1
|
Mahmoudi F, McCarthy M, Nelson F. Functional MRI and cognition in multiple sclerosis-Where are we now? J Neuroimaging 2025; 35:e13252. [PMID: 39636088 PMCID: PMC11619555 DOI: 10.1111/jon.13252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024] Open
Abstract
Multiple sclerosis-related cognitive impairment (MSrCI) affects most patients with multiple sclerosis (MS), significantly contributing to disability and socioeconomic challenges. MSrCI manifests across all disease stages, mainly impacting working memory, information processing, and attention. To date, the underlying mechanisms of MSrCI remain unclear, with its pathogenesis considered multifactorial. While conventional MRI findings correlate with MSrCI, there is no consensus on reliable imaging metrics to detect or diagnose cognitive impairment (CI). Functional MRI (fMRI) has provided unique insights into the brain's neuroplasticity mechanisms, revealing evidence of compensatory mechanisms in response to tissue damage, both beneficial and maladaptive. This review summarizes the current literature on the application of resting-state fMRI (rs-fMRI) and task-based fMRI (tb-fMRI) in understanding neuroplasticity and its relationship with cognitive changes in people with MS (pwMS). Searches of databases, including PubMed/Medline, Embase, Scopus, and the Web of Science, were conducted for the most recent fMRI cognitive studies in pwMS. Key findings ifrom rs-fMRI studies reveal disruptions in brain connectivity and hub integration, leading to CI due to decreased network efficiency. tb-fMRI studies highlight abnormal brain activation patterns in pwMS, with evidence of increased fMRI activity in earlier disease stages as a beneficial compensatory response, followed by reduced activation correlating with increased lesion burden and cognitive decline as the disease progresses. This suggests a gradual exhaustion of compensatory mechanisms over time. These findings support fMRI not only as a diagnostic tool for MSrCI but also as a potential imaging biomarker to improve our understanding of disease progression.
Collapse
Affiliation(s)
| | | | - Flavia Nelson
- Department of NeurologyUniversity of MiamiMiamiFloridaUSA
| |
Collapse
|
2
|
Rocca MA, Schoonheim MM, Valsasina P, Geurts JJG, Filippi M. Task- and resting-state fMRI studies in multiple sclerosis: From regions to systems and time-varying analysis. Current status and future perspective. Neuroimage Clin 2022; 35:103076. [PMID: 35691253 PMCID: PMC9194954 DOI: 10.1016/j.nicl.2022.103076] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 01/12/2023]
Abstract
Functional MRI is able to detect adaptive and maladaptive abnormalities at different MS stages. Increased fMRI activity is a feature of early MS, while progressive exhaustion of adaptive mechanisms is detected later on in the disease. Collapse of long-range connections and impaired hub integration characterize MS network reorganization. Time-varying connectivity analysis provides useful and complementary pieces of information to static functional connectivity. New perspectives might be the use of multimodal MRI and artificial intelligence.
Multiple sclerosis (MS) is a neurological disorder affecting the central nervous system and features extensive functional brain changes that are poorly understood but relate strongly to clinical impairments. Functional magnetic resonance imaging (fMRI) is a non-invasive, powerful technique able to map activity of brain regions and to assess how such regions interact for an efficient brain network. FMRI has been widely applied to study functional brain changes in MS, allowing to investigate functional plasticity consequent to disease-related structural injury. The first studies in MS using active fMRI tasks mainly aimed to study such plastic changes by identifying abnormal activity in salient brain regions (or systems) involved by the task. In later studies the focus shifted towards resting state (RS) functional connectivity (FC) studies, which aimed to map large-scale functional networks of the brain and to establish how MS pathology impairs functional integration, eventually leading to the hypothesized network collapse as patients clinically progress. This review provides a summary of the main findings from studies using task-based and RS fMRI and illustrates how functional brain alterations relate to clinical disability and cognitive deficits in this condition. We also give an overview of longitudinal studies that used task-based and RS fMRI to monitor disease evolution and effects of motor and cognitive rehabilitation. In addition, we discuss the results of studies using newer technologies involving time-varying FC to investigate abnormal dynamism and flexibility of network configurations in MS. Finally, we show some preliminary results from two recent topics (i.e., multimodal MRI analysis and artificial intelligence) that are receiving increasing attention. Together, these functional studies could provide new (conceptual) insights into disease stage-specific mechanisms underlying progression in MS, with recommendations for future research.
