic patch as a cornerstone for both nucleosome recognition and chromatin structure regulation. Higher-order folding of chromatin arrays is mediated by interactions of histone H4 tail with an adjacent nucleosome acidic patch. Dynamic chromatin folding ensures a proper regulation of nuclear functions fundamental to cellular homeostasis. Many cellular factors have been shown to act on chromatin by tethering nucleosomes via an arginine anchor binding to the acidic patch. This tethering mechanism has also been described for several viral proteins. In this minireview, we will discuss the structural basis for acidic patch engagement by viral proteins and the implications during respective viral infections. We will also discuss a model in which acidic patch occupancy by these non-self viral proteins alters the local chromatin state by preventing H4 tail-mediated higher-order chromatin folding.
Collapse
|
36
|
Shin H, Choi WL, Lim JY, Huh JH. Epigenome editing: targeted manipulation of epigenetic modifications in plants. Genes Genomics 2022; 44:307-315. [PMID: 35000141 DOI: 10.1007/s13258-021-01199-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Epigenetic modifications play important roles in diverse cellular processes such as X chromosome inactivation, cell differentiation, development and senescence. DNA methylation and histone modifications are major epigenetic modifications that regulate chromatin structure and gene expression without DNA sequence changes. Epigenetic alterations may induce phenotypic changes stable enough for mitotic or meiotic inheritance. Moreover, the reversibility of epigenetic marks makes the manipulation of chromatin and epigenetic signature an attractive strategy for therapeutic and breeding purposes. Targeted epigenetic manipulation, or epigenome editing, at the gene of interest commonly utilizes specific epigenetic modifiers fused with a targeting module of the conventional genome editing system. OBJECTIVE This review aims to summarize essential epigenetic components and introduce currently available epigenetic mutants and the corresponding epialleles in plants. Furthermore, advances in epigenome editing technology are discussed while proposing its potential application to plant breeding. CONCLUSIONS Epimutations associated with useful traits may provide a valuable resource for crop development. It is important to explore epimutations in a variety of crop species while understanding the fundamental aspects of epigenetic regulation of agronomically important traits such as yield, quality, disease resistance and stress tolerance. In the end, plant breeding programs through epigenome editing may help not only to expand the use of limited genetic resources but also to alleviate consumers' concerns about genetically manipulated crops.
Collapse
Affiliation(s)
- Hosub Shin
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 08826, Seoul, South Korea.,Plant Genomics and Breeding Institute, Seoul National University, 08826, Seoul, South Korea
| | - Woo Lee Choi
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 08826, Seoul, South Korea.,Plant Genomics and Breeding Institute, Seoul National University, 08826, Seoul, South Korea
| | - Joo Young Lim
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 08826, Seoul, South Korea
| | - Jin Hoe Huh
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 08826, Seoul, South Korea. .,Plant Genomics and Breeding Institute, Seoul National University, 08826, Seoul, South Korea. .,Research Institute of Agriculture and Life Sciences, Seoul National University, 08826, Seoul, South Korea.
| |
Collapse
|
37
|
Marunde MR, Popova IK, Weinzapfel EN, Keogh MC. The dCypher Approach to Interrogate Chromatin Reader Activity Against Posttranslational Modification-Defined Histone Peptides and Nucleosomes. Methods Mol Biol 2022; 2458:231-255. [PMID: 35103971 DOI: 10.1007/978-1-0716-2140-0_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bulk chromatin encompasses complex sets of histone posttranslational modifications (PTMs) that recruit (or repel) the diverse reader domains of Chromatin-Associated Proteins (CAPs) to regulate genome processes (e.g., gene expression, DNA repair, mitotic transmission). The binding preference of reader domains for their PTMs mediates localization and functional output, and are often dysregulated in disease. As such, understanding chromatin interactions may lead to novel therapeutic strategies, However the immense chemical diversity of histone PTMs, combined with low-throughput, variable, and nonquantitative methods, has defied accurate CAP characterization. This chapter provides a detailed protocol for dCypher, a novel approach for the rapid, quantitative interrogation of CAPs (as mono- or multivalent Queries) against large panels (10s to 100s) of PTM-defined histone peptide and semisynthetic nucleosomes (the potential Targets). We describe key optimization steps and controls to generate robust binding data. Further, we compare the utility of histone peptide and nucleosome substrates in CAP studies, outlining important considerations in experimental design and data interpretation.
