1
|
Cuesta-Aguirre DR, Malgosa A, Santos C. An easy-to-use pipeline to analyze amplicon-based Next Generation Sequencing results of human mitochondrial DNA from degraded samples. PLoS One 2024; 19:e0311115. [PMID: 39570888 PMCID: PMC11581256 DOI: 10.1371/journal.pone.0311115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/12/2024] [Indexed: 11/24/2024] Open
Abstract
Genome and transcriptome examinations have become more common due to Next-Generation Sequencing (NGS), which significantly increases throughput and depth coverage while reducing costs and time. Mitochondrial DNA (mtDNA) is often the marker of choice in degraded samples from archaeological and forensic contexts, as its higher number of copies can improve the success of the experiment. Among other sequencing strategies, amplicon-based NGS techniques are currently being used to obtain enough data to be analyzed. There are some pipelines designed for the analysis of ancient mtDNA samples and others for the analysis of amplicon data. However, these pipelines pose a challenge for non-expert users and cannot often address both ancient and forensic DNA particularities and amplicon-based sequencing simultaneously. To overcome these challenges, a user-friendly bioinformatic tool was developed to analyze the non-coding region of human mtDNA from degraded samples recovered in archaeological and forensic contexts. The tool can be easily modified to fit the specifications of other amplicon-based NGS experiments. A comparative analysis between two tools, MarkDuplicates from Picard and dedup parameter from fastp, both designed for duplicate removal was conducted. Additionally, various thresholds of PMDtools, a specialized tool designed for extracting reads affected by post-mortem damage, were used. Finally, the depth coverage of each amplicon was correlated with its level of damage. The results obtained indicated that, for removing duplicates, dedup is a better tool since retains more non-repeated reads, that are removed by MarkDuplicates. On the other hand, a PMDS = 1 in PMDtools was the threshold that allowed better differentiation between present-day and ancient samples, in terms of damage, without losing too many reads in the process. These two bioinformatic tools were added to a pipeline designed to obtain both haplotype and haplogroup of mtDNA. Furthermore, the pipeline presented in the present study generates information about the quality and possible contamination of the sample. This pipeline is designed to automatize mtDNA analysis, however, particularly for ancient samples, some manual analyses may be required to fully validate results since the amplicons that used to be more easily recovered were the ones that had fewer reads with damage, indicating that special care must be taken for poor recovered samples.
Collapse
Affiliation(s)
- Daniel R. Cuesta-Aguirre
- Research Group in Biological Anthropology, Biological Anthropology Unit, Department of Animal Biology, Vegetal Biology and Ecology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Assumpció Malgosa
- Research Group in Biological Anthropology, Biological Anthropology Unit, Department of Animal Biology, Vegetal Biology and Ecology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Cristina Santos
- Research Group in Biological Anthropology, Biological Anthropology Unit, Department of Animal Biology, Vegetal Biology and Ecology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
2
|
Childebayeva A, Zavala EI. Review: Computational analysis of human skeletal remains in ancient DNA and forensic genetics. iScience 2023; 26:108066. [PMID: 37927550 PMCID: PMC10622734 DOI: 10.1016/j.isci.2023.108066] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023] Open
Abstract
Degraded DNA is used to answer questions in the fields of ancient DNA (aDNA) and forensic genetics. While aDNA studies typically center around human evolution and past history, and forensic genetics is often more concerned with identifying a specific individual, scientists in both fields face similar challenges. The overlap in source material has prompted periodic discussions and studies on the advantages of collaboration between fields toward mutually beneficial methodological advancements. However, most have been centered around wet laboratory methods (sampling, DNA extraction, library preparation, etc.). In this review, we focus on the computational side of the analytical workflow. We discuss limitations and considerations to consider when working with degraded DNA. We hope this review provides a framework to researchers new to computational workflows for how to think about analyzing highly degraded DNA and prompts an increase of collaboration between the forensic genetics and aDNA fields.
