1
|
Ambagaspitiya SS, Appuhamillage GA, Wimalawansa SJ. Impact of Vitamin D on Skin Aging, and Age-Related Dermatological Conditions. FRONT BIOSCI-LANDMRK 2025; 30:25463. [PMID: 39862075 DOI: 10.31083/fbl25463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/01/2024] [Accepted: 09/10/2024] [Indexed: 01/27/2025]
Abstract
Human skin is a physical and biochemical barrier that protects the internal body from the external environment. Throughout a person's life, the skin undergoes both intrinsic and extrinsic aging, leading to microscopic and macroscopic changes in its morphology. In addition, the repair processes slow with aging, making the older population more susceptible to skin diseases. Intrinsic factors associated with advanced age gradually degrade the dermal collagen matrix, resulting in fine wrinkles and reduced elasticity; this is accelerated in post-menopausal women due to estrogen deficiency. In contrast, extrinsic factors associated with advanced age, primarily caused by exposure to ultraviolet (UV) radiation, lead to coarse wrinkles, solar elastosis, hyperkeratosis, irregular pigmentation, and skin cancers. UVB radiation, while contributing to skin photo-aging, also induces the cutaneous synthesis of vitamin D. Vitamin D, in turn, protects the skin from oxidative stress, inflammation, and DNA damage, thereby delaying both chronological and photo-aging. Moreover, research has demonstrated an association between lower vitamin D levels and a higher prevalence of certain cutaneous diseases. This review explores and summarizes the critical role of vitamin D in skin aging and age-related skin diseases. The data presented highlight the importance of maintaining vitamin D adequacy throughout life.
Collapse
Affiliation(s)
- Sankalya S Ambagaspitiya
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, 10206 Homagama, Sri Lanka
| | - Gayan A Appuhamillage
- Department of Materials and Mechanical Technology, Faculty of Technology, University of Sri Jayewardenepura, 10206 Homagama, Sri Lanka
| | | |
Collapse
|
2
|
Molecular age estimation based on posttranslational protein modifications in bone: why the type of bone matters. Int J Legal Med 2023; 137:437-443. [PMID: 36648544 PMCID: PMC9902325 DOI: 10.1007/s00414-023-02948-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023]
Abstract
Age-at-death estimation is of great relevance for the identification of unknown deceased individuals. In skeletonised corpses, teeth and bones are theoretically available for age estimation, but in many cases, only single bones or even only bone fragments are available for examination. In these cases, conventional morphological methods may not be applicable, and the application of molecular methods may be considered. Protein-based molecular methods based on the D-aspartic acid (D-Asp) or pentosidine (Pen) content have already been successfully applied to bone samples. However, the impact of the analysed type of bone has not yet been systematically investigated, and it is still unclear whether data from samples of one skeletal region (e.g. skull) can also be used for age estimation for samples of other regions (e.g. femur). To address this question, D-Asp and Pen were analysed in bone samples from three skeletal regions (skull, clavicle, and rib), each from the same individual. Differences between the bone types were tested by t-test, and correlation coefficients (ρ) were calculated according to Spearman. In all types of bone, an age-dependent accumulation of D-Asp and Pen was observed. However, both parameters (D-Asp and Pen) exhibited significant differences between bone samples from different anatomical regions. These differences can be explained by differences in structure and metabolism in the examined bone types and have to be addressed in age estimation based on D-Asp and Pen. In future studies, bone type-specific training and test data have to be collected, and bone type-specific models have to be established.
Collapse
|
3
|
Cartilage Tissue in Forensic Science—State of the Art and Future Research Directions. Processes (Basel) 2022. [DOI: 10.3390/pr10112456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cartilage tissue performs many functions in the human body. The diseases and injuries affecting it are prevalent due to its slow regeneration rate. However, cartilage tissue is exceptionally important for its auspicious use in forensic medicine due to its slow postmortem degradation rate. The presented review summarizes the latest research on cartilage tissues and their current and potential applications in forensic science. It also describes the most important studies on using cartilage and its microscopic and macroscopic analyses to estimate the deceased age and determine postmortem interval (PMI) values and the crime weapon. Additionally, the review describes attempts to isolate DNA from cartilage tissue for individual identification. The review also mentions recent, less abundant studies on the cartilage in forensic toxicology and genetics. It points out further directions and prospects for research development on cartilage tissue and its promising use in forensic medicine
Collapse
|
4
|
Kondou H, Bandou R, Ichioka H, Idota N, Matsunari R, Kawamoto M, Ikegaya H. Estimating the age at death for forensic cases using quantitative computed tomography. Forensic Sci Int 2022; 337:111367. [PMID: 35738134 DOI: 10.1016/j.forsciint.2022.111367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/06/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022]
Abstract
Estimation of the age at death is an important task for forensic scientists. Although the correlation between age and bone mineral density is already known, including for cadavers, to our knowledge, there are no published studies on age estimation with quantitative computed tomography. Quantitative computed tomography can be used to measure bone mineral density based on the mean computed tomography value of the cancellous bone. As this value cannot be calculated in putrefied cases, we modified quantitative computed tomography to calculate the bone mineral density from regions of the bone with mean computed tomography values of 50-350 Hounsfield units. We aimed to examine whether this method could be used for age estimation. We examined 171 male and 106 female cadavers, some of which were putrefied. We performed univariate linear regression analysis for age at death and bone mineral density. The resultant intercept, slope, and root mean square error were 91.3, - 0.20 (p < 0.0001), and 11.4, respectively, for male cadavers, and 96.1, - 0.23 (p < 0.0001), and 11.0, respectively, for female cadavers. We evaluated this regression formula by using 10-fold cross-validation, resulting in a coefficient of determination of 0.33 for male cadavers and 0.42 for female cadavers. The modified quantitative computed tomography method may be of assistance in estimating age at death, even in putrefied cases.