Collapse
|
38
|
Baier AS, Peterson CL. Fluorescence approaches for biochemical analysis of ATP-dependent chromatin remodeling enzymes. Methods Enzymol 2022; 673:1-17. [PMID: 35965003 PMCID: PMC10107425 DOI: 10.1016/bs.mie.2022.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The dynamic nature of chromatin is an essential mechanism by which gene expression is regulated. Chromatin is comprised of nucleosomes, an octamer of histone proteins wrapped by DNA, and manipulation of these structures is carried out by a family of proteins known as ATP-dependent chromatin remodeling enzymes. These enzymes carry out a diverse range of activities, from appropriately positioning and adjusting the density of nucleosomes on genes, to installation and removal of histones for sequence variants, to ejection from DNA. These activities have a critical role in the proper maintenance of chromatin architecture, and dysregulation of chromatin remodeling is directly linked to the pathophysiology of various diseases. Mechanistic understanding of chromatin remodeling enzymes is therefore desirable, both as the drivers of this essential cellular activity and as potentially novel therapeutic targets in disease. In this chapter we cover our current methods for characterization of remodeler substrate binding affinity and catalytic activity, leveraging fluorescence polarization and Förster resonance energy transfer assays.
Collapse
|
39
|
Kanapeckaitė A, Burokienė N, Mažeikienė A, Cottrell GS, Widera D. Biophysics is reshaping our perception of the epigenome: from DNA-level to high-throughput studies. BIOPHYSICAL REPORTS 2021; 1:100028. [PMID: 36425454 PMCID: PMC9680810 DOI: 10.1016/j.bpr.2021.100028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/24/2021] [Indexed: 06/16/2023]
Abstract
Epigenetic research holds great promise to advance our understanding of biomarkers and regulatory processes in health and disease. An increasing number of new approaches, ranging from molecular to biophysical analyses, enable identifying epigenetic changes on the level of a single gene or the whole epigenome. The aim of this review is to highlight how the field is shifting from completely molecular-biology-driven solutions to multidisciplinary strategies including more reliance on biophysical analysis tools. Biophysics not only offers technical advancements in imaging or structure analysis but also helps to explore regulatory interactions. New computational methods are also being developed to meet the demand of growing data volumes and their processing. Therefore, it is important to capture these new directions in epigenetics from a biophysical perspective and discuss current challenges as well as multiple applications of biophysical methods and tools. Specifically, we gradually introduce different biophysical research methods by first considering the DNA-level information and eventually higher-order chromatin structures. Moreover, we aim to highlight that the incorporation of bioinformatics, machine learning, and artificial intelligence into biophysical analysis allows gaining new insights into complex epigenetic processes. The gained understanding has already proven useful in translational and clinical research providing better patient stratification options or new therapeutic insights. Together, this offers a better readiness to transform bench-top experiments into industrial high-throughput applications with a possibility to employ developed methods in clinical practice and diagnostics.
Collapse
Affiliation(s)
- Austė Kanapeckaitė
- Algorithm379, Laisvės g. 7, LT 12007, Vilnius, Lithuania
- Reading School of Pharmacy, Whiteknights, Reading, UK, RG6 6UB
| | - Neringa Burokienė
- Clinics of Internal Diseases, Family Medicine and Oncology, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, M. K. Čiurlionio str. 21/27, LT-03101 Vilnius, Lithuania
| | - Asta Mažeikienė
- Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Institute of Biomedical Sciences, Faculty of Medicine, M. K. Čiurlionio str. 21/27, LT-03101 Vilnius, Lithuania
| | | | - Darius Widera
- Reading School of Pharmacy, Whiteknights, Reading, UK, RG6 6UB
| |
Collapse
|
40
|
Epigenetic Alterations in Pediatric Sleep Apnea. Int J Mol Sci 2021; 22:ijms22179523. [PMID: 34502428 PMCID: PMC8430725 DOI: 10.3390/ijms22179523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 12/03/2022] Open
Abstract
Pediatric obstructive sleep apnea has significant negative effects on health and behavior in childhood including depression, failure to thrive, neurocognitive impairment, and behavioral issues. It is strongly associated with an increased risk for chronic adult disease such as obesity and diabetes, accelerated atherosclerosis, and endothelial dysfunction. Accumulating evidence suggests that adult-onset non-communicable diseases may originate from early life through a process by which an insult applied at a critical developmental window causes long-term effects on the structure or function of an organism. In recent years, there has been increased interest in the role of epigenetic mechanisms in the pathogenesis of adult disease susceptibility. Epigenetic mechanisms that influence adaptive variability include histone modifications, non-coding RNAs, and DNA methylation. This review will highlight what is currently known about the phenotypic associations of epigenetic modifications in pediatric obstructive sleep apnea and will emphasize the importance of epigenetic changes as both modulators of chronic disease and potential therapeutic targets.
