1
|
Shehzada S, Noto T, Saksouk J, Mochizuki K. A SUMO E3 ligase promotes long non-coding RNA transcription to regulate small RNA-directed DNA elimination. eLife 2024; 13:e95337. [PMID: 38197489 PMCID: PMC10830130 DOI: 10.7554/elife.95337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/03/2024] [Indexed: 01/11/2024] Open
Abstract
Small RNAs target their complementary chromatin regions for gene silencing through nascent long non-coding RNAs (lncRNAs). In the ciliated protozoan Tetrahymena, the interaction between Piwi-associated small RNAs (scnRNAs) and the nascent lncRNA transcripts from the somatic genome has been proposed to induce target-directed small RNA degradation (TDSD), and scnRNAs not targeted for TDSD later target the germline-limited sequences for programmed DNA elimination. In this study, we show that the SUMO E3 ligase Ema2 is required for the accumulation of lncRNAs from the somatic genome and thus for TDSD and completing DNA elimination to make viable sexual progeny. Ema2 interacts with the SUMO E2 conjugating enzyme Ubc9 and enhances SUMOylation of the transcription regulator Spt6. We further show that Ema2 promotes the association of Spt6 and RNA polymerase II with chromatin. These results suggest that Ema2-directed SUMOylation actively promotes lncRNA transcription, which is a prerequisite for communication between the genome and small RNAs.
Collapse
Affiliation(s)
- Salman Shehzada
- Institute of Human Genetics (IGH), CNRS, University of MontpellierMontpellierFrance
| | - Tomoko Noto
- Institute of Human Genetics (IGH), CNRS, University of MontpellierMontpellierFrance
| | - Julie Saksouk
- Institute of Human Genetics (IGH), CNRS, University of MontpellierMontpellierFrance
| | - Kazufumi Mochizuki
- Institute of Human Genetics (IGH), CNRS, University of MontpellierMontpellierFrance
| |
Collapse
|
2
|
Hao H, Ren C, Lian Y, Zhao M, Bo T, Xu J, Wang W. Independent and Complementary Functions of Caf1b and Hir1 for Chromatin Assembly in Tetrahymena thermophila. Cells 2023; 12:2828. [PMID: 38132148 PMCID: PMC10741905 DOI: 10.3390/cells12242828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Histones and DNA associate to form the nucleosomes of eukaryotic chromatin. Chromatin assembly factor 1 (CAF-1) complex and histone regulatory protein A (HIRA) complex mediate replication-couple (RC) and replication-independent (RI) nucleosome assembly, respectively. CHAF1B and HIRA share a similar domain but play different roles in nucleosome assembly by binding to the different interactors. At present, there is limited understanding for the similarities and differences in their respective functions. Tetrahymena thermophila contains transcriptionally active polyploid macronuclei (MAC) and transcriptionally silent diploid micronuclei (MIC). Here, the distribution patterns of Caf1b and Hir1 exhibited both similarities and distinctions. Both proteins localized to the MAC and MIC during growth, and to the MIC during conjugation. However, Hir1 exhibited additional signaling on parental MAC and new MAC during sexual reproduction and displayed a punctate signal on developing anlagen. Caf1b and Hir1 only co-localized in the MIC with Pcna1 during conjugation. Knockdown of CAF1B impeded cellular growth and arrested sexual reproductive development. Loss of HIR1 led to MIC chromosome defects and aborted sexual development. Co-interference of CAF1B and HIR1 led to a more severe phenotype. Moreover, CAF1B knockdown led to the up-regulation of HIR1 expression, while knockdown of HIR1 also led to an increase in CAF1B expression. Furthermore, Caf1b and Hir1 interacted with different interactors. These results showed that CAF-1 and Hir1 have independent and complementary functions for chromatin assembly in T. thermophila.
Collapse
Affiliation(s)
- Huijuan Hao
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (H.H.); (C.R.); (Y.L.); (M.Z.); (T.B.)
| | - Chenhui Ren
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (H.H.); (C.R.); (Y.L.); (M.Z.); (T.B.)
| | - Yinjie Lian
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (H.H.); (C.R.); (Y.L.); (M.Z.); (T.B.)
| | - Min Zhao
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (H.H.); (C.R.); (Y.L.); (M.Z.); (T.B.)
| | - Tao Bo
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (H.H.); (C.R.); (Y.L.); (M.Z.); (T.B.)
| | - Jing Xu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (H.H.); (C.R.); (Y.L.); (M.Z.); (T.B.)
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Wei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (H.H.); (C.R.); (Y.L.); (M.Z.); (T.B.)