Collapse
Affiliation(s)
- Ainash Childebayeva
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Anthropology, University of Kansas, Lawrence, KS, USA
| | - Elena I. Zavala
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Biology, University of Oregon, Eugene, OR, USA
| |
Collapse
|
3
|
Vinueza-Espinosa DC, Cuesta-Aguirre DR, Malgosa A, Santos C. Mitochondrial DNA control region typing from highly degraded skeletal remains by single-multiplex next-generation sequencing. Electrophoresis 2023; 44:1423-1434. [PMID: 37379235 DOI: 10.1002/elps.202200052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2023] [Accepted: 06/08/2023] [Indexed: 06/30/2023]
Abstract
Poor nuclear DNA preservation from highly degraded skeletal remains is the most limiting factor for the genetic identification of individuals. Mitochondrial DNA (mtDNA) typing, and especially of the control region (CR), using next-generation sequencing (NGS), enables retrieval of valuable genetic information in forensic contexts where highly degraded human skeletal remains are the only source of genetic material. Currently, NGS commercial kits can type all mtDNA-CR in fewer steps than the conventional Sanger technique. The PowerSeq CRM Nested System kit (Promega Corporation) employs a nested multiplex-polymerase chain reaction (PCR) strategy to amplify and index all mtDNA-CR in a single reaction. Our study analyzes the success of mtDNA-CR typing of highly degraded human skeletons using the PowerSeq CRM Nested System kit. We used samples from 41 individuals from different time periods to test three protocols (M1, M2, and M3) based on modifications of PCR conditions. To analyze the detected variants, two bioinformatic procedures were compared: an in-house pipeline and the GeneMarker HTS software. The results showed that many samples were not analyzed when the standard protocol (M1) was used. In contrast, the M3 protocol, which includes 35 PCR cycles and longer denaturation and extension steps, successfully recovered the mtDNA-CR from highly degraded skeletal samples. Mixed base profiles and the percentage of damaged reads were both indicators of possible contamination and can provide better results if used together. Furthermore, our freely available in-house pipeline can provide variants concordant with the forensic software.
Collapse
Affiliation(s)
- Diana C Vinueza-Espinosa
- Research Group in Biological Anthropology, Biological Anthropology Unit, Department of Animal Biology, Vegetal Biology and Ecology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Daniel R Cuesta-Aguirre
- Research Group in Biological Anthropology, Biological Anthropology Unit, Department of Animal Biology, Vegetal Biology and Ecology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Assumpció Malgosa
- Research Group in Biological Anthropology, Biological Anthropology Unit, Department of Animal Biology, Vegetal Biology and Ecology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Cristina Santos
- Research Group in Biological Anthropology, Biological Anthropology Unit, Department of Animal Biology, Vegetal Biology and Ecology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
4
|
Canale LC, McElhoe JA, Dimick G, DeHeer KM, Beckert J, Holland MM. Routine Mitogenome MPS Analysis from 1 and 5 mm of Rootless Human Hair. Genes (Basel) 2022; 13:2144. [PMID: 36421819 PMCID: PMC9690917 DOI: 10.3390/genes13112144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/14/2022] [Indexed: 08/16/2023] Open
Abstract
While hair shafts are a common evidence type in forensic cases, they are often excluded from DNA analysis due to their limited DNA quantity and quality. Mitochondrial (mt) DNA sequencing is the method of choice when working with rootless hair shaft fragments due to the elevated copy number of mtDNA and the highly degraded nature of nuclear (n) DNA. Using massively parallel sequencing (MPS) of the mitochondrial (mito) genome, we studied the impact of hair age (time since collection) and physical characteristics (hair diameter, medullary structure, and length of hair tested) on mtDNA recovery and MPS data quality. Hair shaft cuttings of 1 and 5 mm from hairs less than five years to 46 years of age from 60 donors were characterized microscopically. Mitogenome sequences were generated using the Promega PowerSeqTM Whole Mito System prototype kit and the Illumina MiSeq instrument. Reportable mitogenome sequences were obtained from all hairs up to 27 years of age (37 donors), with at least 98% of the mitogenome reported for more than 94% of the 74 hair samples analyzed; the minimum reported sequence was 88%. Furthermore, data from the 1 and 5 mm replicates gave concordant haplotypes. As expected, mtDNA yield decreased, mtDNA degradation increased, and mitogenome MPS data quality declined as the age of the hair increased. Hair diameter and medullary structure had minimal impact on yield and data quality. Our findings support that MPS is a robust and reliable method for routinely generating mitogenome sequences from 1 and 5 mm hair shaft samples up to 27 years of age, which is of interest to the forensic community, biological anthropologists, and medical geneticists.