Collapse
|
41
|
Grigoryan EN, Markitantova YV. Molecular Strategies for Transdifferentiation of Retinal Pigment Epithelial Cells in Amphibians and Mammals In Vivo. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421040032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
42
|
Claringbould A, Zaugg JB. Enhancers in disease: molecular basis and emerging treatment strategies. Trends Mol Med 2021; 27:1060-1073. [PMID: 34420874 DOI: 10.1016/j.molmed.2021.07.012] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023]
Abstract
Enhancers are genomic sequences that play a key role in regulating tissue-specific gene expression levels. An increasing number of diseases are linked to impaired enhancer function through chromosomal rearrangement, genetic variation within enhancers, or epigenetic modulation. Here, we review how these enhancer disruptions have recently been implicated in congenital disorders, cancers, and common complex diseases and address the implications for diagnosis and treatment. Although further fundamental research into enhancer function, target genes, and context is required, enhancer-targeting drugs and gene editing approaches show great therapeutic promise for a range of diseases.
Collapse
Affiliation(s)
- Annique Claringbould
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Judith B Zaugg
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany.
| |
Collapse
|
43
|
Tamburri S, Conway E, Pasini D. Polycomb-dependent histone H2A ubiquitination links developmental disorders with cancer. Trends Genet 2021; 38:333-352. [PMID: 34426021 DOI: 10.1016/j.tig.2021.07.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 12/18/2022]
Abstract
Cell identity is tightly controlled by specific transcriptional programs which require post-translational modifications of histones. These histone modifications allow the establishment and maintenance of active and repressed chromatin domains. Histone H2A lysine 119 ubiquitination (H2AK119ub1) has an essential role in building repressive chromatin domains during development. It is regulated by the counteracting activities of the Polycomb repressive complex 1 (PRC1) and the Polycomb repressive-deubiquitinase (PR-DUB) complexes, two multi-subunit ensembles that write and erase this modification, respectively. We have catalogued the recurrent genetic alterations in subunits of the PRC1 and PR-DUB complexes in both neurodevelopmental disorders and cancer. These genetic lesions are often shared across disorders, and we highlight common mechanisms of H2AK119ub1 dysregulation and how they affect development in multiple disease contexts.
Collapse
Affiliation(s)
- Simone Tamburri
- European Institute of Oncology (IEO), Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy; University of Milan, Department of Health Sciences, Via Antonio di Rudinì 8, 20142 Milan, Italy.
| | - Eric Conway
- European Institute of Oncology (IEO), Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Diego Pasini
- European Institute of Oncology (IEO), Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy; University of Milan, Department of Health Sciences, Via Antonio di Rudinì 8, 20142 Milan, Italy.
| |
Collapse
|
44
|
Morrison O, Thakur J. Molecular Complexes at Euchromatin, Heterochromatin and Centromeric Chromatin. Int J Mol Sci 2021; 22:6922. [PMID: 34203193 PMCID: PMC8268097 DOI: 10.3390/ijms22136922] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 01/19/2023] Open
Abstract
Chromatin consists of a complex of DNA and histone proteins as its core components and plays an important role in both packaging DNA and regulating DNA metabolic pathways such as DNA replication, transcription, recombination, and chromosome segregation. Proper functioning of chromatin further involves a network of interactions among molecular complexes that modify chromatin structure and organization to affect the accessibility of DNA to transcription factors leading to the activation or repression of the transcription of target DNA loci. Based on its structure and compaction state, chromatin is categorized into euchromatin, heterochromatin, and centromeric chromatin. In this review, we discuss distinct chromatin factors and molecular complexes that constitute euchromatin-open chromatin structure associated with active transcription; heterochromatin-less accessible chromatin associated with silencing; centromeric chromatin-the site of spindle binding in chromosome segregation.
