1
|
Li JH, Liu JL, Song JW, Deng WL, Cao XZ, Wu ZW, Chen DH, Wang H, Yu S, Wang Q. Metabolomic analysis of fatal hypothermia using ultra-high-performance liquid chromatography‒mass spectrometry. Front Mol Biosci 2025; 12:1563642. [PMID: 40309009 PMCID: PMC12040645 DOI: 10.3389/fmolb.2025.1563642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 04/02/2025] [Indexed: 05/02/2025] Open
Abstract
Introduction The identification of fatal hypothermia remains a significant challenge in forensic medicine. Metabolomics, which reflects the overall changes in endogenous metabolites within an organism, holds substantial value in the exploration of disease mechanisms and the screening of molecular markers. Methods Using ultra-high-performance liquid chromatography‒mass spectrometry (UHPLC‒MS), we conducted a metabolomic analysis of serum, heart, lung, and kidney tissues from mice with fatal hypothermia. Results A total of 67 metabolites significantly differed across all the tissues, involving pathways such as the TCA cycle, fatty acid oxidation, arginine metabolism, histamine metabolism, and antioxidant-related pathways. Each tissue also displayed unique metabolic alterations. Additionally, we observed significant differences in the metabolomic profiles of kidney tissues from mice with different survival times. Conclusion Our findings contribute to elucidate the underlying mechanisms involved and provide a foundation for the forensic identification of markers of fatal hypothermia.
Collapse
Affiliation(s)
- Jia-Hao Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jia-Li Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian-Wen Song
- Forensic Appraisal Department, Guangdong Provincial Forensic Science of Evidence Materials (Nantian) Engineering Technology Research Center, Shenzhen, Guangdong, China
- Judicial Appraisal Technology Teaching and Research Office, Guangdong Justice Police Vocational College, Guangzhou, Guangdong, China
| | - Wei-Liang Deng
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xin-Zhi Cao
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhong-Wen Wu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Ding-Hao Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Hui Wang
- Department of Pediatric Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, National Children’s Medical Center for South Central Region, Guangzhou, Guangdong, China
| | - Song Yu
- Forensic Appraisal Department, Guangdong Provincial Forensic Science of Evidence Materials (Nantian) Engineering Technology Research Center, Shenzhen, Guangdong, China
| | - Qi Wang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Porvari K, Horioka K, Kaija H, Pakanen L. Amphiregulin is overexpressed in human cardiac tissue in hypothermia deaths; associations between the transcript and stress hormone levels in cardiac deaths. Ann Med 2024; 56:2420862. [PMID: 39506618 PMCID: PMC11544741 DOI: 10.1080/07853890.2024.2420862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/15/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Amphiregulin (AREG) is a growth factor linked to cardioprotection and heart pathology during myocardial stress. Our aim was to investigate cardiac AREG expression, its potential as a postmortem hypothermia marker and its possible stress hormone dependency in different types of deaths. MATERIALS AND METHODS Heart RNA was isolated from hypothermic, cardiac and non-cardiac deaths. Relative AREG mRNA levels and urine stress hormone concentrations were measured by qPCR and enzyme-linked immunosorbent assays from eight different death cause groups. Receiver operating characteristic curve was used to evaluate a cut-off point for AREG expression as a hypothermia marker. Regulatory elements were predicted by PROMO. RESULTS The AREG mRNA levels were significantly higher in hypothermic deaths than in most cardiac and non-cardiac deaths. AREG expression indicated hypothermic deaths with nearly 70% sensitivity and specificity. However, high expression levels were also detected in non-ischaemic deaths. The highest concentrations of adrenaline and cortisol were detected in hypothermic deaths, while the highest noradrenaline concentrations associated with atherosclerotic heart disease (AHD) deaths with acute myocardial infarction and trauma deaths. There were no significant correlations between stress hormones and AREG mRNA in hypothermic and non-cardiac deaths, whereas moderate-to-high associations were detected in cardiac deaths. Putative response elements for cortisol and catecholamines were found in AREG. CONCLUSIONS Severe hypothermia activates cardiac AREG expression practicable as a postmortem hypothermia marker. Cortisol and catecholamines may act as transcriptional modifiers of this gene, especially in long-term ischaemic heart disease. However, the exact role of these hormones in upregulation of AREG during hypothermia remains unclear.