Collapse
Affiliation(s)
- Lauren C. Canale
- Forensic Science Program, Department of Biochemistry & Molecular Biology, Eberly College of Science, Pennsylvania State University, University Park, PA 16802, USA
| | - Jennifer A. McElhoe
- Forensic Science Program, Department of Biochemistry & Molecular Biology, Eberly College of Science, Pennsylvania State University, University Park, PA 16802, USA
| | - Gloria Dimick
- Mitotyping Technologies, 2565 Park Center Blvd., Suite 200, State College, PA 16801, USA
| | | | - Jason Beckert
- Microtrace 790 Fletcher Drive, Suite 106, Elgin, IL 60123, USA
| | - Mitchell M. Holland
- Forensic Science Program, Department of Biochemistry & Molecular Biology, Eberly College of Science, Pennsylvania State University, University Park, PA 16802, USA
- Mitotyping Technologies, 2565 Park Center Blvd., Suite 200, State College, PA 16801, USA
| |
Collapse
|
5
|
Gutierrez R, Roman MG, Harrel M, Hughes S, LaRue B, Houston R. Assessment of the ForenSeq mtDNA control region kit and comparison of orthogonal technologies. Forensic Sci Int Genet 2022; 59:102721. [DOI: 10.1016/j.fsigen.2022.102721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/13/2022] [Accepted: 05/08/2022] [Indexed: 11/04/2022]
|
6
|
McElhoe JA, Wilton PR, Parson W, Holland MM. Exploring statistical weight estimates for mitochondrial DNA matches involving heteroplasmy. Int J Legal Med 2022; 136:671-685. [PMID: 35243529 DOI: 10.1007/s00414-022-02774-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/12/2022] [Indexed: 11/26/2022]
Abstract
Massively parallel sequencing (MPS) of mitochondrial (mt) DNA allows forensic laboratories to report heteroplasmy on a routine basis. Statistical approaches will be needed to determine the relative frequency of observing an mtDNA haplotype when including the presence of a heteroplasmic site. Here, we examined 1301 control region (CR) sequences, collected from individuals in four major population groups (European, African, Asian, and Latino), and covering 24 geographically distributed haplogroups, to assess the rates of point heteroplasmy (PHP) on an individual and nucleotide position (np) basis. With a minor allele frequency (MAF) threshold of 2%, the data was similar across population groups, with an overall PHP rate of 37.7%, and the majority of heteroplasmic individuals (77.3%) having only one site of heteroplasmy. The majority (75.2%) of identified PHPs had an MAF of 2-10%, and were observed at 12.6% of the nps across the CR. Both the broad and phylogenetic testing suggested that in many cases the low number of observations of heteroplasmy at any one np results in a lack of statistical association. The posterior frequency estimates, which skew conservative to a degree depending on the sample size in a given haplogroup, had a mean of 0.152 (SD 0.134) and ranged from 0.031 to 0.83. As expected, posterior frequency estimates decreased in accordance with 1/n as the sample size (n) increased. This provides a proposed conservative statistical framework for assessing haplotype/heteroplasmy matches when applying an MPS technique in forensic cases and will allow for continual refinement as more data is generated, both within the CR and across the mitochondrial genome.