Collapse
Affiliation(s)
- Hiroki Kondou
- Department of Forensic Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi-dori Hirokoji-agaru, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Risa Bandou
- Department of Forensic Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi-dori Hirokoji-agaru, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hiroaki Ichioka
- Department of Forensic Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi-dori Hirokoji-agaru, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Nozomi Idota
- Department of Forensic Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi-dori Hirokoji-agaru, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Ryota Matsunari
- Department of Forensic Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi-dori Hirokoji-agaru, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Masataka Kawamoto
- Department of Forensic Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi-dori Hirokoji-agaru, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hiroshi Ikegaya
- Department of Forensic Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi-dori Hirokoji-agaru, Kamigyo-ku, Kyoto, 602-8566, Japan.
| |
Collapse
|
5
|
Nutzung von Altersinformationen aus posttranslationalen Proteinmodifikationen und DNA-Methylierung zur postmortalen Lebensaltersschätzung. Rechtsmedizin (Berl) 2021. [DOI: 10.1007/s00194-021-00489-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
ZusammenfassungMit der Identifikation und Beschreibung „molekularer Uhren“ (posttranslationale Proteinmodifikationen, DNA-Methylierung) eröffnen sich neue Möglichkeiten zur Entwicklung von Verfahren zur postmortalen Lebensaltersschätzung. Bislang werden diese Ansätze aber nur unabhängig voneinander eingesetzt. Ihre Verknüpfung verspricht eine bessere Erfassung hochkomplexer Alterungsprozesse und damit die Möglichkeit zur Entwicklung optimierter Verfahren zur Altersschätzung für verschiedenste Szenarien der forensischen Praxis.In Vorbereitung umfangreicher Untersuchungen zur Überprüfung dieser Hypothese wurden verschiedene molekulare Uhren (Akkumulation von D‑Asparaginsäure, Akkumulation von Pentosidin und DNA-Methylierungsmarker [RPA2, ZYG11A, F5, HOXC4, NKIRAS2, TRIM59, ELOVL2, DDO, KLF14 und PDE4C]) in 4 fäulnisresistenten Geweben (Knochen, Sehne, Bandscheibe, Epiglottis) von 15 Individuen untersucht.In allen untersuchten Geweben fand sich eine starke Korrelation beider Proteinmarker sowie jeweils mehrerer DNA-Methylierungsmarker mit dem Lebensalter. Dabei zeigten die untersuchten Parameter gewebsspezifische Veränderungen mit dem Alter.Die Ergebnisse der Pilotstudie belegen das Potenzial der Verknüpfung molekularer Verfahren für die postmortale Altersschätzung. Weitere Untersuchungen werden zeigen, wie genau postmortale Altersschätzungen sein können, wenn Altersinformationen aus posttranslationalen Proteinmodifikationen und DNA-Methylierung aus verschiedenen Geweben in multivariaten Modellen verknüpft werden.
Collapse
|
6
|
Siahaan T, Reckert A, Becker J, Eickhoff SB, Koop B, Gündüz T, Böhme P, Mayer F, Küppers L, Wagner W, Ritz-Timme S. Molecular and morphological findings in a sample of oral surgery patients: What can we learn for multivariate concepts for age estimation? J Forensic Sci 2021; 66:1524-1532. [PMID: 33942892 DOI: 10.1111/1556-4029.14704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/16/2021] [Accepted: 03/01/2021] [Indexed: 01/15/2023]
Abstract
It has already been proposed that a combined use of different molecular and morphological markers of aging in multivariate models may result in a greater accuracy of age estimation. However, such an approach can be complex and expensive, and not every combination may be useful. The significance and usefulness of combined analyses of D-aspartic acid in dentine, pentosidine in dentine, DNA methylation in buccal swabs at five genomic regions (PDE4C, RPA2, ELOVL2, DDO, and EDARADD), and third molar mineralization were tested by investigating a sample of 90 oral surgery patients. Machine learning models for age estimation were trained and evaluated, and the contribution of each parameter to multivariate models was tested by assessment of the predictor importance. For models based on D-aspartic acid, pentosidine, and the combination of both, mean absolute errors (MAEs) of 2.93, 3.41, and 2.68 years were calculated, respectively. The additional inclusion of the five DNAm markers did not improve the results. The sole DNAm-based model revealed a MAE of 4.14 years. In individuals under 28 years of age, the combination of the DNAm markers with the third molar mineralization stages reduced the MAE from 3.85 to 2.81 years. Our findings confirm that the combination of parameters in multivariate models may be very useful for age estimation. However, the inclusion of many parameters does not necessarily lead to better results. It is a task for future research to identify the best selection of parameters for the different requirements in forensic practice.