Collapse
Affiliation(s)
- Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| | - Menno M Schoonheim
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Paola Valsasina
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Jeroen J G Geurts
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
3
|
Milosevic M, Nakanishi T, Sasaki A, Yamaguchi A, Nomura T, Popovic MR, Nakazawa K. Cortical Re-organization After Traumatic Brain Injury Elicited Using Functional Electrical Stimulation Therapy: A Case Report. Front Neurosci 2021; 15:693861. [PMID: 34489624 PMCID: PMC8417438 DOI: 10.3389/fnins.2021.693861] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/26/2021] [Indexed: 01/17/2023] Open
Abstract
Functional electrical stimulation therapy (FEST) can improve motor function after neurological injuries. However, little is known about cortical changes after FEST and weather it can improve motor function after traumatic brain injury (TBI). Our study examined cortical changes and motor improvements in one male participant with chronic TBI suffering from mild motor impairment affecting the right upper-limb during 3-months of FEST and during 3-months follow-up. In total, 36 sessions of FEST were applied to enable upper-limb grasping and reaching movements. Short-term assessments carried out using transcranial magnetic stimulation (TMS) showed reduced cortical silent period (CSP), indicating cortical and/or subcortical inhibition after each intervention. At the same time, no changes in motor evoked potentials (MEPs) were observed. Long-term assessments showed increased MEP corticospinal excitability after 12-weeks of FEST, which seemed to remain during both follow-ups, while no changes in CSP were observed. Similarly, long-term assessments using TMS mapping showed larger hand MEP area in the primary motor cortex (M1) after 12-weeks of FEST as well as during both follow-ups. Corroborating TMS results, functional magnetic resonance imaging (fMRI) data showed M1 activations increased during hand grip and finger pinch tasks after 12-weeks of FEST, while gradual reduction of activity compared to after the intervention was seen during follow-ups. Widespread changes were seen not only in the M1, but also sensory, parietal rostroventral, supplementary motor, and premotor areas in both contralateral and ipsilateral hemispheres, especially during the finger pinch task. Drawing test performance showed improvements after the intervention and during follow-ups. Our findings suggest that task-specific and repetitive FEST can effectively increase cortical activations by integrating voluntary motor commands and sensorimotor network through functional electrical stimulation (FES). Overall, our results demonstrated cortical re-organization in an individual with chronic TBI after FEST.
Collapse
Affiliation(s)
- Matija Milosevic
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, Osaka, Japan
| | - Tomoya Nakanishi
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Atsushi Sasaki
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Akiko Yamaguchi
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Taishin Nomura
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, Osaka, Japan
| | - Milos R Popovic
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,KITE, Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada.,CRANIA, University Health Network, Toronto, ON, Canada
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Strik M, Shanahan CJ, van der Walt A, Boonstra FMC, Glarin R, Galea MP, Kilpatrick TJ, Geurts JJG, Cleary JO, Schoonheim MM, Kolbe SC. Functional correlates of motor control impairments in multiple sclerosis: A 7 Tesla task functional MRI study. Hum Brain Mapp 2021; 42:2569-2582. [PMID: 33666314 PMCID: PMC8090767 DOI: 10.1002/hbm.25389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/10/2021] [Accepted: 02/16/2021] [Indexed: 02/01/2023] Open
Abstract
Upper and lower limb impairments are common in people with multiple sclerosis (pwMS), yet difficult to clinically identify in early stages of disease progression. Tasks involving complex motor control can potentially reveal more subtle deficits in early stages, and can be performed during functional MRI (fMRI) acquisition, to investigate underlying neural mechanisms, providing markers for early motor progression. We investigated brain activation during visually guided force matching of hand or foot in 28 minimally disabled pwMS (Expanded Disability Status Scale (EDSS) < 4 and pyramidal and cerebellar Kurtzke Functional Systems Scores ≤ 2) and 17 healthy controls (HC) using ultra‐high field 7‐Tesla fMRI, allowing us to visualise sensorimotor network activity in high detail. Task activations and performance (tracking lag and error) were compared between groups, and correlations were performed. PwMS showed delayed (+124 s, p = .002) and more erroneous (+0.15 N, p = .001) lower limb tracking, together with lower cerebellar, occipital and superior parietal cortical activation compared to HC. Lower activity within these regions correlated with worse EDSS (p = .034), lower force error (p = .006) and higher lesion load (p < .05). Despite no differences in upper limb task performance, pwMS displayed lower inferior occipital cortical activation. These results demonstrate that ultra‐high field fMRI during complex hand and foot tracking can identify subtle impairments in lower limb movements and upper and lower limb brain activity, and differentiates upper and lower limb impairments in minimally disabled pwMS.