Collapse
Affiliation(s)
- Jennifer A McElhoe
- Department of Biochemistry & Molecular Biology, Forensic Science Program, The Pennsylvania State University, University Park, 014 Thomas Building, State College, PA, 16802, USA.
| | - Peter R Wilton
- Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA
- 23andMe Inc, Sunnyvale, CA, 94086, USA
| | - Walther Parson
- Department of Biochemistry & Molecular Biology, Forensic Science Program, The Pennsylvania State University, University Park, 014 Thomas Building, State College, PA, 16802, USA
- Institute of Legal Medicine, Medical University of Innsbruck, Müllerstraße 44, 6020, Innsbruck, Austria
| | - Mitchell M Holland
- Department of Biochemistry & Molecular Biology, Forensic Science Program, The Pennsylvania State University, University Park, 014 Thomas Building, State College, PA, 16802, USA
| |
Collapse
|
7
|
Zavala EI, Thomas JT, Sturk-Andreaggi K, Daniels-Higginbotham J, Meyers KK, Barrit-Ross S, Aximu-Petri A, Richter J, Nickel B, Berg GE, McMahon TP, Meyer M, Marshall C. Ancient DNA Methods Improve Forensic DNA Profiling of Korean War and World War II Unknowns. Genes (Basel) 2022; 13:genes13010129. [PMID: 35052469 PMCID: PMC8774965 DOI: 10.3390/genes13010129] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 02/01/2023] Open
Abstract
The integration of massively parallel sequencing (MPS) technology into forensic casework has been of particular benefit to the identification of unknown military service members. However, highly degraded or chemically treated skeletal remains often fail to provide usable DNA profiles, even with sensitive mitochondrial (mt) DNA capture and MPS methods. In parallel, the ancient DNA field has developed workflows specifically for degraded DNA, resulting in the successful recovery of nuclear DNA and mtDNA from skeletal remains as well as sediment over 100,000 years old. In this study we use a set of disinterred skeletal remains from the Korean War and World War II to test if ancient DNA extraction and library preparation methods improve forensic DNA profiling. We identified an ancient DNA extraction protocol that resulted in the recovery of significantly more human mtDNA fragments than protocols previously used in casework. In addition, utilizing single-stranded rather than double-stranded library preparation resulted in increased attainment of reportable mtDNA profiles. This study emphasizes that the combination of ancient DNA extraction and library preparation methods evaluated here increases the success rate of DNA profiling, and likelihood of identifying historical remains.
Collapse
Affiliation(s)
- Elena I. Zavala
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany; (A.A.-P.); (J.R.); (B.N.); (M.M.)
- Correspondence: (E.I.Z.); (C.M.)
| | - Jacqueline Tyler Thomas
- Armed Forces Medical Examiner System’s Armed Forces DNA Identification Laboratory (AFMES-AFDIL), Dover Air Force Base, Dover, DE 19902, USA; (J.T.T.); (K.S.-A.); (J.D.-H.); (K.K.M.); (S.B.-R.); (T.P.M.)
- SNA International, Contractor Supporting the Armed Forces Medical Examiner System, Alexandria, VA 22314, USA
| | - Kimberly Sturk-Andreaggi
- Armed Forces Medical Examiner System’s Armed Forces DNA Identification Laboratory (AFMES-AFDIL), Dover Air Force Base, Dover, DE 19902, USA; (J.T.T.); (K.S.-A.); (J.D.-H.); (K.K.M.); (S.B.-R.); (T.P.M.)
- SNA International, Contractor Supporting the Armed Forces Medical Examiner System, Alexandria, VA 22314, USA
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 08 Uppsala, Sweden
| | - Jennifer Daniels-Higginbotham
- Armed Forces Medical Examiner System’s Armed Forces DNA Identification Laboratory (AFMES-AFDIL), Dover Air Force Base, Dover, DE 19902, USA; (J.T.T.); (K.S.-A.); (J.D.-H.); (K.K.M.); (S.B.-R.); (T.P.M.)