Collapse
Affiliation(s)
| | - Jitendra Thakur
- Department of Biology, Emory University, 1510 Clifton Rd #2006, Atlanta, GA 30322, USA;
| |
Collapse
|
45
|
Rossetti A, Petragnano F, Milazzo L, Vulcano F, Macioce G, Codenotti S, Cassandri M, Pomella S, Cicchetti F, Fasciani I, Antinozzi C, Di Luigi L, Festuccia C, De Felice F, Vergine M, Fanzani A, Rota R, Maggio R, Polimeni A, Tombolini V, Gravina GL, Marampon F. Romidepsin (FK228) fails in counteracting the transformed phenotype of rhabdomyosarcoma cells but efficiently radiosensitizes, in vitro and in vivo, the alveolar phenotype subtype. Int J Radiat Biol 2021; 97:943-957. [PMID: 33979259 DOI: 10.1080/09553002.2021.1928786] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/13/2021] [Accepted: 05/05/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE Herein we describe the in vitro and in vivo activity of FK228 (Romidepsin), an inhibitor of class I HDACs, in counteracting and radiosensitizing embryonal (ERMS, fusion-negative) and alveolar (ARMS, fusion-positive) rhabdomyosarcoma (RMS). METHODS RH30 (ARMS, fusion-positive) and RD (ERMS, fusion-negative) cell lines and human multipotent mesenchymal stromal cells (HMSC) were used. Flow cytometry analysis, RT-qPCR, western blotting and enzymatic assays were performed. Irradiation was delivered by using an x-6 MV photon linear accelerator. FK228 (1.2 mg/kg) in vivo activity, combined or not with radiation therapy (2 Gy), was assessed in murine xenografts. RESULTS Compared to HMSC, RMS expressed low levels of class I HDACs. In vitro, FK228, as single agents, reversibly downregulated class I HDACs expression and activity and induced oxidative stress, DNA damage and a concomitant growth arrest associated with PARP-1-mediated transient non-apoptotic cell death. Surviving cells upregulated the expression of cyclin A, B, D1, p27, Myc and activated PI3K/Akt/mTOR and MAPK signaling, known to be differently involved in cancer chemoresistance. Interestingly, while no radiosensitizing effects were detected, in vitro or in vivo, on RD cells, FK228 markedly radiosensitized RH30 cells by impairing antioxidant and DSBs repair pathways in vitro. Further, FK228 when combined with RT in vivo significantly reduced tumor mass in mouse RH30 xenografts. CONCLUSION FK228 did not show antitumor activity as a single agent whilst its combination with RT resulted in radiosensitization of fusion-positive RMS cells, thus representing a possible strategy for the treatment of the most aggressive RMS subtype.
Collapse
Affiliation(s)
- Alessandra Rossetti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Francesco Petragnano
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Luisa Milazzo
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Vulcano
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giampiero Macioce
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Silvia Codenotti
- Division of Biotechnology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Matteo Cassandri
- Group of Epigenetics of Pediatric Sarcomas, Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Silvia Pomella
- Group of Epigenetics of Pediatric Sarcomas, Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Irene Fasciani
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Cristina Antinozzi
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Luigi Di Luigi
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Claudio Festuccia
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Francesca De Felice
- Department of Radiotherapy, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Massimo Vergine
- Department of Surgical Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Alessandro Fanzani
- Division of Biotechnology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Rossella Rota
- Group of Epigenetics of Pediatric Sarcomas, Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Roberto Maggio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Antonella Polimeni
- Department of Oral and Maxillo-Facial Sciences, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Tombolini
- Department of Radiotherapy, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Giovanni Luca Gravina
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Francesco Marampon
- Department of Radiotherapy, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
46
|
Xin Y, Kang BS, Zheng YP, Shan SW, Kee CS, Tan Y. Biophysical properties of corneal cells reflect high myopia progression. Biophys J 2021; 120:3498-3507. [PMID: 34022236 DOI: 10.1016/j.bpj.2021.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/07/2021] [Accepted: 05/17/2021] [Indexed: 01/07/2023] Open
Abstract
Myopia is a common ocular disorder with significant alterations in the anterior ocular structure, including the cornea. The cell biophysical phenotype has been proposed to reflect the state of various diseases. However, the biophysical properties of corneal cells have not been characterized during myopia progression and their relationship with myopia remains unknown. This study characterizes the biophysical properties of corneal cells in normal, myopic, and recovered conditions, using two classical myopia models. Surprisingly, myopic corneal cells considerably reduce F-actin and microtubule content and cellular stiffness and generate elevated traction force compared with control cells. When myopia is restored to the healthy state, these biophysical properties are partially or fully restored to the levels of control cells. Furthermore, the level of chromatin condensation is significantly increased in the nucleus of myopic corneal cells and reduced to a level similar to healthy cells after recovery. These findings demonstrate that the reversible biophysical alterations of corneal cells reflect myopia progression, facilitating the study of the role of corneal cell biophysics in myopia.