Collapse
Affiliation(s)
- Katja Porvari
- Research Unit of Biomedicine and Internal Medicine, Department of Forensic Medicine, Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Kie Horioka
- Research Unit of Biomedicine and Internal Medicine, Department of Forensic Medicine, Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Helena Kaija
- Research Unit of Biomedicine and Internal Medicine, Department of Forensic Medicine, Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Lasse Pakanen
- Research Unit of Biomedicine and Internal Medicine, Department of Forensic Medicine, Medical Research Center Oulu, University of Oulu, Oulu, Finland
- Forensic Medicine Unit, Finnish Institute for Health and Welfare, Oulu, Finland
| |
Collapse
|
3
|
Lu CL, Sha JJ, Ma RF, Dong XT, Su XR, Cong B, Wang SJ. Severe Hypothermia Induces Ferroptosis in Cerebral Cortical Nerve Cells. Int J Mol Sci 2024; 25:8086. [PMID: 39125656 PMCID: PMC11311695 DOI: 10.3390/ijms25158086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Abnormal shifts in global climate, leading to extreme weather, significantly threaten the safety of individuals involved in outdoor activities. Hypothermia-induced coma or death frequently occurs in clinical and forensic settings. Despite this, the precise mechanism of central nervous system injury due to hypothermia remains unclear, hindering the development of targeted clinical treatments and specific forensic diagnostic indicators. The GEO database was searched to identify datasets related to hypothermia. Post-bioinformatics analyses, DEGs, and ferroptosis-related DEGs (FerrDEGs) were intersected. GSEA was then conducted to elucidate the functions of the Ferr-related genes. Animal experiments conducted in this study demonstrated that hypothermia, compared to the control treatment, can induce significant alterations in iron death-related genes such as PPARG, SCD, ADIPOQ, SAT1, EGR1, and HMOX1 in cerebral cortex nerve cells. These changes lead to iron ion accumulation, lipid peroxidation, and marked expression of iron death-related proteins. The application of the iron death inhibitor Ferrostatin-1 (Fer-1) effectively modulates the expression of these genes, reduces lipid peroxidation, and improves the expression of iron death-related proteins. Severe hypothermia disrupts the metabolism of cerebral cortex nerve cells, causing significant alterations in ferroptosis-related genes. These genetic changes promote ferroptosis through multiple pathways.
Collapse
Affiliation(s)
| | | | | | | | | | - Bin Cong
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, College of Forensic Medicine, Hebei Medical University, No. 361 Zhong Shan Road, Shijiazhuang 050017, China; (C.-L.L.); (J.-J.S.); (R.-F.M.); (X.-T.D.); (X.-R.S.)
| | - Song-Jun Wang
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, College of Forensic Medicine, Hebei Medical University, No. 361 Zhong Shan Road, Shijiazhuang 050017, China; (C.-L.L.); (J.-J.S.); (R.-F.M.); (X.-T.D.); (X.-R.S.)
