1
|
Kroupin PY, Ulyanov DS, Karlov GI, Divashuk MG. The launch of satellite: DNA repeats as a cytogenetic tool in discovering the chromosomal universe of wild Triticeae. Chromosoma 2023:10.1007/s00412-023-00789-4. [PMID: 36905415 DOI: 10.1007/s00412-023-00789-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/16/2022] [Accepted: 02/22/2023] [Indexed: 03/12/2023]
Abstract
Fluorescence in situ hybridization is a powerful tool that enables plant researchers to perform systematic, evolutionary, and population studies of wheat wild relatives as well as to characterize alien introgression into the wheat genome. This retrospective review reflects on progress made in the development of methods for creating new chromosomal markers since the launch of this cytogenetic satellite instrument to the present day. DNA probes based on satellite repeats have been widely used for chromosome analysis, especially for "classical" wheat probes (pSc119.2 and Afa family) and "universal" repeats (45S rDNA, 5S rDNA, and microsatellites). The rapid development of new-generation sequencing and bioinformatical tools, and the application of oligo- and multioligonucleotides has resulted in an explosion in the discovery of new genome- and chromosome-specific chromosome markers. Owing to modern technologies, new chromosomal markers are appearing at an unprecedented velocity. The present review describes the specifics of localization when employing commonly used vs. newly developed probes for chromosomes in J, E, V, St, Y, and P genomes and their diploid and polyploid carriers Agropyron, Dasypyrum, Thinopyrum, Pseudoroegneria, Elymus, Roegneria, and Kengyilia. Particular attention is paid to the specificity of probes, which determines their applicability for the detection of alien introgression to enhance the genetic diversity of wheat through wide hybridization. The information from the reviewed articles is summarized into the TRepeT database, which may be useful for studying the cytogenetics of Triticeae. The review describes the trends in the development of technology used in establishing chromosomal markers that can be used for prediction and foresight in the field of molecular biology and in methods of cytogenetic analysis.
Collapse
Affiliation(s)
- Pavel Yu Kroupin
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550, Moscow, Russia.
| | - Daniil S Ulyanov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550, Moscow, Russia
| | - Gennady I Karlov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550, Moscow, Russia
| | - Mikhail G Divashuk
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550, Moscow, Russia
| |
Collapse
|
2
|
Wang Y, Li R, Chen B. Cytogenetic Characterization and Metabolomic Differences of Full-Sib Progenies of Saccharum spp. PLANTS (BASEL, SWITZERLAND) 2023; 12:810. [PMID: 36840158 PMCID: PMC9968213 DOI: 10.3390/plants12040810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Sugarcane smut is a worldwide fungal disease. Disease resistance breeding is the most economical and effective measure to prevent and control sugarcane smut. The cytogenetic characteristics and metabolomic differences of sugarcane F1s are closely related to disease resistance. Zhongzhe 1 and G160 sugarcane from the same parents (ROC25 and Yunzhe89-7) were used; the plants were grown in accordance with the barrel method. When the seedlings had 4-5 leaves, genomic in situ hybridization (GISH) was performed; digoxigenin (DIG)-labeled female parental (ROC25)DNA and biotin-labeled male parental (Yunzhe89-7) DNA were used as probes, and the karyotypes of two hybrids were analyzed. The new sugarcane smut-resistant variety (Zhongzhe 1) and the susceptible variety (G160) derived from the same parent were analyzed via gas chromatography-mass spectrometry technology (GC-MS) to compare the metabolomic differences between them. GISH analysis revealed that the chromosome ploidy number of Zhongzhe 1 sugarcane and G160 sugarcane were 114 and 110, respectively. However, the two contain different numbers of chromosomes from the female (ROC25) and male (Yunzhe89-7) parents. Moreover, 258 significantly changed metabolites were identified in smut-resistant Zhongzhe 1, as compared with the smut-susceptible G160 sugarcane: 56 flavonoids, 52 phenolic acids, 30 lipids, 26 organic acids, 26 amino acids and derivatives, 19 nucleotides and derivatives, 5 alkaloids, 9 terpenoids, and 35 others. Multivariate statistical analysis revealed a distinct difference in metabolic pathways between Zhongzhe 1 sugarcane and G160, and both of these varieties had unique functional metabolites. Differences in chromosome composition may constitute the genetic basis for the difference in resistance to smut disease between Zhongzhe 1 sugarcane and G160 sugarcane, and a high accumulation of flavonoids, lipids, terpenoids and tannins may constitute the basis of resistance to smut disease for the Zhongzhe 1 variety.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Ru Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| |
Collapse
|
3
|
Tomaszewska P, Vorontsova MS, Renvoize SA, Ficinski SZ, Tohme J, Schwarzacher T, Castiblanco V, de Vega JJ, Mitchell RAC, Heslop-Harrison JS(P. Complex polyploid and hybrid species in an apomictic and sexual tropical forage grass group: genomic composition and evolution in Urochloa (Brachiaria) species. ANNALS OF BOTANY 2023; 131:87-108. [PMID: 34874999 PMCID: PMC9904353 DOI: 10.1093/aob/mcab147] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 12/06/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS Diploid and polyploid Urochloa (including Brachiaria, Panicum and Megathyrsus species) C4 tropical forage grasses originating from Africa are important for food security and the environment, often being planted in marginal lands worldwide. We aimed to characterize the nature of their genomes, the repetitive DNA and the genome composition of polyploids, leading to a model of the evolutionary pathways within the group including many apomictic species. METHODS Some 362 forage grass accessions from international germplasm collections were studied, and ploidy was determined using an optimized flow cytometry method. Whole-genome survey sequencing and molecular cytogenetic analysis were used to identify chromosomes and genomes in Urochloa accessions belonging to the 'brizantha' and 'humidicola' agamic complexes and U. maxima. KEY RESULTS Genome structures are complex and variable, with multiple ploidies and genome compositions within the species, and no clear geographical patterns. Sequence analysis of nine diploid and polyploid accessions enabled identification of abundant genome-specific repetitive DNA motifs. In situ hybridization with a combination of repetitive DNA and genomic DNA probes identified evolutionary divergence and allowed us to discriminate the different genomes present in polyploids. CONCLUSIONS We suggest a new coherent nomenclature for the genomes present. We develop a model of evolution at the whole-genome level in diploid and polyploid accessions showing processes of grass evolution. We support the retention of narrow species concepts for Urochloa brizantha, U. decumbens and U. ruziziensis, and do not consider diploids and polyploids of single species as cytotypes. The results and model will be valuable in making rational choices of parents for new hybrids, assist in use of the germplasm for breeding and selection of Urochloa with improved sustainability and agronomic potential, and assist in measuring and conserving biodiversity in grasslands.
Collapse
Affiliation(s)
| | | | | | | | - Joseph Tohme
- International Center for Tropical Agriculture (CIAT), A.A. 6713, Cali, Colombia
| | - Trude Schwarzacher
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | | | | | | | - J S (Pat) Heslop-Harrison
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
4
|
Tomaszewska P, Schwarzacher T, Heslop-Harrison JS(P. Oat chromosome and genome evolution defined by widespread terminal intergenomic translocations in polyploids. FRONTIERS IN PLANT SCIENCE 2022; 13:1026364. [PMID: 36483968 PMCID: PMC9725029 DOI: 10.3389/fpls.2022.1026364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/14/2022] [Indexed: 06/17/2023]
Abstract
Structural chromosome rearrangements involving translocations, fusions and fissions lead to evolutionary variation between species and potentially reproductive isolation and variation in gene expression. While the wheats (Triticeae, Poaceae) and oats (Aveneae) all maintain a basic chromosome number of x=7, genomes of oats show frequent intergenomic translocations, in contrast to wheats where these translocations are relatively rare. We aimed to show genome structural diversity and genome relationships in tetraploid, hexaploid and octoploid Avena species and amphiploids, establishing patterns of intergenomic translocations across different oat taxa using fluorescence in situ hybridization (FISH) with four well-characterized repetitive DNA sequences: pAs120, AF226603, Ast-R171 and Ast-T116. In A. agadiriana (2n=4x=28), the selected probes hybridized to all chromosomes indicating that this species originated from one (autotetraploid) or closely related ancestors with the same genomes. Hexaploid amphiploids were confirmed as having the genomic composition AACCDD, while octoploid amphiploids showed three different genome compositions: AACCCCDD, AAAACCDD or AABBCCDD. The A, B, C, and D genomes of oats differ significantly in their involvement in non-centromeric, intercalary translocations. There was a predominance of distal intergenomic translocations from the C- into the D-genome chromosomes. Translocations from A- to C-, or D- to C-genome chromosomes were less frequent, proving that at least some of the translocations in oat polyploids are non-reciprocal. Rare translocations from A- to D-, D- to A- and C- to B-genome chromosomes were also visualized. The fundamental research has implications for exploiting genomic biodiversity in oat breeding through introgression from wild species potentially with contrasting chromosomal structures and hence deleterious segmental duplications or large deletions in amphiploid parental lines.