Collapse
Affiliation(s)
- Ying Xin
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Byung Soo Kang
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yong-Ping Zheng
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Sze Wan Shan
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China
| | - Chea-Su Kee
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Youhua Tan
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
47
|
Engelberg IA, Liu J, Norris-Drouin JL, Cholensky SH, Ottavi SA, Frye SV, Kutateladze TG, James LI. Discovery of an H3K36me3-Derived Peptidomimetic Ligand with Enhanced Affinity for Plant Homeodomain Finger Protein 1 (PHF1). J Med Chem 2021; 64:8510-8522. [PMID: 33999620 DOI: 10.1021/acs.jmedchem.1c00430] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Plant homeodomain finger protein 1 (PHF1) is an accessory component of the gene silencing complex polycomb repressive complex 2 and recognizes the active chromatin mark, trimethylated lysine 36 of histone H3 (H3K36me3). In addition to its role in transcriptional regulation, PHF1 has been implicated as a driver of endometrial stromal sarcoma and fibromyxoid tumors. We report the discovery and characterization of UNC6641, a peptidomimetic antagonist of the PHF1 Tudor domain which was optimized through in silico modeling and incorporation of non-natural amino acids. UNC6641 binds the PHF1 Tudor domain with a Kd value of 0.96 ± 0.03 μM while also binding the related protein PHF19 with similar potency. A crystal structure of PHF1 in complex with UNC6641, along with NMR and site-directed mutagenesis data, provided insight into the binding mechanism and requirements for binding. Additionally, UNC6641 enabled the development of a high-throughput assay to identify small molecule binders of PHF1.
Collapse
Affiliation(s)
- Isabelle A Engelberg
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jiuyang Liu
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045, United States
| | - Jacqueline L Norris-Drouin
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Stephanie H Cholensky
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Samantha A Ottavi
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Stephen V Frye
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045, United States
| | - Lindsey I James
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
48
|
Roth DM, Baddam P, Lin H, Vidal-García M, Aponte JD, De Souza ST, Godziuk D, Watson AES, Footz T, Schachter NF, Egan SE, Hallgrímsson B, Graf D, Voronova A. The Chromatin Regulator Ankrd11 Controls Palate and Cranial Bone Development. Front Cell Dev Biol 2021; 9:645386. [PMID: 33996804 PMCID: PMC8117352 DOI: 10.3389/fcell.2021.645386] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/31/2021] [Indexed: 11/19/2022] Open
Abstract
Epigenetic and chromatin regulation of craniofacial development remains poorly understood. Ankyrin Repeat Domain 11 (ANKRD11) is a chromatin regulator that has previously been shown to control neural stem cell fates via modulation of histone acetylation. ANKRD11 gene variants, or microdeletions of the 16q24.3 chromosomal region encompassing the ANKRD11 gene, cause KBG syndrome, a rare autosomal dominant congenital disorder with variable neurodevelopmental and craniofacial involvement. Craniofacial abnormalities include a distinct facial gestalt, delayed bone age, tooth abnormalities, delayed fontanelle closure, and frequently cleft or submucosal palate. Despite this, the dramatic phenotype and precise role of ANKRD11 in embryonic craniofacial development remain unexplored. Quantitative analysis of 3D images of KBG syndromic subjects shows an overall reduction in the size of the middle and lower face. Here, we report that mice with heterozygous deletion of Ankrd11 in neural crest cells (Ankrd11nchet) display a mild midfacial hypoplasia including reduced midfacial width and a persistent open fontanelle, both of which mirror KBG syndrome patient facial phenotypes. Mice with a homozygous Ankrd11 deletion in neural crest cells (Ankrd11ncko) die at birth. They show increased severity of several clinical manifestations described for KBG syndrome, such as cleft palate, retrognathia, midfacial hypoplasia, and reduced calvarial growth. At E14.5, Ankrd11 expression in the craniofacial complex is closely associated with developing bony structures, while expression at birth is markedly decreased. Conditional deletion of Ankrd11 leads to a reduction in ossification of midfacial bones, with several ossification centers failing to expand and/or fuse. Intramembranous bones show features of delayed maturation, with bone remodeling severely curtailed at birth. Palatal shelves remain hypoplastic at all developmental stages, with a local reduction in proliferation at E13.5. Our study identifies Ankrd11 as a critical regulator of intramembranous ossification and palate development and suggests that Ankrd11nchet and Ankrd11ncko mice may serve as pre-clinical models for KBG syndrome in humans.