- Shanxi Key Laboratory of Biotechnology, Taiyuan 030006, China
| |
Collapse
|
3
|
Zhang L, Cervantes MD, Pan S, Lindsley J, Dabney A, Kapler GM. Transcriptome analysis of the binucleate ciliate Tetrahymena thermophila with asynchronous nuclear cell cycles. Mol Biol Cell 2023; 34:rs1. [PMID: 36475712 PMCID: PMC9930529 DOI: 10.1091/mbc.e22-08-0326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tetrahymena thermophila harbors two functionally and physically distinct nuclei within a shared cytoplasm. During vegetative growth, the "cell cycles" of the diploid micronucleus and polyploid macronucleus are offset. Micronuclear S phase initiates just before cytokinesis and is completed in daughter cells before onset of macronuclear DNA replication. Mitotic micronuclear division occurs mid-cell cycle, while macronuclear amitosis is coupled to cell division. Here we report the first RNA-seq cell cycle analysis of a binucleated ciliated protozoan. RNA was isolated across 1.5 vegetative cell cycles, starting with a macronuclear G1 population synchronized by centrifugal elutriation. Using MetaCycle, 3244 of the 26,000+ predicted genes were shown to be cell cycle regulated. Proteins present in both nuclei exhibit a single mRNA peak that always precedes their macronuclear function. Nucleus-limited genes, including nucleoporins and importins, are expressed before their respective nucleus-specific role. Cyclin D and A/B gene family members exhibit different expression patterns that suggest nucleus-restricted roles. Periodically expressed genes cluster into seven cyclic patterns. Four clusters have known PANTHER gene ontology terms associated with G1/S and G2/M phase. We propose that these clusters encode known and novel factors that coordinate micro- and macronuclear-specific events such as mitosis, amitosis, DNA replication, and cell division.
Collapse
Affiliation(s)
- L. Zhang
- Department of Cell Biology and Genetics, Texas A&M University Health Science Center, College Station, TX 77840,Department of Statistics, Texas A&M University, College Station, TX 77843
| | - M. D. Cervantes
- Department of Cell Biology and Genetics, Texas A&M University Health Science Center, College Station, TX 77840
| | - S. Pan
- Department of Cell Biology and Genetics, Texas A&M University Health Science Center, College Station, TX 77840,Department of Statistics, Texas A&M University, College Station, TX 77843
| | - J. Lindsley
- Department of Cell Biology and Genetics, Texas A&M University Health Science Center, College Station, TX 77840
| | - A. Dabney
- Department of Statistics, Texas A&M University, College Station, TX 77843,*Address correspondence to: Geoffrey Kapler (); A. Dabney ()
| | - G. M. Kapler
- Department of Cell Biology and Genetics, Texas A&M University Health Science Center, College Station, TX 77840,*Address correspondence to: Geoffrey Kapler (); A. Dabney ()
| |
Collapse
|
4
|
Tian M, Cai X, Liu Y, Liucong M, Howard-Till R. A practical reference for studying meiosis in the model ciliate Tetrahymena thermophila. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:595-608. [PMID: 37078080 PMCID: PMC10077211 DOI: 10.1007/s42995-022-00149-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 09/28/2022] [Indexed: 05/03/2023]
Abstract
Meiosis is a critical cell division program that produces haploid gametes for sexual reproduction. Abnormalities in meiosis are often causes of infertility and birth defects (e.g., Down syndrome). Most organisms use a highly specialized zipper-like protein complex, the synaptonemal complex (SC), to guide and stabilize pairing of homologous chromosomes in meiosis. Although the SC is critical for meiosis in many eukaryotes, there are organisms that perform meiosis without a functional SC. However, such SC-less meiosis is poorly characterized. To understand the features of SC-less meiosis and its adaptive significance, the ciliated protozoan Tetrahymena was selected as a model. Meiosis research in Tetrahymena has revealed intriguing aspects of the regulatory programs utilized in its SC-less meiosis, yet additional efforts are needed for obtaining an in-depth comprehension of mechanisms that are associated with the absence of SC. Here, aiming at promoting a wider application of Tetrahymena for meiosis research, we introduce basic concepts and core techniques for studying meiosis in Tetrahymena and then suggest future directions for expanding the current Tetrahymena meiosis research toolbox. These methodologies could be adopted for dissecting meiosis in poorly characterized ciliates that might reveal novel features. Such data will hopefully provide insights into the function of the SC and the evolution of meiosis from a unique perspective. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-022-00149-8.