Collapse
Affiliation(s)
- Myrte Strik
- Department of Medicine and Radiology, University of Melbourne, Parkville, Australia.,Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Camille J Shanahan
- Department of Medicine and Radiology, University of Melbourne, Parkville, Australia
| | - Anneke van der Walt
- Department of Neurosciences, Central Clinical School, Monash University, Melbourne, Australia
| | - Frederique M C Boonstra
- Department of Neurosciences, Central Clinical School, Monash University, Melbourne, Australia
| | - Rebecca Glarin
- Department of Medicine and Radiology, University of Melbourne, Parkville, Australia
| | - Mary P Galea
- Department of Medicine and Radiology, University of Melbourne, Parkville, Australia
| | - Trevor J Kilpatrick
- Florey Institute of Neuroscience and Mental Health, Parkville, Australia.,Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia.,Department of Neurology, Royal Melbourne Hospital, Parkville, Australia
| | - Jeroen J G Geurts
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Jon O Cleary
- Department of Radiology, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Menno M Schoonheim
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Scott C Kolbe
- Department of Medicine and Radiology, University of Melbourne, Parkville, Australia.,Department of Neurosciences, Central Clinical School, Monash University, Melbourne, Australia
| |
Collapse
|
5
|
Iandolo R, Bommarito G, Falcitano L, Schiavi S, Piaggio N, Mancardi GL, Casadio M, Inglese M. Position Sense Deficits at the Lower Limbs in Early Multiple Sclerosis: Clinical and Neural Correlates. Neurorehabil Neural Repair 2020; 34:260-270. [PMID: 32028846 DOI: 10.1177/1545968320902126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background/Objective. Position sense, defined as the ability to identify joint and limb position in space, is crucial for balance and gait but has received limited attention in patients with multiple sclerosis (MS). We investigated lower limb position sense deficits, their neural correlates, and their effects on standing balance in patients with early MS. Methods. A total of 24 patients with early relapsing-remitting MS and 24 healthy controls performed ipsilateral and contralateral matching tasks with the right foot during functional magnetic resonance imaging. Corpus callosum (CC) integrity was estimated with diffusion tensor imaging. Patients also underwent an assessment of balance during quiet standing. We investigated differences between the 2 groups and the relations among proprioceptive errors, balance performance, and functional/structural correlates. Results. During the contralateral matching task, patients demonstrated a higher matching error than controls, which correlated with the microstructural damage of the CC and with balance ability. In contrast, during the ipsilateral task, the 2 groups showed a similar matching performance, but patients displayed a functional reorganization involving the parietal areas. Neural activity in the frontoparietal regions correlated with the performance during both proprioceptive matching tasks and quiet standing. Conclusion. Patients with early MS had subtle, clinically undetectable, position sense deficits at the lower limbs that, nevertheless, affected standing balance. Functional changes allowed correct proprioception processing during the ipsilateral matching task but not during the more demanding bilateral task, possibly because of damage to the CC. These findings provide new insights into the mechanisms underlying disability in MS and could influence the design of neurorehabilitation protocols.