| |
Collapse
|
4
|
Li W, Chen Y, Zhang Y, Zhao N, Zhang W, Shi M, Zhao Y, Cai C, Lu C, Gao P, Guo X, Li B, Kim SW, Yang Y, Cao G. Transcriptome Analysis Revealed Potential Genes of Skeletal Muscle Thermogenesis in Mashen Pigs and Large White Pigs under Cold Stress. Int J Mol Sci 2023; 24:15534. [PMID: 37958518 PMCID: PMC10650474 DOI: 10.3390/ijms242115534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Pigs are susceptible to cold stress due to the absence of brown fat caused by the partial deletion of uncoupling protein 1 during their evolution. Some local pig breeds in China exhibit potential cold adaptability, but research has primarily focused on fat and intestinal tissues. Skeletal muscle plays a key role in adaptive thermogenesis in mammals, yet the molecular mechanism of cold adaptation in porcine skeletal muscle remains poorly understood. This study investigated the cold adaptability of two pig breeds, Mashen pigs (MS) and Large White pigs (LW), in a four-day cold (4 °C) or normal temperature (25 °C) environment. We recorded phenotypic changes and collected blood and longissimus dorsi muscle for transcriptome sequencing. Finally, the PRSS8 gene was randomly selected for functional exploration in porcine skeletal muscle satellite cells. A decrease in body temperature and body weight in both LW and MS pigs under cold stress, accompanied by increased shivering frequency and respiratory frequency, were observed. However, the MS pigs demonstrated stable physiological homeostasis, indicating a certain level of cold adaptability. The LW pigs primarily responded to cold stress by regulating their heat production and glycolipid energy metabolism. The MS pigs exhibited a distinct response to cold stress, involving the regulation of heat production, energy metabolism pathways, and robust mitochondrial activity, as well as a stronger immune response. Furthermore, the functional exploration of PRSS8 in porcine skeletal muscle satellite cells revealed that it affected cellular energy metabolism and thermogenesis by regulating ERK phosphorylation. These findings shed light on the diverse transcriptional responses of skeletal muscle in LW and MS pigs under cold stress, offering valuable insights into the molecular mechanisms underlying cold adaptation in pigs.
Collapse
Affiliation(s)
- Wenxia Li
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Yufen Chen
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Yunting Zhang
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Ning Zhao
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Wanfeng Zhang
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Mingyue Shi
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Yan Zhao
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Chunbo Cai
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Chang Lu
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Pengfei Gao
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Xiaohong Guo
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Bugao Li
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Sung-Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Yang Yang
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Guoqing Cao
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| |
Collapse
|
5
|
Cao H, Li L, Li Z, Gao H, Peng G, Zhu C, Chen Y, Yang F, Dong W. Denovo RNA-Seq analysis of ovary and testis reveals potential differentially expressed transcripts associated with gonadal unsynchronization development in Onychostoma macrolepis. Gene Expr Patterns 2023; 47:119303. [PMID: 36565945 DOI: 10.1016/j.gep.2022.119303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/27/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
The Onychostoma macrolepis (O. macrolepis) is a rare and endangered wild species. Their endangered extinction might be due to their low fertility. To further illustrate the molecular mechanism of gonad development of the male and female O. macrolepis, the present study carried out de novo testicular and ovarian transcriptome sequencing. By comparing ovary and testis, 30,869 differentially expressed unigenes (9870 in female, 20999 in male) were identified. In addition, KEGG and GO analysis suggested that the Hedgehog signaling pathway have important roles in testis maintenance and spermatogenesis, whereas the Hippo signaling pathway and Wnt signaling pathway are likely to participate in ovary maintenance. RT-qPCR analysis results were consistent with transcriptome sequencing that all of gender differentiation-related genes (FOXL2, GDF9, WNT4, CYP19A1, SOX9 and GATA4), temperature-enriched genes (NOVA1, CTGF and NR4A1), clock-related genes (PER2, PER3, CRY1, CRY2, BMAL1 and CIPC) were significantly differential expression in testis compared with ovaries. Taken together, these results revealed a potential molecular mechanism that low fertility of the O. macrolepis might strong correlate with the gonadal dyssynchrony development of the male and female, which might provide theoretical basis and technical support for artificial reproduction and germplasm resource protection of the O. macrolepis.
Collapse
Affiliation(s)
- Heran Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Long Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Zhenpeng Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Huihui Gao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Guofan Peng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Chao Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Yining Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Fangxia Yang
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, China.