Collapse
Affiliation(s)
- Paulina Tomaszewska
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wrocław, Wrocław, Poland
| | - Trude Schwarzacher
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial, Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - J. S. (Pat) Heslop-Harrison
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial, Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
5
|
Kroupin PY, Badaeva ED, Sokolova VM, Chikida NN, Belousova MK, Surzhikov SA, Nikitina EA, Kocheshkova AA, Ulyanov DS, Ermolaev AS, Khuat TML, Razumova OV, Yurkina AI, Karlov GI, Divashuk MG. Aegilops crassa Boiss. repeatome characterized using low-coverage NGS as a source of new FISH markers: Application in phylogenetic studies of the Triticeae. FRONTIERS IN PLANT SCIENCE 2022; 13:980764. [PMID: 36325551 PMCID: PMC9621091 DOI: 10.3389/fpls.2022.980764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/29/2022] [Indexed: 06/13/2023]
Abstract
Aegilops crassa Boiss. is polyploid grass species that grows in the eastern part of the Fertile Crescent, Afghanistan, and Middle Asia. It consists of tetraploid (4x) and hexaploid (6x) cytotypes (2n = 4x = 28, D1D (Abdolmalaki et al., 2019) XcrXcr and 2n = 6x = 42, D1D (Abdolmalaki et al., 2019) XcrXcrD2D (Adams and Wendel, 2005), respectively) that are similar morphologically. Although many Aegilops species were used in wheat breeding, the genetic potential of Ae. crassa has not yet been exploited due to its uncertain origin and significant genome modifications. Tetraploid Ae. crassa is thought to be the oldest polyploid Aegilops species, the subgenomes of which still retain some features of its ancient diploid progenitors. The D1 and D2 subgenomes of Ae. crassa were contributed by Aegilops tauschii (2n = 2x = 14, DD), while the Xcr subgenome donor is still unknown. Owing to its ancient origin, Ae. crassa can serve as model for studying genome evolution. Despite this, Ae. crassa is poorly studied genetically and no genome sequences were available for this species. We performed low-coverage genome sequencing of 4x and 6x cytotypes of Ae. crassa, and four Ae. tauschii accessions belonging to different subspecies; diploid wheatgrass Thinopyrum bessarabicum (Jb genome), which is phylogenetically close to D (sub)genome species, was taken as an outgroup. Subsequent data analysis using the pipeline RepeatExplorer2 allowed us to characterize the repeatomes of these species and identify several satellite sequences. Some of these sequences are novel, while others are found to be homologous to already known satellite sequences of Triticeae species. The copy number of satellite repeats in genomes of different species and their subgenome (D1 or Xcr) affinity in Ae. crassa were assessed by means of comparative bioinformatic analysis combined with quantitative PCR (qPCR). Fluorescence in situ hybridization (FISH) was performed to map newly identified satellite repeats on chromosomes of common wheat, Triticum aestivum, 4x and 6x Ae. crassa, Ae. tauschii, and Th. bessarabicum. The new FISH markers can be used in phylogenetic analyses of the Triticeae for chromosome identification and the assessment of their subgenome affinities and for evaluation of genome/chromosome constitution of wide hybrids or polyploid species.
Collapse
Affiliation(s)
- Pavel Yu. Kroupin
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Ekaterina D. Badaeva
- N.I.Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Victoria M. Sokolova
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Nadezhda N. Chikida
- All-Russian Institute of Plant Genetic Resources (VIR), Department of Wheat Genetic Resources, St. Petersburg, Russia
| | - Maria Kh. Belousova
- All-Russian Institute of Plant Genetic Resources (VIR), Department of Wheat Genetic Resources, St. Petersburg, Russia
| | - Sergei A. Surzhikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina A. Nikitina
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Alina A. Kocheshkova
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Daniil S. Ulyanov
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Aleksey S. Ermolaev
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Thi Mai Luong Khuat
- Agricultural Genetics Institute, Department of Molecular Biology, Hanoi, Vietnam
| | - Olga V. Razumova
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Anna I. Yurkina
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Gennady I. Karlov
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Mikhail G. Divashuk
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| |
Collapse
|
6
|
Qi K, Han H, Zhang J, Zhou S, Li X, Yang X, Liu W, Lu Y, Li L. Development and characterization of novel Triticum aestivum- Agropyron cristatum 6P Robertsonian translocation lines. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:59. [PMID: 37309319 PMCID: PMC10236080 DOI: 10.1007/s11032-021-01251-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/03/2021] [Indexed: 06/14/2023]
Abstract
Agropyron cristatum (L.) Gaertn. (2n = 4x = 28, PPPP), one of the most important wild relatives of wheat, harbors many desirable genes for wheat genetic improvement. Development of wheat-A. cristatum translocation lines with superior agronomic traits facilitates wheat genetic improvement. In this study, 5106-DS was identified to be a wheat-A. cristatum 6P (6D) disomic substitution line using cytogenetic identification and molecular markers analysis, which displayed higher thousand-grain weight than its wheat parent Triticum aestivum cv. Fukuhokomugi (2n = 6x = 42, AABBDD). Analysis of its backcross populations indicated that there might be genes conferring increased grain weight and width on the chromosome 6P of 5106-DS. In the backcross population, we found three plants as Robertsonian translocation lines, created by chromosome centric breakage-fusion. Among them, there are one T6DS·6PL and two T6PS·6DL Robertsonian translocation lines. Additionally, the centromeres of these three translocation lines were determined to be fused centromeres of 6D and 6P using the probes pAcCR1 and pCCS1. The development of Robertsonian translocation lines would promote the utilization of A. cristatum chromosome 6P in wheat improvement. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01251-y.
Collapse
Affiliation(s)
- Kai Qi
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Haiming Han
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Jinpeng Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Shenghui Zhou
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xiuquan Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xinming Yang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Weihua Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yuqing Lu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Lihui Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
7
|
Liu Y, Huang S, Han J, Hou C, Zheng D, Zhang Z, Wu J. Development and Molecular Cytogenetic Identification of a New Wheat- Psathyrostachys huashanica Keng Translocation Line Resistant to Powdery Mildew. FRONTIERS IN PLANT SCIENCE 2021; 12:689502. [PMID: 34163516 PMCID: PMC8215663 DOI: 10.3389/fpls.2021.689502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/18/2021] [Indexed: 06/13/2023]
Abstract
Psathyrostachys huashanica Keng, a wild relative of common wheat with many desirable traits, is an invaluable source of genetic material for wheat improvement. Few wheat-P. huashanica translocation lines resistant to powdery mildew have been reported. In this study, a wheat-P. huashanica line, E24-3-1-6-2-1, was generated via distant hybridization, ethyl methanesulfonate (EMS) mutagenesis, and backcross breeding. A chromosome karyotype of 2n = 44 was observed at the mitotic stage in E24-3-1-6-2-1. Genomic in situ hybridization (GISH) analysis revealed four translocated chromosomes in E24-3-1-6-2-1, and P. huashanica chromosome-specific marker analysis showed that the alien chromosome fragment was from the P. huashanica 4Ns chromosome. Moreover, fluorescence in situ hybridization (FISH) analysis demonstrated that reciprocal translocation had occurred between the P. huashanica 4Ns chromosome and the wheat 3D chromosome; thus, E24-3-1-6-2-1 carried two translocations: T3DS·3DL-4NsL and T3DL-4NsS. Translocation also occurred between wheat chromosomes 2A and 4A. At the adult stage, E24-3-1-6-2-1 was highly resistant to powdery mildew, caused by prevalent pathotypes in China. Further, the spike length, numbers of fertile spikelets, kernels per spike, thousand-kernel weight, and grain yield of E24-3-1-6-2-1 were significantly higher than those of its wheat parent 7182 and addition line 24-6-3-1. Thus, this translocation line that is highly resistant to powdery mildew and has excellent agronomic traits can be used as a novel promising germplasm for breeding resistant and high-yielding cultivars.