Collapse
Affiliation(s)
- Tatjana Siahaan
- Institute of Legal Medicine, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Alexandra Reckert
- Institute of Legal Medicine, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Julia Becker
- Institute of Legal Medicine, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Simon B Eickhoff
- Institute for Systems Neuroscience, University Hospital Duesseldorf, Duesseldorf, Germany.,Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Juelich, Juelich, Germany
| | - Barbara Koop
- Institute of Legal Medicine, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Tanju Gündüz
- Institute of Legal Medicine, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Petra Böhme
- Institute of Legal Medicine, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Felix Mayer
- Institute of Legal Medicine, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Lisa Küppers
- Institute of Legal Medicine, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Wolfgang Wagner
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Stefanie Ritz-Timme
- Institute of Legal Medicine, University Hospital Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
7
|
|
8
|
Fujii N, Takata T, Kim I, Matsubara T. Simultaneous and Rapid Detection of Multiple Epimers and Isomers of Aspartyl Residues in Lens Proteins Using an LC-MS-MRM Method. ACS OMEGA 2020; 5:27626-27632. [PMID: 33134726 PMCID: PMC7594319 DOI: 10.1021/acsomega.0c04197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/02/2020] [Indexed: 05/03/2023]
Abstract
Traditionally, studies of post translational modifications (PTMs) by mass analysis have been limited to modifications such as deamidation and oxidation that have a mass shift. Although Asp isomerization is an important PTM, the selective detection of Asp isomers by mass spectrometry was originally thought to be impossible due to the identical mass of the isomers. The recent development of an LC-MS-based method has facilitated rapid and accurate quantitative analysis of Asp isomers in long-lived proteins; however, because the quantification is based on the extracted ion chromatogram acquired by an MS1 scan, this methodology is not always efficient for detecting extremely low-abundance peptides in complex biological samples. In this paper, we evaluated Asp isomer-containing peptides of αA-crystallin present in tryptic digests of human lens samples with different degrees of protein aggregation and different ages using LC coupled with multiple reaction monitoring (MRM). In a single analysis, the LC-MRM method enabled three tryptic peptides containing isomers of Asp58, Asp91/92, and Asp151 to be detected simultaneously. The extent of isomerization and epimerization of these specific Asp sites in αA-crystallin increased with the progress of α-crystallin aggregation. For the analysis of samples known to isomerize at specific Asp residues, MRM gives a more rapid, less laborious, and high-quality separation of Asp isomer-containing peptides relative to the previous MS1-based quantitative method.
Collapse
Affiliation(s)
- Noriko Fujii
- Institute
for Integrated Radiation and Nuclear Science, Kyoto University, 2
Asashironishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
- . Tel.: +81-72-451-2496
| | - Takumi Takata
- Institute
for Integrated Radiation and Nuclear Science, Kyoto University, 2
Asashironishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Ingu Kim
- Institute
for Integrated Radiation and Nuclear Science, Kyoto University, 2
Asashironishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Toshiya Matsubara
- Shimadzu
Corporation, 1 Nisinokyo Kuwabara, Nakagyo-ku, Kyoto 604-8511, Japan
| |
Collapse
|
9
|
Nakayoshi T, Kato K, Kurimoto E, Oda A. Influence of the conformations of αA-crystallin peptides on the isomerization rates of aspartic acid residues. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140480. [PMID: 32599296 DOI: 10.1016/j.bbapap.2020.140480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/08/2020] [Accepted: 06/23/2020] [Indexed: 10/24/2022]
Abstract
The isomerization rate of aspartic acid (Asp) residue is known to be affected by the three-dimensional structures of peptides and proteins. Although the isomerized Asp residues were experimentally observed, structural features which affect the isomerization cannot be elucidated sufficiently because of protein denaturation and aggregation. In this study, molecular dynamics (MD) simulations were conducted on three αA-crystallin peptides (T6, T10, and T18), each containing a single Asp residue with different isomerization rate (T18 > T6 > T10) to clarify the structural factors of Asp isomerization tendency. For MD trajectories, distances between side-chain carboxyl carbon of Asp and main-chain amide nitrogen of (n + 1) residue (Cγ-N distances), root mean square fluctuations (RMSFs), and polar surface areas for main-chain amide nitrogen of (n + 1) residues (PSAN) were calculated, because these structural features are considered to relate to the formations of cyclic imide intermediates. RMSFs and PSAN are indexes of peptide backbone flexibilities and solvent exposure of the amide nitrogen, respectively. The average Cγ-N distances of T10 was longer than those of the other two peptides. In addition, the peptide containing Asp residue with a higher isomerization rate showed higher flexibility of the peptide backbone around the Asp residue. PSAN for amide nitrogen in T18 were much larger than those of other two peptides. The computational results suggest that Asp-residue isomerization rates are affected by these factors.