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
6
|
Umehara T, Mori R, Murase T, Tanaka T, Kasai K, Ikematsu K, Sato H. rno-miR-203a-3p and Mex3B contribute to cell survival of iliopsoas muscle via the Socs3-Casp3 axis under severe hypothermia in rats. Leg Med (Tokyo) 2022; 59:102150. [PMID: 36198254 DOI: 10.1016/j.legalmed.2022.102150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/06/2022] [Accepted: 09/16/2022] [Indexed: 02/05/2023]
Abstract
Forensic diagnosis of fatal hypothermia is considered difficult because no specific findings, such as molecular markers, have been identified. Therefore, determining the molecular mechanism in hypothermia and identifying novel molecular markers to assist in diagnosing fatal hypothermia are important. This study aimed to investigate microRNA (miRNA) and mRNA expression in iliopsoas muscle, which plays a role in homeostasis in mammals, to resolve the molecular mechanism in hypothermia. We generated rat models of mild, moderate, and severe hypothermia, then performed body temperature-dependent miRNA and mRNA expression analysis of the iliopsoas muscle using microarray and next-generation sequencing. Analysis showed that rno-miR-203a-3p expression was lower with decreasing body temperature, while Socs3 expression was significantly increased only by severe hypothermia. Luciferase reporter assays suggested that Socs3 expression is regulated by rno-miR-203a-3p. Socs3 and Mex3B small interfering RNA-mediated knockdown showed that suppressing Mex3B could induce the activation of Socs3, followed by a change in caspase 3/7 activity and adenosine triphosphate levels in iliopsoas muscle cells. These findings indicate that rno-miR-203a-3p and Mex3B are deactivated by a decrease in body temperature, whereby it contributes to suppressing apoptosis by accelerating Socs3. Accordingly, the rno-miR-203a-3p-Socs3-Casp3 or Mex3B-Socs3-Casp3 axis may be the part of the biological defense response to maintain homeostasis under extreme hypothermia.
Collapse
Affiliation(s)
- Takahiro Umehara
- Department of Forensic Medicine, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555, Japan.
| | - Ryoichi Mori
- Department of Pathology, Nagasaki University, School of Medicine and Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, Nagasaki 852-8523, Japan
| | - Takehiko Murase
- Division of Forensic Pathology and Science, Unit of Social Medicine, Course of Medical and Dental Sciences, Graduate School of Biomedical Sciences, Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki, Nagasaki 852-8523, Japan
| | - Toshiko Tanaka
- Department of Forensic Medicine, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Kentaro Kasai
- Department of Forensic Medicine, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Kazuya Ikematsu
- Division of Forensic Pathology and Science, Unit of Social Medicine, Course of Medical and Dental Sciences, Graduate School of Biomedical Sciences, Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki, Nagasaki 852-8523, Japan
| | - Hiroaki Sato
- Department of Forensic Medicine, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| |
Collapse
|
7
|
Zhang D, Ma S, Wang L, Ma H, Wang W, Xia J, Liu D. Min pig skeletal muscle response to cold stress. PLoS One 2022; 17:e0274184. [PMID: 36155652 PMCID: PMC9512212 DOI: 10.1371/journal.pone.0274184] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/18/2022] [Indexed: 11/18/2022] Open
Abstract
The increased sensitivity of pigs to ambient temperature is due to today's intensive farming. Frequent climate disasters increase the pressure on healthy pig farming. Min pigs are an indigenous pig breed in China with desirable cold resistance characteristics, and hence are ideal for obtaining cold-resistant pig breeds. Therefore, it is important to discover the molecular mechanisms that are activated in response to cold stress in the Min pig. Here, we conducted a transcriptomic analysis of the skeletal muscle of Min pigs under chronic low-temperature acclimation (group A) and acute short cold stress (group B). Cold exposure caused more genes to be upregulated. Totals of 125 and 96 differentially expressed genes (DEGs) were generated from groups A and B. Sixteen common upregulated DEGs were screened; these were concentrated in oxidative stress (SRXN1, MAFF), immune and inflammatory responses (ITPKC, AREG, MMP25, FOSL1), the nervous system (RETREG1, GADD45A, RCAN1), lipid metabolism (LRP11, LIPG, ITGA5, AMPD2), solute transport (SLC19A2, SLC28A1, SLCO4A1), and fertility (HBEGF). There were 102 and 73 genes that were specifically differentially expressed in groups A and B, respectively. The altered mRNAs were enriched in immune, endocrine, and cancer pathways. There were 186 and 91 differentially expressed lncRNAs generated from groups A and B. Analysis of the target genes suggested that they may be involved in regulating the MAPK signaling pathway for resistance to cold. The results of this study provide a comprehensive overview of cold exposure-induced transcriptional patterns in skeletal muscle of the Min pig. These results can guide future molecular studies of cold stress response in pigs for improving cold tolerance as a goal in breeding programs.