Collapse
Affiliation(s)
- Yuxiu Liu
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Shuhua Huang
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Jing Han
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Chenchen Hou
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Dasheng Zheng
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Zhengmao Zhang
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Jun Wu
- College of Agronomy, Northwest A&F University, Yangling, China
| |
Collapse
|
8
|
Fedak G, Chi D, Wolfe D, Ouellet T, Cao W, Han F, Xue A. Transfer of fusarium head blight resistance from Thinopyrum elongatum to bread wheat cultivar Chinese Spring. Genome 2021; 64:997-1008. [PMID: 33901404 DOI: 10.1139/gen-2020-0151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The diploid form of tall wheatgrass, Thinopyrum elongatum (Host) D.R. Dewey (2n = 2x = 14, EE genome), has a high level of resistance to fusarium head blight. The symptoms did not spread beyond the inoculated florets following point inoculation. Using a series of E-genome chromosome additions in a bread wheat cultivar Chinese Spring (CS) background, the resistance was found to be localized to the long arm of chromosome 7E. The CS mutant ph1b was used to induce recombination between chromosome 7E, present in the 7E(7D) substitution and homoeologous wheat chromosomes. Multivalent chromosome associations were detected in the BC1 hybrids, confirming the effectiveness of the ph1b mutant. Genetic markers specific for chromosome 7E were used to estimate the size of the 7E introgression in the wheat genome. Using single sequence repeat (SSR) markers specific for homoeologous wheat chromosome 7, introgressions were detected on wheat chromosomes 7A, 7B, and 7D. Some of the introgression lines were resistant to fusarium head blight.
Collapse
Affiliation(s)
- George Fedak
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Dawn Chi
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Danielle Wolfe
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Thérèse Ouellet
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Wenguang Cao
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences No.1, Beijing, China
| | - Allen Xue
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| |
Collapse
|
9
|
Agrawal N, Gupta M, Banga SS, Heslop-Harrison JS(P. Identification of Chromosomes and Chromosome Rearrangements in Crop Brassicas and Raphanus sativus: A Cytogenetic Toolkit Using Synthesized Massive Oligonucleotide Libraries. FRONTIERS IN PLANT SCIENCE 2020; 11:598039. [PMID: 33414797 PMCID: PMC7783396 DOI: 10.3389/fpls.2020.598039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 11/30/2020] [Indexed: 05/10/2023]
Abstract
Crop brassicas include three diploid [Brassica rapa (AA; 2n = 2x = 16), B. nigra (BB; 2n = 2x = 18), and B. oleracea (CC; 2n = 2x = 20)] and three derived allotetraploid species. It is difficult to distinguish Brassica chromosomes as they are small and morphologically similar. We aimed to develop a genome-sequence based cytogenetic toolkit for reproducible identification of Brassica chromosomes and their structural variations. A bioinformatic pipeline was used to extract repeat-free sequences from the whole genome assembly of B. rapa. Identified sequences were subsequently used to develop four c. 47-mer oligonucleotide libraries comprising 27,100, 11,084, 9,291, and 16,312 oligonucleotides. We selected these oligonucleotides after removing repeats from 18 identified sites (500-1,000 kb) with 1,997-5,420 oligonucleotides localized at each site in B. rapa. For one set of probes, a new method for amplification or immortalization of the library is described. oligonucleotide probes produced specific and reproducible in situ hybridization patterns for all chromosomes belonging to A, B, C, and R (Raphanus sativus) genomes. The probes were able to identify structural changes between the genomes, including translocations, fusions, and deletions. Furthermore, the probes were able to identify a structural translocation between a pak choi and turnip cultivar of B. rapa. Overall, the comparative chromosomal mapping helps understand the role of chromosome structural changes during genome evolution and speciation in the family Brassicaceae. The probes can also be used to identify chromosomes in aneuploids such as addition lines used for gene mapping, and to track transfer of chromosomes in hybridization and breeding programs.
Collapse
Affiliation(s)
- Neha Agrawal
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Mehak Gupta
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Surinder S. Banga
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - JS (Pat) Heslop-Harrison
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
10
|
Zhang M, Zhang W, Zhu X, Sun Q, Yan C, Xu SS, Fiedler J, Cai X. Dissection and physical mapping of wheat chromosome 7B by inducing meiotic recombination with its homoeologues in Aegilops speltoides and Thinopyrum elongatum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:3455-3467. [PMID: 32930833 DOI: 10.1007/s00122-020-03680-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/04/2020] [Indexed: 06/11/2023]
Abstract
We constructed a homoeologous recombination-based bin map of wheat chromosome 7B, providing a unique physical framework for further study of chromosome 7B and its homoeologues in wheat and its relatives. Homoeologous recombination leads to the dissection and diversification of the wheat genome. Advances in genome sequencing and genotyping have dramatically improved the efficacy and throughput of homoeologous recombination-based genome studies and alien introgression in wheat and its relatives. In this study, we aimed to physically dissect and map wheat chromosome 7B by inducing meiotic recombination of chromosome 7B with its homoeologues 7E in Thinopyrum elongatum and 7S in Aegilops speltoides. The special genotypes, which were double monosomic for chromosomes 7B' + 7E' or 7B' + 7S' and homozygous for the ph1b mutant, were produced to enhance 7B - 7E and 7B - 7S recombination. Chromosome-specific DNA markers were developed and used to pre-screen the large recombination populations for 7B - 7E and 7B - 7S recombinants. The DNA marker-mediated preselections were verified by fluorescent genomic in situ hybridization (GISH). In total, 29 7B - 7E and 61 7B - 7S recombinants and multiple chromosome aberrations were recovered and delineated by GISH and the wheat 90 K SNP assay. Integrated GISH and SNP analysis of the recombinants physically mapped the recombination breakpoints and partitioned wheat chromosome 7B into 44 bins with 523 SNPs assigned within. A composite bin map was constructed for chromosome 7B, showing the bin size and physical distribution of SNPs. This provides a unique physical framework for further study of chromosome 7B and its homoeologues. In addition, the 7B - 7E and 7B - 7S recombinants extend the genetic variability of wheat chromosome 7B and represent useful germplasm for wheat breeding. Thereby, this genomics-enabled chromosome engineering approach facilitates wheat genome study and enriches the gene pool of wheat improvement.
Collapse
Affiliation(s)
- Mingyi Zhang
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Wei Zhang
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Xianwen Zhu
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Qing Sun
- Department of Computer Science, North Dakota State University, Fargo, ND, 58108, USA
| | - Changhui Yan
- Department of Computer Science, North Dakota State University, Fargo, ND, 58108, USA
| | - Steven S Xu
- USDA-ARS, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND, 58102, USA
| | - Jason Fiedler
- USDA-ARS, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND, 58102, USA
| | - Xiwen Cai
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA.
| |
Collapse
|
11
|
Singh AK, Zhang P, Dong C, Li J, Singh S, Trethowan RM, Sharp PJ. Development and molecular cytogenetic characterization of Thinopyrum bessarabicum introgression lines in hexaploid and tetraploid wheats. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2117-2130. [PMID: 32198597 DOI: 10.1007/s00122-020-03581-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 03/12/2020] [Indexed: 06/10/2023]
Abstract
A variety of Thinopyrum bessarabicum introgressions in both hexaploid and tetraploid wheats were generated and characterized by molecular cytogenetic analysis. Six wheat-J genome recombinants were identified with ND-FISH and GISH. Diploid wheatgrass, Thinopyrum bessarabicum (2n = 2x = 14, EbEb or JbJb or JJ), is a well-known alien source of salinity tolerance and disease resistance for wheat improvement. The true genetic potential and effect of such introgressions into wheat can be best studied in chromosomal addition or substitution lines. Here, we report the generation and characterization of various categories of Th. bessarabicum derivatives in both hexaploid and tetraploid cultivated wheats. Sequential non-denaturing fluorescence in situ hybridization (ND-FISH) and genomic in situ hybridization (GISH) are robust techniques to visualize the size of alien introgressions and breakpoints. We identified a complete set of monosomic addition lines into both bread wheat and durum wheat, except for 7J in durum wheat, by sequential ND-FISH and GISH. We also characterized alien derivatives belonging to various classes including mono-telosomic additions, disomic additions, monosomic substitutions, double monosomic substitutions, monosomic substitution-monosomic additions, double monosomic additions, and multiple monosomic additions into both bread and durum wheats. In addition, various wheat-Th. bessarabicum recombinant chromosomes were also detected in six alien derivatives. These wheat-Th. bessarabicum derivatives will provide useful cytogenetic resources for improvement of both hexaploid and tetraploid wheats.