Collapse
Affiliation(s)
- Riccardo Iandolo
- RBCS Department , Istituto Italiano di Tecnologia, Genova, Italy
- Department of Informatics, Bioengeneering, Robotics and System Engineering (DIBRIS), University of Genoa, Italy
| | - Giulia Bommarito
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, (DINOGMI) University of Genova, Italy
| | - Laura Falcitano
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, (DINOGMI) University of Genova, Italy
| | - Simona Schiavi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, (DINOGMI) University of Genova, Italy
| | - Niccolò Piaggio
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, (DINOGMI) University of Genova, Italy
| | - Giovanni Luigi Mancardi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, (DINOGMI) University of Genova, Italy
| | - Maura Casadio
- RBCS Department , Istituto Italiano di Tecnologia, Genova, Italy
- Department of Informatics, Bioengeneering, Robotics and System Engineering (DIBRIS), University of Genoa, Italy
| | - Matilde Inglese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, (DINOGMI) University of Genova, Italy
- Ospedale Policlinico San Martino-IRCCS, Genova, Italy
| |
Collapse
|
6
|
The Role of fMRI in the Assessment of Neuroplasticity in MS: A Systematic Review. Neural Plast 2018; 2018:3419871. [PMID: 30693023 PMCID: PMC6332922 DOI: 10.1155/2018/3419871] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/05/2018] [Indexed: 11/17/2022] Open
Abstract
Neuroplasticity, which is the ability of the brain to adapt to internal and external environmental changes, physiologically occurs during growth and in response to damage. The brain's response to damage is of particular interest in multiple sclerosis, a chronic disease characterized by inflammatory and neurodegenerative damage to the central nervous system. Functional MRI (fMRI) is a tool that allows functional changes related to the disease and to its evolution to be studied in vivo. Several studies have shown that abnormal brain recruitment during the execution of a task starts in the early phases of multiple sclerosis. The increased functional activation during a specific task observed has been interpreted mainly as a mechanism of adaptive plasticity designed to contrast the increase in tissue damage. More recent fMRI studies, which have focused on the activity of brain regions at rest, have yielded nonunivocal results, suggesting that changes in functional brain connections represent mechanisms of either adaptive or maladaptive plasticity. The few longitudinal studies available to date on disease evolution have also yielded discrepant results that are likely to depend on the clinical features considered and the length of the follow-up. Lastly, fMRI has been used in interventional studies to investigate plastic changes induced by pharmacological therapy or rehabilitation, though whether such changes represent a surrogate of neuroplasticity remains unclear. The aim of this paper is to systematically review the existing literature in order to provide an overall description of both the neuroplastic process itself and the evolution in the use of fMRI techniques as a means of assessing neuroplasticity. The quantitative and qualitative approach adopted here ensures an objective analysis of published, peer-reviewed research and yields an overview of up-to-date knowledge.
Collapse
|
7
|
Fritz NE, Kloos AD, Kegelmeyer DA, Kaur P, Nichols-Larsen DS. Supplementary motor area connectivity and dual-task walking variability in multiple sclerosis. J Neurol Sci 2018; 396:159-164. [PMID: 30472552 DOI: 10.1016/j.jns.2018.11.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/15/2018] [Accepted: 11/09/2018] [Indexed: 01/21/2023]
Abstract
BACKGROUND Despite the prevalence of dual-task (e.g., walking while talking) deficits in people with multiple sclerosis (MS), no neuroimaging studies to date have examined neuronal networks used for dual-task processing or specific brain areas related to dual-task performance in this population. A better understanding of the relationship among underlying brain areas and dual-task performance may improve targeted rehabilitation programs. The objective of this study was to examine relationships between neuroimaging measures and clinical measures of dual-task performance, and reported falls in persons with MS. MATERIALS AND METHODS All participants completed measures of dual-task performance, a fall history, and neuroimaging on a 3 T MRI scanner. Spearman correlations were used to examine relationships among dual-task performance, falls and neuroimaging measures. RESULTS Eighteen females with relapsing-remitting MS [mean age = 45.5 ± 8.2 SD; mean symptom duration = 12.3 ± 6.7 years; Expanded Disability Status Scale median 2.25 (range 1.5-4)] participated in this study. Structural imaging measures of supplementary motor area (SMA) interhemispheric connectivity were significantly related to dual-task walking variability. CONCLUSIONS The SMA interhemispheric tract may play a role in dual-task performance. Structural neuroimaging may be a useful adjunct to clinical measures to predict performance and provide information about recovery patterns in MS. Functional recovery can be challenging to objectively report in MS; diffusion tensor imaging could show microstructural improvements and suggest improved connectivity.