Collapse
Affiliation(s)
- Dongjie Zhang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, People’s Republic of China
| | - Shouzheng Ma
- Department of Animal Science, Northeast Agricultural University, Harbin, Heilongjiang, People’s Republic of China
| | - Liang Wang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, People’s Republic of China
| | - Hong Ma
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, People’s Republic of China
| | - Wentao Wang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, People’s Republic of China
| | - Jiqao Xia
- Department of Animal Science, Northeast Agricultural University, Harbin, Heilongjiang, People’s Republic of China
| | - Di Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, People’s Republic of China
- Department of Animal Science, Northeast Agricultural University, Harbin, Heilongjiang, People’s Republic of China
| |
Collapse
|
8
|
Mo M, Roache M. A review of intervention methods used to reduce flying-fox mortalities in heat stress events. AUSTRALIAN MAMMALOGY 2021. [DOI: 10.1071/am20038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Heat stress events in Australian flying-fox camps have resulted in significant numbers of flying-fox deaths. The frequency and intensity of such events have increased in recent decades, attributed to anthropogenic climate change. Evidence-based interventions are required to address this growing threat. Responders currently use different combinations of a range of intervention methods. We undertook a systematic review of heat stress interventions, which we classified as either ‘camp-scale’ or ‘individual-scale’. Camp-scale interventions included manual and automated misting of roost vegetation, whereas individual-scale interventions included spraying individual animals or removing them for intensive cooling and rehydration procedures. Our study showed that to date, evaluation of the efficacy of heat stress interventions has been largely anecdotal rather than empirical. This highlights the need for dedicated rigorous studies to evaluate the effectiveness of all the intervention methods described here. It will be especially important to understand the relationship between camp temperature and humidity levels and their influence on flying-foxes’ ability to regulate their body temperature, because high relative humidity reduces the ability of mammals to cool themselves using evaporative heat loss. The development of biophysiological measures such as temperature and humidity indices for different flying-fox species would enable meaningful interpretations of intervention trials under controlled conditions.
Collapse
|
9
|
Takamiya M, Saigusa K, Dewa K. DNA microarray analysis of hypothermia-exposed murine lungs for identification of forensic biomarkers. Leg Med (Tokyo) 2020; 48:101789. [PMID: 33161360 DOI: 10.1016/j.legalmed.2020.101789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/14/2020] [Accepted: 09/19/2020] [Indexed: 10/23/2022]
Abstract
We used DNA microarray technology to analyze the pulmonary transcriptome of mice killed by hypothermia. This analysis identified significant differential regulation of 4094 genes; specifically, 1699 genes were upregulated, and 2395 were downregulated in response to hypothermia. The gene encoding cathelicidin antimicrobial peptide was the most upregulated gene, and that encoding BAI1-associated protein 2-like 1 was the most downregulated. Gene-set analysis identified significant hypothermia-induced variations in 101 pathways, and we discovered that pathways related to immunity are involved in the pulmonary pathogenesis of hypothermia. The present findings demonstrate some of the acute pulmonary responses to hypothermia and indicate several pulmonary genes as candidate forensic biomarkers of hypothermia. Furthermore, the present findings suggest that host defense is induced in hypothermic lungs. The present microarray data may facilitate the development of protein analyses for human forensics by immunohistochemistry, western blotting and enzyme-linked immunosorbent assay and may be beneficial in clinical research of hypothermia.