Collapse
Affiliation(s)
- Amit K Singh
- Plant Breeding Institute, The University of Sydney, Cobbitty, NSW, 2570, Australia
| | - Peng Zhang
- Plant Breeding Institute, The University of Sydney, Cobbitty, NSW, 2570, Australia.
| | - Chongmei Dong
- Plant Breeding Institute, The University of Sydney, Cobbitty, NSW, 2570, Australia
| | - Jianbo Li
- Plant Breeding Institute, The University of Sydney, Cobbitty, NSW, 2570, Australia
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Smriti Singh
- Bihar Agricultural University, Sabour, Bihar, 813210, India
| | - Richard M Trethowan
- Plant Breeding Institute, The University of Sydney, Cobbitty, NSW, 2570, Australia
| | - Peter J Sharp
- Plant Breeding Institute, The University of Sydney, Cobbitty, NSW, 2570, Australia.
| |
Collapse
|
12
|
Li J, Zhao L, Cheng X, Bai G, Li M, Wu J, Yang Q, Chen X, Yang Z, Zhao J. Molecular cytogenetic characterization of a novel wheat-Psathyrostachys huashanica Keng T3DS-5NsL•5NsS and T5DL-3DS•3DL dual translocation line with powdery mildew resistance. BMC PLANT BIOLOGY 2020; 20:163. [PMID: 32293283 PMCID: PMC7161236 DOI: 10.1186/s12870-020-02366-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 03/26/2020] [Indexed: 05/26/2023]
Abstract
BACKGROUND Psathyrostachys huashanica Keng (2n = 2x = 14, NsNs) carries many outstanding agronomic traits, therefore is a valuable resource for wheat genetic improvement. Wheat-P. huashanica translocation lines are important intermediate materials for wheat breeding and studying the functions of alien chromosomes. However, powdery mildew resistance in these translocation lines has not been reported previously. RESULTS This study developed a novel wheat-P. huashanica translocation line TR77 by selecting a F7 progeny from the cross between heptaploid hybrid H8911 (2n = 7x = 49, AABBDDNs) and durum wheat line Trs-372. Chromosome karyotype of 2n = 42 = 21II was observed in both mitotic and meiotic stages of TR77. Genomic in situ hybridization analysis identified two translocated chromosomes that paired normally at meiosis stage in TR77. Molecular marker analysis showed that part of chromosome 5D was replaced by part of alien chromosome fragment 5Ns. It meant replacement made part 5DL and part 5NsL·5NsS existed in wheat background, and then translocation happened between these chromosomes and wheat 3D chromosome. Fluorescence in situ hybridization demonstrated that TR77 carries dual translocations: T3DS-5NsL·5NsS and T5DL-3DS·3DL. Analysis using a 15 K-wheat-SNP chip confirmed that SNP genotypes on the 5D chromosome of TR77 matched well with these of P. huashanica, but poorly with common wheat line 7182. The translocation was physically located between 202.3 and 213.1 Mb in 5D. TR77 showed longer spikes, more kernels per spike, and much better powdery mildew resistance than its wheat parents: common wheat line 7182 and durum wheat line Trs-372. CONCLUSIONS TR77 is a novel stable wheat-P. huashanica T3DS-5NsL·5NsS and T5DL-3DS·3DL dual translocation line and showed significant improved spike traits and resistance to powdery mildew compared to its parents, thus, it can be an useful germplasm for breeding disease resistance and studying the genetic mechanism of dual translocations.
Collapse
Affiliation(s)
- Jiachuang Li
- Shaanxi Key Laboratory of Plant Genetic Engineering Breeding, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Li Zhao
- Shaanxi Key Laboratory of Plant Genetic Engineering Breeding, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xueni Cheng
- College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Guihua Bai
- USDA, Hard Winter Wheat Genetics Research Unit, 4008 Throckmorton Hall, Manhattan, KS, 66506, USA
| | - Mao Li
- Shaanxi Key Laboratory of Plant Genetic Engineering Breeding, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jun Wu
- Shaanxi Key Laboratory of Plant Genetic Engineering Breeding, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qunhui Yang
- Shaanxi Key Laboratory of Plant Genetic Engineering Breeding, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xinhong Chen
- Shaanxi Key Laboratory of Plant Genetic Engineering Breeding, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zujun Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Jixin Zhao
- Shaanxi Key Laboratory of Plant Genetic Engineering Breeding, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
13
|
Zhang M, Zhang W, Zhu X, Sun Q, Chao S, Yan C, Xu SS, Fiedler J, Cai X. Partitioning and physical mapping of wheat chromosome 3B and its homoeologue 3E in Thinopyrum elongatum by inducing homoeologous recombination. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1277-1289. [PMID: 31970450 DOI: 10.1007/s00122-020-03547-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
We performed homoeologous recombination-based partitioning and physical mapping of wheat chromosome 3B and Th. elongatum chromosome 3E, providing a unique physical framework of this homoeologous pair for genome studies. The wheat (Triticum aestivum, 2n = 6x = 42, AABBDD) and Thinopyrum elongatum (2n = 2x = 14, EE) genomes can be differentiated from each other by fluorescent genomic in situ hybridization (FGISH) as well as molecular markers. This has facilitated homoeologous recombination-based partitioning and engineering of their genomes for physical mapping and alien introgression. Here, we constructed a special wheat genotype, which was double monosomic for wheat chromosome 3B and Th. elongatum chromosome 3E and homozygous for the ph1b mutant, to induce 3B-3E homoeologous recombination. Totally, 81 3B-3E recombinants were recovered and detected in the primary, secondary, and tertiary homoeologous recombination cycles by FGISH. Comparing to the primary recombination, the secondary and tertiary recombination shifted toward the proximal regions due to the increase in homology between the pairing partners. The 3B-3E recombinants were genotyped by high-throughput wheat 90-K single nucleotide polymorphism (SNP) arrays and their recombination breakpoints physically mapped based on the FGISH patterns and SNP results. The 3B-3E recombination physically partitioned chromosome 3B into 38 bins, and 429 SNPs were assigned to the distinct bins. Integrative analysis of FGISH and SNP results led to the construction of a composite bin map for chromosome 3B. Additionally, we developed 22 SNP-derived semi-thermal asymmetric reverse PCR markers specific for chromosome 3E and constructed a comparative map of homoeologous chromosomes 3E, 3B, 3A, and 3D. In summary, this work provides a unique physical framework for further studies of the 3B-3E homoeologous pair and diversifies the wheat genome for wheat improvement.
Collapse
Affiliation(s)
- Mingyi Zhang
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Wei Zhang
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Xianwen Zhu
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Qing Sun
- Department of Computer Science, North Dakota State University, Fargo, ND, 58108, USA
| | - Shiaoman Chao
- USDA-ARS, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND, 58102, USA
| | - Changhui Yan
- Department of Computer Science, North Dakota State University, Fargo, ND, 58108, USA
| | - Steven S Xu
- USDA-ARS, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND, 58102, USA
| | - Jason Fiedler
- USDA-ARS, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND, 58102, USA
| | - Xiwen Cai
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA.
| |
Collapse
|
14
|
Badaeva ED, Surzhikov SA, Agafonov AV. Molecular-cytogenetic analysis of diploid wheatgrass Thinopyrum bessarabicum (Savul. and Rayss) A. Löve. COMPARATIVE CYTOGENETICS 2019; 13:389-402. [PMID: 31844506 PMCID: PMC6904353 DOI: 10.3897/compcytogen.v13i4.36879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 11/09/2019] [Indexed: 06/10/2023]
Abstract
Thinopyrum bessarabicum (T. Săvulescu & T. Rayss, 1923) A. Löve, 1980 is diploid (2n=2x=14, JJ or EbEb), perennial self-fertilizing rhizomatous maritime beach grass, which is phylogenetically close to another diploid wheatgrass species, Agropyron elongatum (N. Host, 1797) P. de Beauvois, 1812. The detailed karyotype of Th. bessarabicum was constructed based on FISH with six DNA probes representing 5S and 45S rRNA gene families and four tandem repeats. We found that the combination of pAesp_SAT86 (= pTa-713) probe with pSc119.2 or pAs1/ pTa-535 allows the precise identification of all J-genome chromosomes. Comparison of our data with the results of other authors showed that karyotypically Th. bessarabicum is distinct from A. elongatum. On the other hand, differences between the J-genome chromosomes of Th. bessarabicum and the chromosomes of hexaploid Th. intermedium (N. Host, 1797) M. Barkworth & D.R. Dewey, 1985 and decaploid Th. ponticum (J. Podpěra, 1902) Z.-W. Liu & R.-C. Wang, 1993 in the distribution of rDNA loci and hybridization patterns of pSc119.2 and pAs1 probes could be an indicative of (1) this diploid species was probably not involved in the origin of these polyploids or (2) it could has contributed the J-genome to Th. intermedium and Th. ponticum, but it was substantially modified over the course of speciation.