Collapse
Affiliation(s)
- Nora E Fritz
- Program in Physical Therapy and Department of Neurology, Wayne State University, Detroit, MI, United States; Division of Physical Therapy, The Ohio State University, Columbus, OH, United States; School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, United States.
| | - Anne D Kloos
- Division of Physical Therapy, The Ohio State University, Columbus, OH, United States; School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, United States
| | - Deborah A Kegelmeyer
- Division of Physical Therapy, The Ohio State University, Columbus, OH, United States; School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, United States
| | - Parminder Kaur
- School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, United States
| | - Deborah S Nichols-Larsen
- School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
8
|
Musella A, Gentile A, Rizzo FR, De Vito F, Fresegna D, Bullitta S, Vanni V, Guadalupi L, Stampanoni Bassi M, Buttari F, Centonze D, Mandolesi G. Interplay Between Age and Neuroinflammation in Multiple Sclerosis: Effects on Motor and Cognitive Functions. Front Aging Neurosci 2018; 10:238. [PMID: 30135651 PMCID: PMC6092506 DOI: 10.3389/fnagi.2018.00238] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/20/2018] [Indexed: 01/09/2023] Open
Abstract
Aging is one of the main risk factors for the development of many neurodegenerative diseases. Emerging evidence has acknowledged neuroinflammation as potential trigger of the functional changes occurring during normal and pathological aging. Two main determinants have been recognized to cogently contribute to neuroinflammation in the aging brain, i.e., the systemic chronic low-grade inflammation and the decline in the regulation of adaptive and innate immune systems (immunosenescence, ISC). The persistence of the inflammatory status in the brain in turn may cause synaptopathy and synaptic plasticity impairments that underlie both motor and cognitive dysfunctions. Interestingly, such inflammation-dependent synaptic dysfunctions have been recently involved in the pathophysiology of multiple sclerosis (MS). MS is an autoimmune neurodegenerative disease, typically affecting young adults that cause an early and progressive deterioration of both cognitive and motor functions. Of note, recent controlled studies have clearly shown that age at onset modifies prognosis and exerts a significant effect on presenting phenotype, suggesting that aging is a significant factor associated to the clinical course of MS. Moreover, some lines of evidence point to the different impact of age on motor disability and cognitive deficits, being the former most affected than the latter. The precise contribution of aging-related factors to MS neurological disability and the underlying molecular and cellular mechanisms are still unclear. In the present review article, we first emphasize the importance of the neuroinflammatory dependent mechanisms, such as synaptopathy and synaptic plasticity impairments, suggesting their potential exacerbation or acceleration with advancing age in the MS disease. Lastly, we provide an overview of clinical and experimental studies highlighting the different impact of age on motor disability and cognitive decline in MS, raising challenging questions on the putative age-related mechanisms involved.
Collapse
Affiliation(s)
- Alessandra Musella
- Laboratory of Synaptic Immunopathology, IRCCS San Raffaele Pisana, Rome, Italy.,San Raffaele University of Rome, Rome, Italy
| | - Antonietta Gentile
- Laboratory of Synaptic Immunopathology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,Unit of Neurology, Istituto Neurologico Mediterraneo (IRCCS Neuromed), Pozzilli, Italy
| | - Francesca Romana Rizzo
- Laboratory of Synaptic Immunopathology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Francesca De Vito
- Laboratory of Synaptic Immunopathology, IRCCS San Raffaele Pisana, Rome, Italy.,Laboratory of Synaptic Immunopathology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Diego Fresegna
- Laboratory of Synaptic Immunopathology, IRCCS San Raffaele Pisana, Rome, Italy.,Laboratory of Synaptic Immunopathology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Silvia Bullitta
- Laboratory of Synaptic Immunopathology, IRCCS San Raffaele Pisana, Rome, Italy.,Laboratory of Synaptic Immunopathology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Valentina Vanni
- Laboratory of Synaptic Immunopathology, IRCCS San Raffaele Pisana, Rome, Italy.,Laboratory of Synaptic Immunopathology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Livia Guadalupi