Collapse
Affiliation(s)
- Tomoki Nakayoshi
- Graduate School of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi 468-8503, Japan; Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.
| | - Koichi Kato
- Graduate School of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi 468-8503, Japan; Department of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya, Aichi 463-8521, Japan.
| | - Eiji Kurimoto
- Graduate School of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi 468-8503, Japan.
| | - Akifumi Oda
- Graduate School of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi 468-8503, Japan; Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
10
|
Nakayoshi T, Kato K, Fukuyoshi S, Takahashi H, Takahashi O, Kurimoto E, Oda A. Computational studies on nonenzymatic succinimide-formation mechanisms of the aspartic acid residues catalyzed by two water molecules. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140459. [PMID: 32474105 DOI: 10.1016/j.bbapap.2020.140459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/10/2020] [Accepted: 05/26/2020] [Indexed: 01/31/2023]
Abstract
In the biological proteins, aspartic acid (Asp) residues are prone to nonenzymatic isomerization via a succinimide (Suc) intermediate. Asp-residue isomerization causes the aggregation and the insolubilization of proteins, and is considered to be involved in various age-related diseases. Although Suc intermediate was considered to be formed by nucleophilic attack of the main-chain amide nitrogen of N-terminal side adjacent residue to the side-chain carboxyl carbon of Asp residue, previous studies have shown that the nucleophilic attack is more likely to proceed via iminol tautomer when the water molecules act as catalysts. However, the full pathway to Suc-intermediate formation has not been investigated, and the experimental analyses for the Asp-residue isomerization mechanism at atomic and molecular levels, such as the analysis of the transition state geometry, are difficult. In the present study, we computationally explored the full pathways for Suc-intermediate formation from Asp residues. The calculations were performed two types of reactant complexes, and all energy minima and TS geometries were optimized using B3LYP density functional methods. As a result, the SI-intermediate formation was divided into three processes, i.e., iminolization, cyclization, and dehydration processes, and the activation energies were calculated to be 26.1 or 28.4 kcal mol-1. These values reproduce the experimental data. The computational results show that abundant water molecules in living organisms are effective catalysts for the Asp-residue isomerization.
Collapse
Affiliation(s)
- Tomoki Nakayoshi
- Graduate School of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi 468-8503, Japan; Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.
| | - Koichi Kato
- Graduate School of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi 468-8503, Japan; Department of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya, Aichi 463-8521, Japan.
| | - Shuichi Fukuyoshi
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.
| | - Hiro Takahashi
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.
| | - Ohgi Takahashi
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan.
| | - Eiji Kurimoto
- Graduate School of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi 468-8503, Japan.
| | - Akifumi Oda
- Graduate School of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi 468-8503, Japan; Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
11
|
Truscott RJW, Friedrich MG. Molecular Processes Implicated in Human Age-Related Nuclear Cataract. Invest Ophthalmol Vis Sci 2020; 60:5007-5021. [PMID: 31791064 PMCID: PMC7043214 DOI: 10.1167/iovs.19-27535] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human age-related nuclear cataract is commonly characterized by four biochemical features that involve modifications to the structural proteins that constitute the bulk of the lens: coloration, oxidation, insolubility, and covalent cross-linking. Each of these is progressive and increases as the cataract worsens. Significant progress has been made in understanding the origin of the factors that underpin the loss of lens transparency. Of these four hallmarks of cataract, it is protein-protein cross-linking that has been the most intransigent, and it is only recently, with the advent of proteomic methodology, that mechanisms are being elucidated. A diverse range of cross-linking processes involving several amino acids have been uncovered. Although other hypotheses for the etiology of cataract have been advanced, it is likely that spontaneous decomposition of the structural proteins of the lens, which do not turn over, is responsible for the age-related changes to the properties of the lens and, ultimately, for cataract. Cataract may represent the first and best characterized of a number of human age-related diseases where spontaneous protein modification leads to ongoing deterioration and, ultimately, a loss of tissue function.
Collapse
Affiliation(s)
- Roger J W Truscott
- Illawarra Health and Medical Research Institute, University of Wollongong, Australia
| | - Michael G Friedrich
- Illawarra Health and Medical Research Institute, University of Wollongong, Australia
| |
Collapse
|
12
|
Becker J, Mahlke NS, Reckert A, Eickhoff SB, Ritz-Timme S. Age estimation based on different molecular clocks in several tissues and a multivariate approach: an explorative study. Int J Legal Med 2019; 134:721-733. [DOI: 10.1007/s00414-019-02054-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/25/2019] [Indexed: 12/24/2022]
|
13
|
Old Proteins in Man: A Field in its Infancy. Trends Biochem Sci 2016; 41:654-664. [PMID: 27426990 DOI: 10.1016/j.tibs.2016.06.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/03/2016] [Accepted: 06/08/2016] [Indexed: 12/12/2022]
Abstract
It has only recently been appreciated that the human body contains many long-lived proteins (LLPs). Their gradual degradation over time contributes to human aging and probably also to a range of age-related disorders. Indeed, the role of progressive damage of proteins in aging may be indicated by the fact that many neurological diseases do not appear until after middle age. A major factor responsible for the deterioration of old proteins is the spontaneous breakdown of susceptible amino acid residues resulting in racemization, truncation, deamidation, and crosslinking. When proteins decompose in this way, their structures and functions may be altered and novel epitopes can be formed that can induce an autoimmune response.