Collapse
Affiliation(s)
- Ekaterina D. Badaeva
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences. Gubkina str. 3, Moscow 117333, RussiaEngelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscowRussia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences. Vavilova str. 34, Moscow 117334, RussiaN.I. Vavilov Institute of General Genetics, Russian Academy of SciencesMoscowRussia
| | - Sergei A. Surzhikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences. Vavilova str. 34, Moscow 117334, RussiaN.I. Vavilov Institute of General Genetics, Russian Academy of SciencesMoscowRussia
| | - Alexander V. Agafonov
- Central Siberian Botanical Garden, Russian Academy of Sciences, Siberian Branch, Zolotodolinskaya st., 101, Novosibirsk 630090, RussiaCentral Siberian Botanical Garden, Russian Academy of SciencesNovosibirskRussia
| |
Collapse
|
15
|
Li H, Dong Z, Ma C, Tian X, Qi Z, Wu N, Friebe B, Xiang Z, Xia Q, Liu W, Li T. Physical Mapping of Stem Rust Resistance Gene Sr52 from Dasypyrum villosum Based on ph1b-Induced Homoeologous Recombination. Int J Mol Sci 2019; 20:ijms20194887. [PMID: 31581639 PMCID: PMC6801782 DOI: 10.3390/ijms20194887] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 11/16/2022] Open
Abstract
Wheat stem rust caused by Puccinia graminis f. sp. tritici (Pgt) had been a devastating foliar disease worldwide during the 20th century. With the emergence of Ug99 races, which are virulent to most stem rust resistance genes deployed in wheat varieties and advanced lines, stem rust has once again become a disease threatening global wheat production. Sr52, derived from Dasypyrum villosum and mapped to the long arm of 6V#3, is one of the few effective genes against Ug99 races. In this study, the wheat-D. villosum Robertsonian translocation T6AS·6V#3L, the only stock carrying Sr52 released to experimental and breeding programs so far, was crossed with a CS ph1b mutant to induce recombinants with shortened 6V#3L chromosome segments locating Sr52. Six independent homozygous recombinants with different segment sizes and breakpoints were developed and characterized using in situ hybridization and molecular markers analyses. Stem rust resistance evaluation showed that only three terminal recombinants (1381, 1380, and 1392) containing 8%, 22%, and 30% of the distal segment of 6V#3L, respectively, were resistant to stem rust. Thus, the gene Sr52 was mapped into 6V#3L bin FL 0.92-1.00. In addition, three molecular markers in the Sr52-located interval of 6V#3L were confirmed to be diagnostic markers for selection of Sr52 introgressed into common wheat. The newly developed small segment translocation lines with Sr52 and the identified molecular markers closely linked to Sr52 will be valuable for wheat disease breeding.
Collapse
Affiliation(s)
- Huanhuan Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China.
| | - Zhenjie Dong
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China.
| | - Chao Ma
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China.
| | - Xiubin Tian
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China.
| | - Zengjun Qi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| | - Nan Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| | - Bernd Friebe
- Wheat Genetic and Genomic Resources Center, Department of Plant Pathology, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS 66506-5502, USA.
| | - Zhiguo Xiang
- Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.
| | - Qing Xia
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China.
| | - Wenxuan Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China.
| | - Tianya Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110000, China.
| |
Collapse
|
16
|
Cseh A, Yang C, Hubbart-Edwards S, Scholefield D, Ashling SS, Burridge AJ, Wilkinson PA, King IP, King J, Grewal S. Development and validation of an exome-based SNP marker set for identification of the St, J r and J vs genomes of Thinopyrym intermedium in a wheat background. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1555-1570. [PMID: 30767030 PMCID: PMC6476854 DOI: 10.1007/s00122-019-03300-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/02/2019] [Indexed: 05/19/2023]
Abstract
KEY MESSAGE Cytogenetic analysis and array-based SNP genotyping of wheat- Th. intermedium introgression lines allowed identification of 634 chromosome-specific SNP markers across all twenty-one chromosomes of Th. intermedium (StJ r J vs , 2 n = 6 x = 42). Thinopyrum intermedium (2n = 6x = 42, StJrJvs) is one of the most promising reservoirs of useful genes including tolerance to abiotic stresses, perenniality and disease resistance not available in the cultivated bread wheat. The transfer of genetic diversity from wild species to wheat offers valuable responses to the effects of climate change. The new array-based single-nucleotide polymorphism (SNP) marker technology provides cheap and easy-to-use molecular markers for marker-assisted selection (MAS) in wheat breeding programmes. Here, we focus on the generation of a new chromosome-specific SNP marker set that can be used to characterize and identify the Th. intermedium chromosomes or chromosome segments transferred into wheat. A progressive investigation of marker development was conducted using 187 various newly developed wheat-Th. intermedium introgression lines and the Axiom® Wheat-Relative Genotyping array. We employed molecular cytogenetic techniques to clarify the genome constitution of the Th. intermedium parental lines and validated 634 chromosome-specific SNPs. Our data confirmed the allohexaploid nature of Th. intermedium and demonstrated that the St genome-specific GISH signal and markers are present at the centromeric regions of chromosomes 1Jvs, 2Jvs, 3Jvs and 7Jvs. The SNP markers presented here will be introduced into current wheat improvement programmes, offering a significant speed-up in wheat breeding and making it possible to deal with the transfer of the full genetic potential of Th. intermedium into wheat.
Collapse
Affiliation(s)
- Andras Cseh
- Nottingham BBSRC Wheat Research Centre, Division of Plant and Crop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, UK
- Molecular Breeding Department, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Caiyun Yang
- Nottingham BBSRC Wheat Research Centre, Division of Plant and Crop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Stella Hubbart-Edwards
- Nottingham BBSRC Wheat Research Centre, Division of Plant and Crop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Duncan Scholefield
- Nottingham BBSRC Wheat Research Centre, Division of Plant and Crop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Stephen S Ashling
- Nottingham BBSRC Wheat Research Centre, Division of Plant and Crop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | | | | | - Ian P King
- Nottingham BBSRC Wheat Research Centre, Division of Plant and Crop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Julie King
- Nottingham BBSRC Wheat Research Centre, Division of Plant and Crop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Surbhi Grewal
- Nottingham BBSRC Wheat Research Centre, Division of Plant and Crop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, UK.