Collapse
Affiliation(s)
- Masataka Takamiya
- Division of Forensic Medicine, Department of Forensic Science, Iwate Medical University, Iwate, Japan.
| | - Kiyoshi Saigusa
- Department of Biology, Iwate Medical University, Iwate, Japan
| | - Koji Dewa
- Division of Forensic Medicine, Department of Forensic Science, Iwate Medical University, Iwate, Japan
| |
Collapse
|
10
|
Body temperature-dependent microRNA expression analysis in rats: rno-miR-374-5p regulates apoptosis in skeletal muscle cells via Mex3B under hypothermia. Sci Rep 2020; 10:15432. [PMID: 32963265 PMCID: PMC7508983 DOI: 10.1038/s41598-020-71931-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/11/2020] [Indexed: 02/02/2023] Open
Abstract
Forensic diagnosis of fatal hypothermia is considered difficult because there are no specific findings. Accordingly, exploration of novel fatal hypothermia-specific findings is important. To elucidate the molecular mechanism of homeostasis in hypothermia and identify novel molecular markers to inform the diagnosis of fatal hypothermia, we focused on microRNA expression in skeletal muscle, which plays a role in cold-induced thermogenesis in mammals. We generated rat models of mild, moderate, and severe hypothermia, and performed body temperature-dependent microRNA expression analysis of the iliopsoas muscle using microarray and quantitative real-time PCR (qRT-PCR). The results show that rno-miR-374-5p expression was significantly induced only by severe hypothermia. Luciferase reporter assay and qRT-PCR results indicated that Mex3B expression was regulated by rno-miR-374-5p and decreased with decreasing body temperature. Gene ontology analysis indicated the involvement of Mex3B in positive regulation of GTPase activity. siRNA analysis showed that Mex3B directly or indirectly regulated Kras expression in vitro, and significantly changed the expression of apoptosis-related genes and proteins. Collectively, these results indicate that rno-miR-374-5p was activated by a decrease in body temperature, whereby it contributed to cell survival by suppressing Mex3B and activating or inactivating Kras. Thus, rno-miR-374-5p is a potential supporting marker for the diagnosis of fatal hypothermia.
Collapse
|
11
|
Simó-Mirabet P, Perera E, Calduch-Giner JA, Pérez-Sánchez J. Local DNA methylation helps to regulate muscle sirtuin 1 gene expression across seasons and advancing age in gilthead sea bream ( Sparus aurata). Front Zool 2020; 17:15. [PMID: 32467713 PMCID: PMC7227224 DOI: 10.1186/s12983-020-00361-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/30/2020] [Indexed: 12/15/2022] Open
Abstract
Background Sirtuins (SIRTs) are master regulators of metabolism, and their expression patterns in gilthead sea bream (GSB) reveal different tissue metabolic capabilities and changes in energy status. Since little is known about their transcriptional regulation, the aim of this work was to study for the first time in fish the effect of age and season on sirt gene expression, correlating expression patterns with local changes in DNA methylation in liver and white skeletal muscle (WSM). Methods Gene organization of the seven sirts was analyzed by BLAT searches in the IATS-CSIC genomic database (www.nutrigroup-iats.org/seabreamdb/). The presence of CpG islands (CGIs) was mapped by means of MethPrimer software. DNA methylation analyses were performed by bisulfite pyrosequencing. A PCR array was designed for the simultaneous gene expression profiling of sirts and related markers (cs, cpt1a, pgc1α, ucp1, and ucp3) in the liver and WSM of one- and three-year-old fish during winter and summer. Results The occurrence of CGIs was evidenced in the sirt1 and sirt3 promoters. This latter CGI remained hypomethylated regardless of tissue, age and season. Conversely, DNA methylation of sirt1 at certain CpG positions within the promoter varied with age and season in the WSM. Among them, changes at several SP1 binding sites were negatively correlated with the decrease in sirt1 expression in summer and in younger fish. Changes in sirt1 regulation match well with variations in feed intake and energy metabolism, as judged by the concurrent changes in the analyzed markers. This was supported by discriminant analyses, which identified sirt1 as a highly responsive element to age- and season-mediated changes in energy metabolism in WSM. Conclusions The gene organization of SIRTs is highly conserved in vertebrates. GSB sirt family members have CGI- and non-CGI promoters, and the presence of CGIs at the sirt1 promoter agrees with its ubiquitous expression. Gene expression analyses support that sirts, especially sirt1, are reliable markers of age- and season-dependent changes in energy metabolism. Correlation analyses suggest the involvement of DNA methylation in the regulation of sirt1 expression, but the low methylation levels suggest the contribution of other putative mechanisms in the transcriptional regulation of sirt1.