Collapse
|
14
|
Hartung B, Matzenauer C, Ritz-Timme S. Age estimation of decomposed bodies based on a combined arteriosclerotic index. J Forensic Leg Med 2015; 36:109-13. [PMID: 26439869 DOI: 10.1016/j.jflm.2015.08.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/30/2015] [Accepted: 08/27/2015] [Indexed: 11/29/2022]
Abstract
Several methods exist for the estimation of the age at the time of death, ranging from mere visual inspection to costly laboratory examinations. The "combined arteriosclerotic index (CAI)" is considered to be a suitable low-budget tool for undecayed corpses. It defines the ratio between diameter and longitudinal pre-strain of the abdominal aorta. Its applicability in cases of decomposed corpses has not been studied yet. We examined whether it is a valid parameter in putrefied bodies as well and whether there is a correlation between CAI and the stage of decomposition. In conclusion the CAI becomes less accurate with increasing putrefaction. Nonetheless, even in case of high-grade putrefaction it remains a useful tool for instant age estimation which should be followed by the application of methods with higher accuracy.
Collapse
Affiliation(s)
- Benno Hartung
- Institute of Legal Medicine, University Hospital Düsseldorf, 40225 Düsseldorf, Germany.
| | - Christian Matzenauer
- Institute of Legal Medicine, University Hospital Düsseldorf, 40225 Düsseldorf, Germany
| | - Stefanie Ritz-Timme
- Institute of Legal Medicine, University Hospital Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
15
|
Age estimation based on aspartic acid racemization in human sclera. Int J Legal Med 2015; 130:207-11. [DOI: 10.1007/s00414-015-1255-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/17/2015] [Indexed: 10/23/2022]
|
16
|
Elfawal MA, Alqattan SI, Ghallab NA. Racemization of aspartic acid in root dentin as a tool for age estimation in a Kuwaiti population. MEDICINE, SCIENCE, AND THE LAW 2015; 55:22-29. [PMID: 24589728 DOI: 10.1177/0025802414524383] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Estimation of age is one of the most significant tasks in forensic practice. Amino acid racemization is considered one of the most reliable and accurate methods of age estimation and aspartic acid shows a high racemization reaction rate. The present study has investigated the application of aspartic acid racemization in age estimation in a Kuwaiti population using root dentin from a total of 89 upper first premolar teeth. The D/L ratio of aspartic acid was obtained by HPLC technique in a test group of 50 subjects and a linear regression line was established between aspartic acid racemization and age. The correlation coefficient (r) was 0.97, and the standard error of estimation was ±1.26 years. The racemization age "t" of each subject was calculated by applying the following formula: ln [(1 + D/L)/(1 - D/L)] = 0.003181 t + (-0.01591). When the proposed formula "estimated age t = ln [(1 + D/L)/(1 - D/L)] + 0.01591/0.003181" was applied to a validation group of 39 subjects, the range of error was less than one year in 82.1% of the cases and the standard error of estimation was ±1.12. The current work has established a reasonably significant correlation of the D-/L-aspartic acid ratio with age, and proposed an apparently reliable formula for calculating the age in Kuwaiti populations through aspartic acid racemization. Further research is required to find out whether similar findings are applicable to other ethnic populations.
Collapse
|
17
|
Obert M, Schumacher F, Eska S, Seyfried M, Walter A, Krombach G, Verhoff M. Altersbestimmung menschlicher Kalotten. Rechtsmedizin (Berl) 2014. [DOI: 10.1007/s00194-014-1000-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Sivan SS, Wachtel E, Roughley P. Structure, function, aging and turnover of aggrecan in the intervertebral disc. Biochim Biophys Acta Gen Subj 2014; 1840:3181-9. [PMID: 25065289 DOI: 10.1016/j.bbagen.2014.07.013] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/11/2014] [Accepted: 07/18/2014] [Indexed: 11/17/2022]
Abstract
BACKGROUND Aggrecan is the major non-collagenous component of the intervertebral disc. It is a large proteoglycan possessing numerous glycosaminoglycan chains and the ability to form aggregates in association with hyaluronan. Its abundance and unique molecular features provide the disc with its osmotic properties and ability to withstand compressive loads. Degradation and loss of aggrecan result in impairment of disc function and the onset of degeneration. SCOPE OF REVIEW This review summarizes current knowledge concerning the structure and function of aggrecan in the normal intervertebral disc and how and why these change in aging and degenerative disc disease. It also outlines how supplementation with aggrecan or a biomimetic may be of therapeutic value in treating the degenerate disc. MAJOR CONCLUSIONS Aggrecan abundance reaches a plateau in the early twenties, declining thereafter due to proteolysis, mainly by matrix metalloproteinases and aggrecanases, though degradation of hyaluronan and non-enzymic glycation may also participate. Aggrecan loss is an early event in disc degeneration, although it is a lengthy process as degradation products may accumulate in the disc for decades. The low turnover rate of the remaining aggrecan is an additional contributing factor, preventing protein renewal. It may be possible to retard the degenerative process by restoring the aggrecan content of the disc, or by supplementing with a bioimimetic possessing similar osmotic properties. GENERAL SIGNIFICANCE This review provides a basis for scientists and clinicians to understand and appreciate the central role of aggrecan in the function, degeneration and repair of the intervertebral disc.