| |
Collapse
|
17
|
Zhang W, Zhu X, Zhang M, Chao S, Xu S, Cai X. Meiotic homoeologous recombination-based mapping of wheat chromosome 2B and its homoeologues in Aegilops speltoides and Thinopyrum elongatum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2381-2395. [PMID: 30109393 DOI: 10.1007/s00122-018-3160-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 08/03/2018] [Indexed: 05/09/2023]
Abstract
We physically dissected and mapped wheat chromosome 2B and its homoeologues in Aegilops speltoides and Thinopyrum elongatum based on meiotic homoeologous recombination, providing a unique physical framework for genome studies. Common wheat has a large and complex genome with narrow genetic diversity and various degrees of recombination between the A, B, and D subgenomes. This has limited the homologous recombination-based genome studies in wheat. Here, we exploited meiotic homoeologous recombination for molecular mapping of wheat chromosome 2B and its homoeologue 2S from Aegilops speltoides and 2E from Thinopyrum elongatum. The 2B-2S and 2B-2E recombination was induced by the ph1b mutant, and recovered using molecular markers and fluorescent genomic in situ hybridization (FGISH). A total of 112 2B-2S and 87 2B-2E recombinants involving different chromosome regions were developed and physically delineated by FGISH. The 2B-2S and 2B-2E recombination hotspots mapped to the subterminal regions on both arms. Recombination hotspots with the highest recombination rates mapped to the short arms. Eighty-three 2B-2S and 67 2B-2E recombinants were genotyped using the wheat 90 K SNP arrays. Based on the genotyping results and FGISH patterns of the recombinants, chromosomes 2B, 2S, and 2E were partitioned into 93, 66, and 46 bins, respectively. In total, 1037 SNPs physically mapped onto distinct bins of these three homoeologous chromosomes. A homoeologous recombination-based bin map was constructed for chromosome 2B, providing a unique physical framework for genome studies in wheat and its relatives. Meiotic homoeologous recombination also facilitates gene introgression to diversify the wheat genome for germplasm development. Therefore, homoeologous recombination-based studies enhance understanding of the wheat genome and its homoeologous counterparts from wild grasses, and expand the genetic variability of the wheat genome.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Xianwen Zhu
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Mingyi Zhang
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Shiaoman Chao
- USDA-ARS, Red River Valley Agricultural Research Center, Fargo, ND, 58102, USA
| | - Steven Xu
- USDA-ARS, Red River Valley Agricultural Research Center, Fargo, ND, 58102, USA
| | - Xiwen Cai
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA.
| |
Collapse
|
18
|
Duba A, Goriewa-Duba K, Wachowska U. A Review of the Interactions between Wheat and Wheat Pathogens: Zymoseptoria tritici, Fusarium spp. and Parastagonospora nodorum. Int J Mol Sci 2018; 19:E1138. [PMID: 29642627 PMCID: PMC5979484 DOI: 10.3390/ijms19041138] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/24/2018] [Accepted: 04/06/2018] [Indexed: 12/11/2022] Open
Abstract
Zymoseptoria tritici is a hemibiotrophic pathogen which causes Septoria leaf blotch in wheat. The pathogenesis of the disease consists of a biotrophic phase and a necrotrophic phase. The pathogen infects the host plant by suppressing its immune response in the first stage of infection. Hemibiotrophic pathogens of the genus Fusarium cause Fusarium head blight, and the necrotrophic Parastagonosporanodorum is responsible for Septoria nodorum blotch in wheat. Cell wall-degrading enzymes in plants promote infections by necrotrophic and hemibiotrophic pathogens, and trichothecenes, secondary fungal metabolites, facilitate infections caused by fungi of the genus Fusarium. There are no sources of complete resistance to the above pathogens in wheat. Defense mechanisms in wheat are controlled by many genes encoding resistance traits. In the wheat genome, the characteristic features of loci responsible for resistance to pathogenic infections indicate that at least several dozen genes encode resistance to pathogens. The molecular interactions between wheat and Z. tritici, P. nodorum and Fusarium spp. pathogens have been insufficiently investigated. Most studies focus on the mechanisms by which the hemibiotrophic Z. tritici suppresses immune responses in plants and the role of mycotoxins and effector proteins in infections caused by P. nodorum and Fusarium spp. fungi. Trichothecene glycosylation and effector proteins, which are involved in defense responses in wheat, have been described at the molecular level. Recent advances in molecular biology have produced interesting findings which should be further elucidated in studies of molecular interactions between wheat and fungal pathogens. The Clustered Regularly-Interspaced Short Palindromic Repeats/ CRISPR associated (CRISPR/Cas) system can be used to introduce targeted mutations into the wheat genome and confer resistance to selected fungal diseases. Host-induced gene silencing and spray-induced gene silencing are also useful tools for analyzing wheat-pathogens interactions which can be used to develop new strategies for controlling fungal diseases.
Collapse
Affiliation(s)
- Adrian Duba
- Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 17, 10-719 Olsztyn, Poland.
| | - Klaudia Goriewa-Duba
- Department of Plant Breeding and Seed Production, University of Warmia and Mazury in Olsztyn, pl. Łódzki 3, 10-724 Olsztyn, Poland.
| | - Urszula Wachowska
- Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 17, 10-719 Olsztyn, Poland.
| |
Collapse
|
19
|
Rasheed A, Mujeeb-Kazi A, Ogbonnaya FC, He Z, Rajaram S. Wheat genetic resources in the post-genomics era: promise and challenges. ANNALS OF BOTANY 2018; 121:603-616. [PMID: 29240874 PMCID: PMC5852999 DOI: 10.1093/aob/mcx148] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/13/2017] [Indexed: 05/18/2023]
Abstract
Background Wheat genetic resources have been used for genetic improvement since 1876, when Stephen Wilson (Transactions and Proceedings of the Botanical Society of Edinburgh 12: 286) consciously made the first wide hybrid involving wheat and rye in Scotland. Wide crossing continued with sporadic attempts in the first half of 19th century and became a sophisticated scientific discipline during the last few decades with considerable impact in farmers' fields. However, a large diversity of untapped genetic resources could contribute in meeting future wheat production challenges. Perspectives and Conclusion Recently the complete reference genome of hexaploid (Chinese Spring) and tetraploid (Triticum turgidum ssp. dicoccoides) wheat became publicly available coupled with on-going international efforts on wheat pan-genome sequencing. We anticipate that an objective appraisal is required in the post-genomics era to prioritize genetic resources for use in the improvement of wheat production if the goal of doubling yield by 2050 is to be met. Advances in genomics have resulted in the development of high-throughput genotyping arrays, improved and efficient methods of gene discovery, genomics-assisted selection and gene editing using endonucleases. Likewise, ongoing advances in rapid generation turnover, improved phenotyping, envirotyping and analytical methods will significantly accelerate exploitation of exotic genes and increase the rate of genetic gain in breeding. We argue that the integration of these advances will significantly improve the precision and targeted identification of potentially useful variation in the wild relatives of wheat, providing new opportunities to contribute to yield and quality improvement, tolerance to abiotic stresses, resistance to emerging biotic stresses and resilience to weather extremes.
Collapse
Affiliation(s)
- Awais Rasheed
- International Maize and Wheat Improvement Center (CIMMYT), c/o Chinese Academy of Agricultural Sciences (CAAS), China
- Institute of Crop Sciences, CAAS, China
| | | | | | - Zhonghu He
- International Maize and Wheat Improvement Center (CIMMYT), c/o Chinese Academy of Agricultural Sciences (CAAS), China
- Institute of Crop Sciences, CAAS, China
| | | |
Collapse
|
20
|
King J, Grewal S, Yang CY, Hubbart Edwards S, Scholefield D, Ashling S, Harper JA, Allen AM, Edwards KJ, Burridge AJ, King IP. Introgression of Aegilops speltoides segments in Triticum aestivum and the effect of the gametocidal genes. ANNALS OF BOTANY 2018; 121:229-240. [PMID: 29216335 PMCID: PMC5808807 DOI: 10.1093/aob/mcx149] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 10/13/2017] [Indexed: 05/23/2023]
Abstract
BACKGROUND AND AIMS Bread wheat (Triticum aestivum) has been through a severe genetic bottleneck as a result of its evolution and domestication. It is therefore essential that new sources of genetic variation are generated and utilized. This study aimed to generate genome-wide introgressed segments from Aegilops speltoides. Introgressions generated from this research will be made available for phenotypic analysis. METHODS Aegilops speltoides was crossed as the male parent to T. aestivum 'Paragon'. The interspecific hybrids were then backcrossed to Paragon. Introgressions were detected and characterized using the Affymetrix Axiom Array and genomic in situ hybridization (GISH). KEY RESULTS Recombination in the gametes of the F1 hybrids was at a level where it was possible to generate a genetic linkage map of Ae. speltoides. This was used to identify 294 wheat/Ae. speltoides introgressions. Introgressions from all seven linkage groups of Ae. speltoides were found, including both large and small segments. Comparative analysis showed that overall macro-synteny is conserved between Ae. speltoides and T. aestivum, but that Ae. speltoides does not contain the 4A/5A/7B translocations present in wheat. Aegilops speltoides has been reported to carry gametocidal genes, i.e. genes that ensure their transmission through the gametes to the next generation. Transmission rates of the seven Ae. speltoides linkage groups introgressed into wheat varied. A 100 % transmission rate of linkage group 2 demonstrates the presence of the gametocidal genes on this chromosome. CONCLUSIONS A high level of recombination occurs between the chromosomes of wheat and Ae. speltoides, leading to the generation of large numbers of introgressions with the potential for exploitation in breeding programmes. Due to the gametocidal genes, all germplasm developed will always contain a segment from Ae. speltoides linkage group 2S, in addition to an introgression from any other linkage group.