Collapse
Affiliation(s)
- Paula Simó-Mirabet
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, IATS-CSIC, 12595 Ribera de Cabanes s/n, Castellón, Spain
| | - Erick Perera
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, IATS-CSIC, 12595 Ribera de Cabanes s/n, Castellón, Spain
| | - Josep Alvar Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, IATS-CSIC, 12595 Ribera de Cabanes s/n, Castellón, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, IATS-CSIC, 12595 Ribera de Cabanes s/n, Castellón, Spain
| |
Collapse
|
12
|
Lin H, Guo X, Luo Y, Chen Y, Zhao R, Guan D, Wang Z, Huang P. Postmortem Diagnosis of Fatal Hypothermia by Fourier Transform Infrared Spectroscopic Analysis of Edema Fluid in Formalin-Fixed, Paraffin-Embedded Lung Tissues. J Forensic Sci 2020; 65:846-854. [PMID: 31868923 DOI: 10.1111/1556-4029.14260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 12/29/2022]
Abstract
The goal of this study was to investigate whether pulmonary edema could become a specific diagnostic marker for fatal hypothermia using Fourier transform infrared (FTIR) spectroscopy in combination with chemometrics. The spectral profile analysis indicated that hypothermia fatalities associated with pulmonary edema fluid contained more β-sheet protein conformational structures than the control causes of death, which included sudden cardiac death, brain injury, cerebrovascular disease, mechanical asphyxiation, intoxication, and drowning. Subsequently, the results of principal component analysis (PCA) further revealed that the content of β-sheet protein conformational structures in the pulmonary edema fluid was the main discriminatory marker between fatal hypothermia and the other causes of death. Ultimately, a robust postmortem diagnostic model for fatal hypothermia using a partial least-squares discriminant analysis (PLS-DA) algorithm was constructed. Pulmonary edema fluid spectra collected from eight new forensic autopsy cases that did not participate in the construction of the diagnostic model were predicted using the model. The results showed the causes of death of all these eight cases were correctly classified. In conclusion, this preliminary study demonstrates that FTIR spectroscopy in combination with chemometrics could be a promising approach for the postmortem diagnosis of fatal hypothermia.
Collapse
Affiliation(s)
- Hancheng Lin
- Department of Forensic Pathology, Xi'an Jiaotong University, Xi'an, 710061, China
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, 200063, China
| | - Xiangshen Guo
- Forensic Medicine School, China Medical University, Shenyang, 110122, China
| | - Yiwen Luo
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, 200063, China
| | - Yijiu Chen
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, 200063, China
| | - Rui Zhao
- Forensic Medicine School, China Medical University, Shenyang, 110122, China
| | - Dawei Guan
- Forensic Medicine School, China Medical University, Shenyang, 110122, China
| | - Zhenyuan Wang
- Department of Forensic Pathology, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ping Huang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, 200063, China
| |
Collapse
|