Collapse
Affiliation(s)
- Sarit Sara Sivan
- Department of Biotechnology Engineering, ORT Braude College, Karmiel 21982 Israel.
| | - Ellen Wachtel
- Faculty of Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Peter Roughley
- Shriners Hospital for Children, Genetics Unit, 1529 Cedar Avenue, Montreal, Quebec H3G 1A6, Canada
| |
Collapse
|
19
|
Aging adult skull vaults by applying the concept of fractal geometry to high-resolution computed tomography images. Forensic Sci Int 2014; 242:24-31. [PMID: 25016537 DOI: 10.1016/j.forsciint.2014.06.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 05/16/2014] [Accepted: 06/17/2014] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Aging human remains is a critical issue in anthropology and forensic medicine, and the search for accurate, new age-estimation methods is ongoing. In our study, we, therefore, explored a new approach to investigate a possible correlation between age-at-death (aad) and geometric irregularities in the bone structure of human skull caps. We applied the concept of fractal geometry and fractal dimension D analysis to describe heterogeneity within the bone structure. METHODS A high-resolution flat-panel computed tomography scanner (eXplore Locus Ultra) was used to obtain 229,500 images from 221 male and 120 female (total 341) European human skulls. Automated image analysis software was developed to evaluate the fractal dimension D, using the mass radius method. The frontal and the occipital portions of the skull caps of adult females and males were investigated separately. The age dependence of the fractal dimension D was studied by correlation analysis, and the prediction accuracy of age-at-death (aad) estimates for individual observations was calculated. RESULTS D values for human skull caps scatter strongly as a function of age. We found sex-dependent correlation coefficients (CC) between D and age for adults (females CC=-0.67; males CC=-0.05). Prediction errors for aad estimates for individual observations were in the range of ±18 years at a 75% confidence interval. CONCLUSIONS The detailed quantitative description of age-dependent irregularities in the bone microarchitecture of skull vaults through fractal dimension analysis does not, as we had hoped, enable a new aging method. Severe scattering of the data leads to an estimation error that is too great for this method to be of practical relevance in aad estimates. Thus, we disclosed an interesting sex difference.
Collapse
|
20
|
Estimation of age at death based on aspartic acid racemization in elastic cartilage of the epiglottis. Int J Legal Med 2013; 128:995-1000. [DOI: 10.1007/s00414-013-0940-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 10/30/2013] [Indexed: 10/26/2022]
|
21
|
Obert M, Kubelt C, Schaaf T, Dassinger B, Grams A, Gizewski ER, Krombach GA, Verhoff MA. Aging adult skull remains through radiological density estimates: A comparison of different computed tomography systems and the use of computer simulations to judge the accuracy of results. Forensic Sci Int 2013; 228:179.e1-7. [DOI: 10.1016/j.forsciint.2013.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 09/13/2012] [Accepted: 02/04/2013] [Indexed: 10/27/2022]
|
22
|
Tardivo D, Sastre J, Catherine JH, Leonetti G, Adalian P, Foti B. Age determination of adult individuals by three-dimensional modelling of canines. Int J Legal Med 2013; 128:161-9. [DOI: 10.1007/s00414-013-0863-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 04/16/2013] [Indexed: 10/26/2022]
|
23
|
Horny L, Adamek T, Kulvajtova M. Analysis of axial prestretch in the abdominal aorta with reference to post mortem interval and degree of atherosclerosis. J Mech Behav Biomed Mater 2013; 33:93-8. [PMID: 23676503 DOI: 10.1016/j.jmbbm.2013.01.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 11/14/2012] [Accepted: 01/09/2013] [Indexed: 01/04/2023]
Abstract
It is a well-known fact that the length of an artery in situ and the length of an excised artery differs. Retraction of blood vessels is usually observed. This prestretch plays an important role in arterial physiology. We have recently determined that the decrease of axial prestretch in the human abdominal aorta is so closely correlated with age that it is suitable for forensic applications (estimation of the age at time of death for cadavers of unknown identity). Since post mortem autolysis may affect the reliability of an estimate based on axial prestretch, the present study aims to detail analysis of the effect of post mortem time. The abdominal aorta is a prominent site of atherosclerotic changes (ATH), which may potentially affect longitudinal prestretch. Thus ATH was also involved in the analysis. Axial prestretch in the human abdominal aorta, post mortem interval (PMI), and the degree of ATH were documented in 365 regular autopsies. The data was first age adjusted to remove any supposed correlation with age. After the age adjustment of the sample, the correlation analysis showed no significant PMI effects on the prestretch in non-putrefied bodies. Analysis of the prestretch variance with respect to ATH suggested that ATH is not a suitable factor to explain the prestretch variability remaining after the age adjustment. It was concluded that, although atherosclerotic plaques may certainly change the biomechanics of arteries, they do not significantly affect the longitudinal prestretch in the human abdominal aorta.