Collapse
Affiliation(s)
- Julie King
- Division of Plant and Cop Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Surbhi Grewal
- Division of Plant and Cop Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Cai-yun Yang
- Division of Plant and Cop Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Stella Hubbart Edwards
- Division of Plant and Cop Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Duncan Scholefield
- Division of Plant and Cop Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Stephen Ashling
- Division of Plant and Cop Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - John A Harper
- The Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, UK
| | | | | | | | - Ian P King
- Division of Plant and Cop Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| |
Collapse
|
21
|
Grewal S, Yang C, Edwards SH, Scholefield D, Ashling S, Burridge AJ, King IP, King J. Characterisation of Thinopyrum bessarabicum chromosomes through genome-wide introgressions into wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:389-406. [PMID: 29101420 PMCID: PMC5787220 DOI: 10.1007/s00122-017-3009-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/26/2017] [Indexed: 05/07/2023]
Abstract
Genome-wide introgressions of Thinopyrum bessarabicum into wheat resulted in 12 recombinant lines. Cytological and molecular techniques allowed mapping of 1150 SNP markers across all seven chromosomes of the J genome. Thinopyrum bessarabicum (2n = 2x = 14, JJ) is an important source for new genetic variation for wheat improvement due to its salinity tolerance and disease resistance. Its practical utilisation in wheat improvement can be facilitated through development of genome-wide introgressions leading to a variety of different wheat-Th . bessarabicum translocation lines. In this study, we report the generation of 12 such wheat-Th . bessarabicum recombinant lines, through two different crossing strategies, which were characterized using sequential single colour and multi-colour genomic in situ hybridization (sc-GISH and mc-GISH), multi-colour fluorescent in situ hybridization (mc-FISH) and single nucleotide polymorphic (SNP) DNA markers. We also detected 13 lines containing different Th. bessarabicum chromosome aberrations through sc-GISH. Through a combination of molecular and cytological analysis of all the 25 lines containing Th. bessarabicum recombinants and chromosome aberrations we were able to physically map 1150 SNP markers onto seven Th. bessarabicum J chromosomes which were divided into 36 segmental blocks. Comparative analysis of the physical map of Th. bessarabicum and the wheat genome showed that synteny between the two species is highly conserved at the macro-level and confirmed that Th. bessarabicum contains the 4/5 translocation also present in the A genome of wheat. These wheat-Th . bessarabicum recombinant lines and SNP markers provide a useful genetic resource for wheat improvement with the latter having a wider impact as a tool for detection of introgressions from other Thinopyrum species containing the J or a closely-related genome such as Thinopyrum intermedium (JrJrJvsJvsStSt) and Thinopyrum elongatum (EeEe), respectively.
Collapse
Affiliation(s)
- Surbhi Grewal
- Nottingham/BBSRC Wheat Research Centre, Division of Plant and Cop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK.
| | - Caiyun Yang
- Nottingham/BBSRC Wheat Research Centre, Division of Plant and Cop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Stella Hubbart Edwards
- Nottingham/BBSRC Wheat Research Centre, Division of Plant and Cop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Duncan Scholefield
- Nottingham/BBSRC Wheat Research Centre, Division of Plant and Cop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Stephen Ashling
- Nottingham/BBSRC Wheat Research Centre, Division of Plant and Cop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | | | - Ian P King
- Nottingham/BBSRC Wheat Research Centre, Division of Plant and Cop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Julie King
- Nottingham/BBSRC Wheat Research Centre, Division of Plant and Cop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| |
Collapse
|
22
|
Zhu C, Wang Y, Chen C, Wang C, Zhang A, Peng N, Wang Y, Zhang H, Liu X, Ji W. Molecular cytogenetic identification of a wheat - Thinopyrum ponticum substitution line with stripe rust resistance. Genome 2017; 60:860-867. [PMID: 28759728 DOI: 10.1139/gen-2017-0099] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thinopyrum ponticum (Th. ponticum) (2n = 10x = 70) is an important breeding material with excellent resistance and stress tolerance. In this study, we characterized the derivative line CH1113-B13-1-1-2-1 (CH1113-B13) through cytological, morphological, genomic in situ hybridization (GISH), fluorescence in situ hybridization (FISH), expressed sequence tag (EST), and PCR-based landmark unique gene (PLUG) marker analysis. The GISH analysis revealed that CH1113-B13 contained 20 pairs of common wheat chromosomes and one pair of JSt genomic chromosomes. Linkage analysis of Th. ponticum using seven EST and seven PLUG markers indicated that the pair of alien chromosomes belonged to the seventh homeologous group. Nulli-tetrasomic and FISH analysis revealed that wheat 7B chromosomes were absent in CH1113-B13; thus, CH1113-B13 was identified as a 7JSt (7B) substitution line. Finally, adult-stage CH1113-B13 exhibited immunity to wheat stripe rust. This substitution line is therefore a promising germplasm resource for wheat breeding.
Collapse
Affiliation(s)
- Chen Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanzhen Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunhuan Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Changyou Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Aicen Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Nana Peng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yajuan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinlun Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
23
|
Kang HY, Tang L, Li DY, Diao CD, Zhu W, Tang Y, Wang Y, Fan X, Xu LL, Zeng J, Sha LN, Yu XF, Zhang HQ, Zhou YH. Cytogenetic study and stripe rust response of the derivatives from a wheat - Thinopyrum intermedium - Psathyrostachys huashanica trigeneric hybrid. Genome 2016; 60:393-401. [PMID: 28177834 DOI: 10.1139/gen-2016-0135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
To transfer multiple desirable alien genes into common wheat, we previously reported a new trigeneric hybrid synthesized by crossing a wheat - Thinopyrum intermedium partial amphiploid with wheat - Psathyrostachys huashanica amphiploid. Here, the meiotic behavior, chromosome constitution, and stripe rust resistance of F5 derivatives from the wheat - Th. intermedium - P. huashanica trigeneric hybrid were studied. Cytological analysis indicated the F5 progenies had chromosome numbers of 42-50 (average 44.96). The mean meiotic configuration was 1.28 univalents, 21.74 bivalents, 0.04 trivalents, and 0.02 tetravalents per pollen mother cell. In 2n = 42 lines, the average pairing configuration was 0.05 I + 19.91 II (ring) + 1.06 II (rod) + 0.003 IV, suggesting these lines were cytologically stable. Most lines with 2n = 43, 44, 46, 48, or 50, bearing a high frequency of univalents or multivalents, showed abnormal meiotic behavior. Genomic in situ hybridization karyotyping results revealed that 25 lines contained 1-7 Th. intermedium chromosomes, but no P. huashanica chromosomes were found among the 27 self-pollinated progenies. At meiosis, univalents (1-5) possessing Th. intermedium hybridization signals were detected in 19 lines. Bivalents (1-3) expressing fluorescence signals were observed in 12 lines. Importantly, 21 lines harbored wheat - Th. intermedium chromosomal translocations with various alien translocation types. Additionally, two homozygous lines, K13-668-10 and K13-682-12, possessed a pair of wheat - Th. intermedium small fragmental translocations. Compared with the recurrent parent Zhong 3, most lines showed high resistance to the stripe rust (Puccinia striiformis f. sp. tritici) pathogens prevalent in China, including race V26/Gui22. This paper reports a highly efficient technical method for inducing alien translocation between wheat and Th. intermedium by trigeneric hybridization. These lines might be potentially valuable germplasm resources for further wheat improvement.