- SNA International, Contractor Supporting the Armed Forces Medical Examiner System, Alexandria, VA 22314, USA
| | - Kerriann K. Meyers
- Armed Forces Medical Examiner System’s Armed Forces DNA Identification Laboratory (AFMES-AFDIL), Dover Air Force Base, Dover, DE 19902, USA; (J.T.T.); (K.S.-A.); (J.D.-H.); (K.K.M.); (S.B.-R.); (T.P.M.)
- SNA International, Contractor Supporting the Armed Forces Medical Examiner System, Alexandria, VA 22314, USA
| | - Suzanne Barrit-Ross
- Armed Forces Medical Examiner System’s Armed Forces DNA Identification Laboratory (AFMES-AFDIL), Dover Air Force Base, Dover, DE 19902, USA; (J.T.T.); (K.S.-A.); (J.D.-H.); (K.K.M.); (S.B.-R.); (T.P.M.)
| | - Ayinuer Aximu-Petri
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany; (A.A.-P.); (J.R.); (B.N.); (M.M.)
| | - Julia Richter
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany; (A.A.-P.); (J.R.); (B.N.); (M.M.)
| | - Birgit Nickel
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany; (A.A.-P.); (J.R.); (B.N.); (M.M.)
| | - Gregory E. Berg
- Defense Personnel Accounting Agency, Central Identification Laboratory, Hickam Air Force Base, Oahu, HI 96853, USA;
| | - Timothy P. McMahon
- Armed Forces Medical Examiner System’s Armed Forces DNA Identification Laboratory (AFMES-AFDIL), Dover Air Force Base, Dover, DE 19902, USA; (J.T.T.); (K.S.-A.); (J.D.-H.); (K.K.M.); (S.B.-R.); (T.P.M.)
- SNA International, Contractor Supporting the Armed Forces Medical Examiner System, Alexandria, VA 22314, USA
| | - Matthias Meyer
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany; (A.A.-P.); (J.R.); (B.N.); (M.M.)
| | - Charla Marshall
- Armed Forces Medical Examiner System’s Armed Forces DNA Identification Laboratory (AFMES-AFDIL), Dover Air Force Base, Dover, DE 19902, USA; (J.T.T.); (K.S.-A.); (J.D.-H.); (K.K.M.); (S.B.-R.); (T.P.M.)
- SNA International, Contractor Supporting the Armed Forces Medical Examiner System, Alexandria, VA 22314, USA
- Forensic Science Program, Pennsylvania State University, State College, PA 16802, USA
- Correspondence: (E.I.Z.); (C.M.)
| |
Collapse
|
8
|
Marshall C, Parson W. Interpreting NUMTs in forensic genetics: Seeing the forest for the trees. Forensic Sci Int Genet 2021; 53:102497. [PMID: 33740708 DOI: 10.1016/j.fsigen.2021.102497] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 01/29/2023]
Abstract
Nuclear mitochondrial DNA (mtDNA) segments (NUMTs) were discovered shortly after sequencing the first human mitochondrial genome. They have earlier been considered to represent archaic elements of ancient insertion events, but modern sequencing technologies and growing databases of mtDNA and NUMT sequences confirm that they are abundant and some of them phylogenetically young. Here, we build upon mtDNA/NUMT review articles published in the mid 2010 s and focus on the distinction of NUMTs and other artefacts that can be observed in aligned sequence reads, such as mixtures (contamination), point heteroplasmy, sequencing error and cytosine deamination. We show practical examples of the effect of the mtDNA enrichment method on the representation of NUMTs in the mapped sequence data and discuss methods to bioinformatically filter NUMTs from mtDNA reads.
Collapse
Affiliation(s)
- Charla Marshall
- Armed Forces Medical Examiner System's Armed Forces DNA Identification Laboratory (AFMES-AFDIL), Dover Air Force Base, DE 19902, USA; SNA International, Contractor Supporting the AFMES-AFDIL, Alexandria, VA 22314, USA; Forensic Science Program, The Pennsylvania State University, University Park, PA 16802, USA
| | - Walther Parson
- Forensic Science Program, The Pennsylvania State University, University Park, PA 16802, USA; Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| |
Collapse
|