Collapse
Affiliation(s)
- Daniela Marta Roth
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Pranidhi Baddam
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Haiming Lin
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Marta Vidal-García
- Department of Cell Biology & Anatomy, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Jose David Aponte
- Department of Cell Biology & Anatomy, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Sarah-Thea De Souza
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Devyn Godziuk
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Adrianne Eve Scovil Watson
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Tim Footz
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Nathan F. Schachter
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Sean E. Egan
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Benedikt Hallgrímsson
- Department of Cell Biology & Anatomy, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Daniel Graf
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Anastassia Voronova
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
49
|
The Amazing Acrobat: Yeast's Histone H3K56 Juggles Several Important Roles While Maintaining Perfect Balance. Genes (Basel) 2021; 12:genes12030342. [PMID: 33668997 PMCID: PMC7996553 DOI: 10.3390/genes12030342] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 01/16/2023] Open
Abstract
Acetylation on lysine 56 of histone H3 of the yeast Saccharomyces cerevisiae has been implicated in many cellular processes that affect genome stability. Despite being the object of much research, the complete scope of the roles played by K56 acetylation is not fully understood even today. The acetylation is put in place at the S-phase of the cell cycle, in order to flag newly synthesized histones that are incorporated during DNA replication. The signal is removed by two redundant deacetylases, Hst3 and Hst4, at the entry to G2/M phase. Its crucial location, at the entry and exit points of the DNA into and out of the nucleosome, makes this a central modification, and dictates that if acetylation and deacetylation are not well concerted and executed in a timely fashion, severe genomic instability arises. In this review, we explore the wealth of information available on the many roles played by H3K56 acetylation and the deacetylases Hst3 and Hst4 in DNA replication and repair.
Collapse
|
50
|
Fujiwara Y, Yamanashi Y, Fujimura A, Sato Y, Kujirai T, Kurumizaka H, Kimura H, Yamatsugu K, Kawashima SA, Kanai M. Live-cell epigenome manipulation by synthetic histone acetylation catalyst system. Proc Natl Acad Sci U S A 2021; 118:e2019554118. [PMID: 33468653 PMCID: PMC7848698 DOI: 10.1073/pnas.2019554118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Chemical modifications of histones, such as lysine acetylation and ubiquitination, play pivotal roles in epigenetic regulation of gene expression. Methods to alter the epigenome thus hold promise as tools for elucidating epigenetic mechanisms and as therapeutics. However, an entirely chemical method to introduce histone modifications in living cells without genetic manipulation is unprecedented. Here, we developed a chemical catalyst, PEG-LANA-DSSMe 11, that binds with nucleosome's acidic patch and promotes regioselective, synthetic histone acetylation at H2BK120 in living cells. The size of polyethylene glycol in the catalyst was a critical determinant for its in-cell metabolic stability, binding affinity to histones, and high activity. The synthetic acetylation promoted by 11 without genetic manipulation competed with and suppressed physiological H2B ubiquitination, a mark regulating chromatin functions, such as transcription and DNA damage response. Thus, the chemical catalyst will be a useful tool to manipulate epigenome for unraveling epigenetic mechanisms in living cells.
Collapse
Affiliation(s)
- Yusuke Fujiwara
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuki Yamanashi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Akiko Fujimura
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuko Sato
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Tomoya Kujirai
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hitoshi Kurumizaka
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Kenzo Yamatsugu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan;
| | - Shigehiro A Kawashima
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan;
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan;
| |
Collapse
|