Collapse
Affiliation(s)
- Hou-Yang Kang
- a Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu 611130, Sichuan, China
| | - Lin Tang
- a Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu 611130, Sichuan, China
| | - Dai-Yan Li
- a Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu 611130, Sichuan, China
| | - Cheng-Dou Diao
- a Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu 611130, Sichuan, China
| | - Wei Zhu
- a Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu 611130, Sichuan, China
| | - Yao Tang
- a Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu 611130, Sichuan, China
| | - Yi Wang
- a Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu 611130, Sichuan, China
| | - Xing Fan
- a Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu 611130, Sichuan, China
| | - Li-Li Xu
- a Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu 611130, Sichuan, China
| | - Jian Zeng
- b College of Resources, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu 611130, Sichuan, China
| | - Li-Na Sha
- a Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu 611130, Sichuan, China
| | - Xiao-Fang Yu
- c College of Landscape Architecture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu 611130, Sichuan, China
| | - Hai-Qin Zhang
- a Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu 611130, Sichuan, China
| | - Yong-Hong Zhou
- a Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu 611130, Sichuan, China
| |
Collapse
|
24
|
Tang S, Qiu L, Xiao Z, Fu S, Tang Z. New Oligonucleotide Probes for ND-FISH Analysis to Identify Barley Chromosomes and to Investigate Polymorphisms of Wheat Chromosomes. Genes (Basel) 2016; 7:genes7120118. [PMID: 27929398 PMCID: PMC5192494 DOI: 10.3390/genes7120118] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 10/21/2016] [Accepted: 11/28/2016] [Indexed: 11/29/2022] Open
Abstract
Oligonucleotide probes that can be used for non-denaturing fluorescence in situ hybridization (ND-FISH) analysis are convenient tools for identifying chromosomes of wheat (Triticum aestivum L.) and its relatives. New oligonucleotide probes, Oligo-HvT01, Oligo-pTa71-1, Oligo-s120.1, Oligo-s120.2, Oligo-s120.3, Oligo-275.1, Oligo-275.2, Oligo-k566 and Oligo-713, were designed based on the repetitive sequences HVT01, pTa71, pTa-s120, pTa-275, pTa-k566 and pTa-713. All these probes can be used for ND-FISH analysis and some of them can be used to detect polymorphisms of wheat chromosomes. Probes Oligo-HvT01, Oligo-pTa71-1, Oligo-s120.3, Oligo-275.1, Oligo-k566 and Oligo-713 can, respectively, replace the roles of their original sequences to identify chromosomes of some barley (Hordeum vulgare ssp. vulgare) and the common wheat variety Chinese Spring. Oligo-s120.1, Oligo-s120.2 and Oligo-275.2 produced different hybridization patterns from the ones generated by their original sequences. In addition, Oligo-s120.1, Oligo-s120.2 and Oligo-s120.3, which were derived from pTa-s120, revealed different signal patterns. Likewise, Oligo-275.1 and Oligo-275.2, which were derived from pTa-275, also displayed different hybridization patterns. These results imply that differently arranged or altered structural statuses of tandem repeats might exist on different chromosome regions. These new oligonucleotide probes provide extra convenience for identifying some wheat and barley chromosomes, and they can display polymorphisms of wheat chromosomes.
Collapse
Affiliation(s)
- Shuyao Tang
- Province Key Laboratory of Plant Breeding and Genetics, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China.
- Institute of Ecological Agriculture, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China.
| | - Ling Qiu
- Province Key Laboratory of Plant Breeding and Genetics, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China.
| | - Zhiqiang Xiao
- Province Key Laboratory of Plant Breeding and Genetics, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China.
| | - Shulan Fu
- Province Key Laboratory of Plant Breeding and Genetics, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China.
| | - Zongxiang Tang
- Province Key Laboratory of Plant Breeding and Genetics, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China.
- Institute of Ecological Agriculture, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China.
| |
Collapse
|
25
|
Ali N, Heslop-Harrison JS(P, Ahmad H, Graybosch RA, Hein GL, Schwarzacher T. Introgression of chromosome segments from multiple alien species in wheat breeding lines with wheat streak mosaic virus resistance. Heredity (Edinb) 2016; 117:114-23. [PMID: 27245423 PMCID: PMC4949730 DOI: 10.1038/hdy.2016.36] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/22/2016] [Accepted: 02/11/2016] [Indexed: 01/08/2023] Open
Abstract
Pyramiding of alien-derived Wheat streak mosaic virus (WSMV) resistance and resistance enhancing genes in wheat is a cost-effective and environmentally safe strategy for disease control. PCR-based markers and cytogenetic analysis with genomic in situ hybridisation were applied to identify alien chromatin in four genetically diverse populations of wheat (Triticum aestivum) lines incorporating chromosome segments from Thinopyrum intermedium and Secale cereale (rye). Out of 20 experimental lines, 10 carried Th. intermedium chromatin as T4DL*4Ai#2S translocations, while, unexpectedly, 7 lines were positive for alien chromatin (Th. intermedium or rye) on chromosome 1B. The newly described rye 1RS chromatin, transmitted from early in the pedigree, was associated with enhanced WSMV resistance. Under field conditions, the 1RS chromatin alone showed some resistance, while together with the Th. intermedium 4Ai#2S offered superior resistance to that demonstrated by the known resistant cultivar Mace. Most alien wheat lines carry whole chromosome arms, and it is notable that these lines showed intra-arm recombination within the 1BS arm. The translocation breakpoints between 1BS and alien chromatin fell in three categories: (i) at or near to the centromere, (ii) intercalary between markers UL-Thin5 and Xgwm1130 and (iii) towards the telomere between Xgwm0911 and Xbarc194. Labelled genomic Th. intermedium DNA hybridised to the rye 1RS chromatin under high stringency conditions, indicating the presence of shared tandem repeats among the cereals. The novel small alien fragments may explain the difficulty in developing well-adapted lines carrying Wsm1 despite improved tolerance to the virus. The results will facilitate directed chromosome engineering producing agronomically desirable WSMV-resistant germplasm.
Collapse
Affiliation(s)
- N Ali
- Department of Genetics, University of Leicester, Leicester, UK
- Hazara University, Mansehra, Pakistan
| | | | - H Ahmad
- Hazara University, Mansehra, Pakistan
| | - R A Graybosch
- USDA-ARS & Department of Agronomy & Horticulture, University of Nebraska, Lincoln, NE, USA
| | - G L Hein
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - T Schwarzacher
- Department of Genetics, University of Leicester, Leicester, UK
| |
Collapse
|
26
|
Li G, Gao D, Zhang H, Li J, Wang H, La S, Ma J, Yang Z. Molecular cytogenetic characterization of Dasypyrum breviaristatum chromosomes in wheat background revealing the genomic divergence between Dasypyrum species. Mol Cytogenet 2016; 9:6. [PMID: 26813790 PMCID: PMC4727328 DOI: 10.1186/s13039-016-0217-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 01/19/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The uncultivated species Dasypyrum breviaristatum carries novel diseases resistance and agronomically important genes of potential use for wheat improvement. The development of new wheat-D. breviaristatum derivatives lines with disease resistance provides an opportunity for the identification and localization of resistance genes on specific Dasypyrum chromosomes. The comparison of wheat-D. breviaristatum derivatives to the wheat-D. villosum derivatives enables to reveal the genomic divergence between D. breviaristatum and D. villosum. RESULTS The mitotic metaphase of the wheat- D. breviaristatum partial amphiploid TDH-2 and durum wheat -D. villosum amphiploid TDV-1 were studied using multicolor fluorescent in situ hybridization (FISH). We found that the distribution of FISH signals of telomeric, subtelomeric and centromeric regions on the D. breviaristatum chromosomes was different from those of D. villosum chromosomes by the probes of Oligo-pSc119.2, Oligo-pTa535, Oligo-(GAA)7 and Oligo-pHv62-1. A wheat line D2139, selected from a cross between wheat lines MY11 and TDH-2, was characterized by FISH and PCR-based molecular markers. FISH analysis demonstrated that D2139 contained 44 chromosomes including a pair of D. breviaristatum chromosomes which had originated from the partial amphiploid TDH-2. Molecular markers confirmed that the introduced D. breviaristatum chromosomes belonged to homoeologous group 7, indicating that D2139 was a 7V(b) disomic addition line. The D2139 displayed high resistance to wheat stripe rust races at adult stage plant, which may be inherited from, D. breviaristatum chromosome 7V(b). CONCLUSION The study present here revealed that the large divergence between D. breviaristatum and D. villosum with respected to the organization of different repetitive sequences. The identified wheat- D. breviaristatum chromosome addition line D2139 will be used to produce agronomically desirable germplasm for wheat breeding.
Collapse
Affiliation(s)
- Guangrong Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054 China
| | - Dan Gao
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054 China
| | - Hongjun Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054 China
| | - Jianbo Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054 China
| | - Hongjin Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054 China
| | - Shixiao La
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054 China
| | - Jiwei Ma
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054 China
| | - Zujun Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054 China
| |
Collapse
|