Collapse
Affiliation(s)
- Miao Tian
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
- Institute of Human Genetics, CNRS, University of Montpellier, 34090 Montpellier, France
| | - Xia Cai
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Yujie Liu
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Mingmei Liucong
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Rachel Howard-Till
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA USA
| |
Collapse
|
5
|
Lian Y, Hao H, Xu J, Bo T, Liang A, Wang W. The histone chaperone Nrp1 is required for chromatin stability and nuclear division in Tetrahymena thermophila. Epigenetics Chromatin 2021; 14:34. [PMID: 34301312 PMCID: PMC8299592 DOI: 10.1186/s13072-021-00409-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/06/2021] [Indexed: 12/23/2022] Open
Abstract
Histone chaperones facilitate DNA replication and repair by promoting chromatin assembly, disassembly and histone exchange. Following histones synthesis and nucleosome assembly, the histones undergo posttranslational modification by different enzymes and are deposited onto chromatins by various histone chaperones. In Tetrahymena thermophila, histones from macronucleus (MAC) and micronucleus (MIC) have been comprehensively investigated, but the function of histone chaperones remains unclear. Histone chaperone Nrp1 in Tetrahymena contains four conserved tetratricopepeptide repeat (TPR) domains and one C-terminal nuclear localization signal. TPR2 is typically interrupted by a large acidic motif. Immunofluorescence staining showed that Nrp1 is located in the MAC and MICs, but disappeared in the apoptotic parental MAC and the degraded MICs during the conjugation stage. Nrp1 was also colocalized with α-tubulin around the spindle structure. NRP1 knockdown inhibited cellular proliferation and led to the loss of chromosome, abnormal macronuclear amitosis, and disorganized micronuclear mitosis during the vegetative growth stage. During sexual developmental stage, the gametic nuclei failed to be selected and abnormally degraded in NRP1 knockdown mutants. Affinity purification combined with mass spectrometry analysis indicated that Nrp1 is co-purified with core histones, heat shock proteins, histone chaperones, and DNA damage repair proteins. The physical direct interaction of Nrp1 and Asf1 was also confirmed by pull-down analysis in vitro. The results show that histone chaperone Nrp1 is involved in micronuclear mitosis and macronuclear amitosis in the vegetative growth stage and maintains gametic nuclei formation during the sexual developmental stage. Nrp1 is required for chromatin stability and nuclear division in Tetrahymena thermophila.
Collapse
Affiliation(s)
- Yinjie Lian
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, 92 Wucheng Rd., Taiyuan, 030006, China
| | - Huijuan Hao
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, 92 Wucheng Rd., Taiyuan, 030006, China
| | - Jing Xu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, 92 Wucheng Rd., Taiyuan, 030006, China.,School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Tao Bo
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, 92 Wucheng Rd., Taiyuan, 030006, China
| | - Aihua Liang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, 92 Wucheng Rd., Taiyuan, 030006, China
| | - Wei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, 92 Wucheng Rd., Taiyuan, 030006, China.
| |
Collapse
|
6
|
Evolution and diversification of the nuclear pore complex. Biochem Soc Trans 2021; 49:1601-1619. [PMID: 34282823 PMCID: PMC8421043 DOI: 10.1042/bst20200570] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/21/2022]
Abstract
The nuclear pore complex (NPC) is responsible for transport between the cytoplasm and nucleoplasm and one of the more intricate structures of eukaryotic cells. Typically composed of over 300 polypeptides, the NPC shares evolutionary origins with endo-membrane and intraflagellar transport system complexes. The modern NPC was fully established by the time of the last eukaryotic common ancestor and, hence, prior to eukaryote diversification. Despite the complexity, the NPC structure is surprisingly flexible with considerable variation between lineages. Here, we review diversification of the NPC in major taxa in view of recent advances in genomic and structural characterisation of plant, protist and nucleomorph NPCs and discuss the implications for NPC evolution. Furthermore, we highlight these changes in the context of mRNA export and consider how this process may have influenced NPC diversity. We reveal the NPC as a platform for continual evolution and adaptation.
Collapse
|
7
|
Howard-Till R, Tian M, Loidl J. A specialized condensin complex participates in somatic nuclear maturation in Tetrahymena thermophila. Mol Biol Cell 2019; 30:1326-1338. [PMID: 30893010 PMCID: PMC6724606 DOI: 10.1091/mbc.e18-08-0487] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Condensins are highly conserved proteins that are important for chromosome maintenance in nearly all forms of life. Although many organisms employ two forms of the condensin complex, the condensin genes in Tetrahymena have expanded even further. Here we report a form of condensin that is specifically active during sexual reproduction. This complex, condensin D, is composed of the core condensin proteins, Smc2 and Smc4, and two unique subunits, the kleisin Cph5 and Cpd2. Cpd2 is also found in somatic nuclei in vegetative cells, but is dispensable for growth and nuclear division. Immunoprecipitation experiments show that condensin D interacts with a putative member of a chromatin-remodeling complex during development. Condensin D is required for sexual reproduction and for endoreplication and genome reduction of the progeny’s somatic nuclei. Altogether, Tetrahymena possesses at least four forms of condensin to fulfill the needs of maintaining chromosomes in two different nuclei containing the somatic and germline genomes.
Collapse
Affiliation(s)
- Rachel Howard-Till
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Miao Tian
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Josef Loidl
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| |
Collapse
|