Collapse
Affiliation(s)
- Lukas Horny
- Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 166 07 Prague, Czech Republic.
| | - Tomas Adamek
- Third Faculty of Medicine, Charles University in Prague, Ruska 87, 100 00 Prague, Czech Republic.
| | - Marketa Kulvajtova
- Department of Forensic Medicine, University Hospital Na Kralovskych Vinohradech, Srobarova 50, 100 34 Prague, Czech Republic.
| |
Collapse
|
24
|
C Zapico S, Ubelaker DH. Applications of physiological bases of ageing to forensic sciences. Estimation of age-at-death. Ageing Res Rev 2013; 12:605-17. [PMID: 23454111 DOI: 10.1016/j.arr.2013.02.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 02/13/2013] [Accepted: 02/19/2013] [Indexed: 01/24/2023]
Abstract
Age-at-death estimation is one of the main challenges in forensic sciences since it contributes to the identification of individuals. There are many anthropological techniques to estimate the age at death in children and adults. However, in adults this methodology is less accurate and requires population specific references. For that reason, new methodologies have been developed. Biochemical methods are based on the natural process of ageing, which induces different biochemical changes that lead to alterations in cells and tissues. In this review, we describe different attempts to estimate the age in adults based on these changes. Chemical approaches imply modifications in molecules or accumulation of some products. Molecular biology approaches analyze the modifications in DNA and chromosomes. Although the most accurate technique appears to be aspartic acid racemization, it is important to take into account the other techniques because the forensic context and the human remains available will determine the possibility to apply one or another methodology.
Collapse
Affiliation(s)
- Sara C Zapico
- Smithsonian Institution, National Museum of Natural History, MRC 112, Department of Anthropology, 10th and Constitution Ave, NW, P.O. Box 37012, Washington, DC 20013-7012, United States.
| | | |
Collapse
|
25
|
Sivan SS, Van El B, Merkher Y, Schmelzer CEH, Zuurmond AM, Heinz A, Wachtel E, Varga PP, Lazary A, Brayda-Bruno M, Maroudas A. Longevity of elastin in human intervertebral disc as probed by the racemization of aspartic acid. Biochim Biophys Acta Gen Subj 2012; 1820:1671-7. [PMID: 22728886 DOI: 10.1016/j.bbagen.2012.06.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 04/30/2012] [Accepted: 06/15/2012] [Indexed: 11/19/2022]
Abstract
BACKGROUND Aging and degeneration of human intervertebral disc (IVD) are associated with biochemical changes, including racemization and glycation. These changes can only be counteracted by protein turnover. Little is known about the longevity of IVD elastin in health or disease. Yet, such knowledge is important for a quantitative understanding of tissue synthesis and degradation. METHODS We have measured the accumulation of d-Asp and pentosidine in IVD elastin. Samples representing a broad range of ages (28-82years) and degeneration grades (1-5) were analyzed. RESULTS d/l-Asp for elastin increased linearly with age from 3.2% (early 30s) to 14.8% (early 80s) for normal tissue (grades 1-2) and from 1.7% (late 20s) to 6.0% (until the mid 50s) for degenerate tissue (grades 3-5) with accumulation rates of 16.2±3.1×10(-4) and 11.7±3.8×10(-4)year(-1), respectively; no significant difference was found between these values (p<0.05). Above the mid 50s, a decrease in d-Asp accumulation was recorded in the degenerate tissue. d-Asp accumulation correlated well with pentosidine content for elastin from healthy and degenerate tissues combined. We conclude that IVD elastin is metabolically-stable and long-lived in both healthy and degenerate human IVDs, with signs of new synthesis in the latter. The correlation of d-Asp with pentosidine content suggests that both these agents may be used as markers in the overall aging process of IVD. GENERAL SIGNIFICANCE Accumulation of modified IVD elastin argues for its longevity and may have a negative impact on its role in disc function. Weak signs of newly synthesized molecules may act to counteract this effect in degenerate tissue.
Collapse
Affiliation(s)
- Sarit-Sara Sivan
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Horny L, Adamek T, Vesely J, Chlup H, Zitny R, Konvickova S. Age-related distribution of longitudinal pre-strain in abdominal aorta with emphasis on forensic application. Forensic Sci Int 2012; 214:18-22. [DOI: 10.1016/j.forsciint.2011.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 07/01/2011] [Indexed: 10/17/2022]
|
27
|
Horny L, Adamek T, Chlup H, Zitny R. Age estimation based on a combined arteriosclerotic index. Int J Legal Med 2011; 126:321-6. [DOI: 10.1007/s00414-011-0653-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 11/24/2011] [Indexed: 11/30/2022]
|
28
|
Age estimation using cytochrome c oxidase activity analysis. Forensic Sci Int 2011; 209:48-52. [DOI: 10.1016/j.forsciint.2010.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 12/01/2010] [Accepted: 12/12/2010] [Indexed: 11/22/2022]
|
29
|
Abstract
A considerable body of evidence indicates that elevated resting heart rate is an independent, modifiable risk factor for cardiovascular events and mortality in patients with coronary artery disease. Elevated heart rate can produce adverse effects in several ways. Firstly, myocardial oxygen consumption is increased at high heart rates, but the time available for myocardial perfusion is reduced, increasing the likelihood of myocardial ischemia. Secondly, exposure of the large elastic arteries to cyclical stretch is increased at high heart rates. This effect can increase the rate at which components of the arterial wall deteriorate. Elastin fibers, which have an extremely slow rate of turnover in adult life, might be particularly vulnerable. Thirdly, elevated heart rate can predispose the myocardium to arrhythmias, and favor the development and progression of coronary atherosclerosis, by adversely affecting the balance between systolic and diastolic flow. Comparisons of the effects of the specific heart-rate-lowering drug ivabradine with those of β-blockers could help clarify the pathophysiological effects of elevated heart rate. Effective heart rate control among patients with coronary artery disease is uncommon in clinical practice, representing a missed therapeutic opportunity.
Collapse
Affiliation(s)
- Kim M Fox
- Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK.
| | | |
Collapse
|
30
|
Friedman M, Levin CE. Nutritional and medicinal aspects of D-amino acids. Amino Acids 2011; 42:1553-82. [PMID: 21519915 DOI: 10.1007/s00726-011-0915-1] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 04/06/2011] [Indexed: 02/07/2023]
Abstract
This paper reviews and interprets a method for determining the nutritional value of D-amino acids, D-peptides, and amino acid derivatives using a growth assay in mice fed a synthetic all-amino acid diet. A large number of experiments were carried out in which a molar equivalent of the test compound replaced a nutritionally essential amino acid such as L-lysine (L-Lys), L-methionine (L-Met), L-phenylalanine (L-Phe), and L-tryptophan (L-Trp) as well as the semi-essential amino acids L-cysteine (L-Cys) and L-tyrosine (L-Tyr). The results show wide-ranging variations in the biological utilization of test substances. The method is generally applicable to the determination of the biological utilization and safety of any amino acid derivative as a potential nutritional source of the corresponding L-amino acid. Because the organism is forced to use the D-amino acid or amino acid derivative as the sole source of the essential or semi-essential amino acid being replaced, and because a free amino acid diet allows better control of composition, the use of all-amino-acid diets for such determinations may be preferable to protein-based diets. Also covered are brief summaries of the widely scattered literature on dietary and pharmacological aspects of 27 individual D-amino acids, D-peptides, and isomeric amino acid derivatives and suggested research needs in each of these areas. The described results provide a valuable record and resource for further progress on the multifaceted aspects of D-amino acids in food and biological samples.
Collapse
Affiliation(s)
- Mendel Friedman
- Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA.
| | | |
Collapse
|
31
|
Schulte-Geers C, Obert M, Schilling RL, Harth S, Traupe H, Gizewski ER, Verhoff MA. Age and gender-dependent bone density changes of the human skull disclosed by high-resolution flat-panel computed tomography. Int J Legal Med 2011; 125:417-25. [DOI: 10.1007/s00414-010-0544-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 12/20/2010] [Indexed: 10/18/2022]
|
32
|
Abstract
Over the course of our lifetime a stochastic process leads to gradual alterations of biomolecules on the molecular level, a process that is called ageing. Important changes are observed on the DNA-level as well as on the protein level and are the cause and/or consequence of our 'molecular clock', influenced by genetic as well as environmental parameters. These alterations on the molecular level may aid in forensic medicine to estimate the age of a living person, a dead body or even skeletal remains for identification purposes. Four such important alterations have become the focus of molecular age estimation in the forensic community over the last two decades. The age-dependent accumulation of the 4977bp deletion of mitochondrial DNA and the attrition of telomeres along with ageing are two important processes at the DNA-level. Among a variety of protein alterations, the racemisation of aspartic acid and advanced glycation endproducs have already been tested for forensic applications. At the moment the racemisation of aspartic acid represents the pinnacle of molecular age estimation for three reasons: an excellent standardization of sampling and methods, an evaluation of different variables in many published studies and highest accuracy of results. The three other mentioned alterations often lack standardized procedures, published data are sparse and often have the character of pilot studies. Nevertheless it is important to evaluate molecular methods for their suitability in forensic age estimation, because supplementary methods will help to extend and refine accuracy and reliability of such estimates.
Collapse
Affiliation(s)
- Christoph Meissner
- Department of Forensic Medicine, University of Schleswig-Holstein, Kahlhorststraße 31-35, 23562 Lübeck, Germany.
| | | |
Collapse
|