- Laboratory of Synaptic Immunopathology, IRCCS San Raffaele Pisana, Rome, Italy
| | | | - Fabio Buttari
- Unit of Neurology, Istituto Neurologico Mediterraneo (IRCCS Neuromed), Pozzilli, Italy
| | - Diego Centonze
- Laboratory of Synaptic Immunopathology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,Unit of Neurology, Istituto Neurologico Mediterraneo (IRCCS Neuromed), Pozzilli, Italy
| | - Georgia Mandolesi
- Laboratory of Synaptic Immunopathology, IRCCS San Raffaele Pisana, Rome, Italy.,San Raffaele University of Rome, Rome, Italy
| |
Collapse
|
9
|
Wegrzyk J, Ranjeva JP, Fouré A, Kavounoudias A, Vilmen C, Mattei JP, Guye M, Maffiuletti NA, Place N, Bendahan D, Gondin J. Specific brain activation patterns associated with two neuromuscular electrical stimulation protocols. Sci Rep 2017; 7:2742. [PMID: 28577338 PMCID: PMC5457446 DOI: 10.1038/s41598-017-03188-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 04/27/2017] [Indexed: 11/24/2022] Open
Abstract
The influence of neuromuscular electrical stimulation (NMES) parameters on brain activation has been scarcely investigated. We aimed at comparing two frequently used NMES protocols - designed to vary in the extent of sensory input. Whole-brain functional magnetic resonance imaging was performed in sixteen healthy subjects during wide-pulse high-frequency (WPHF, 100 Hz–1 ms) and conventional (CONV, 25 Hz–0.05 ms) NMES applied over the triceps surae. Each protocol included 20 isometric contractions performed at 10% of maximal force. Voluntary plantar flexions (VOL) were performed as control trial. Mean force was not different among the three protocols, however, total current charge was higher for WPHF than for CONV. All protocols elicited significant activations of the sensorimotor network, cerebellum and thalamus. WPHF resulted in lower deactivation in the secondary somatosensory cortex and precuneus. Bilateral thalami and caudate nuclei were hyperactivated for CONV. The modulation of the NMES parameters resulted in differently activated/deactivated regions related to total current charge of the stimulation but not to mean force. By targeting different cerebral brain regions, the two NMES protocols might allow for individually-designed rehabilitation training in patients who can no longer execute voluntary movements.
Collapse
Affiliation(s)
- Jennifer Wegrzyk
- Aix Marseille Univ, CNRS, CRMBM, UMR 7339, 13385, Marseille, France
| | | | - Alexandre Fouré
- Aix Marseille Univ, CNRS, CRMBM, UMR 7339, 13385, Marseille, France
| | - Anne Kavounoudias
- Aix Marseille Univ, CNRS, Laboratoire Neurosciences Intégratives et Adaptatives, UMR 7260, 13385, Marseille, France
| | | | - Jean-Pierre Mattei
- Aix Marseille Univ, CNRS, CRMBM, UMR 7339, 13385, Marseille, France.,AP-HM, Hôpital de Sainte Marguerite, Service de Rhumatologie, Pôle Appareil Locomoteur, 13005, Marseille, France
| | - Maxime Guye
- Aix Marseille Univ, CNRS, CRMBM, UMR 7339, 13385, Marseille, France.,AP-HM, Hôpital de la Timone, CEMEREM, Pôle Imagerie Médicale, 13005, Marseille, France
| | | | - Nicolas Place
- University of Lausanne, Faculty of Biology and Medicine, Institute of Sport Sciences and Department of Physiology, Lausanne, Switzerland
| | - David Bendahan
- Aix Marseille Univ, CNRS, CRMBM, UMR 7339, 13385, Marseille, France
| | - Julien Gondin
- Aix Marseille Univ, CNRS, CRMBM, UMR 7339, 13385, Marseille, France. .,Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1217, CNRS UMR 5310, Villeurbanne, France.
| |
Collapse
|
10
|
Dobryakova E, Rocca MA, Valsasina P, DeLuca J, Filippi M. Altered neural mechanisms of cognitive control in patients with primary progressive multiple sclerosis: An effective connectivity study. Hum Brain Mapp 2017; 38:2580-2588. [PMID: 28205364 DOI: 10.1002/hbm.23542] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/16/2017] [Accepted: 02/08/2017] [Indexed: 11/10/2022] Open
Abstract
Primary progressive multiple sclerosis (PPMS) leads to physical and cognitive disability. Specifically, cognitive deficits in PPMS have been explained by both grey matter atrophy and white matter lesions. However, existing research still lacks in the understanding of how the brain of a patient with PPMS functions under cognitive control demands. Thus, the aim of the current study was to examine information integration in patients with PPMS using a search-based effective connectivity method. Fourteen patients with PPMS and 22 age- and gender-matched healthy controls (HC) performed the Stroop task, a cognitively demanding interference task that taxes neural resources required for cognitive control and response inhibition. Results showed that compared to HC, PPMS patients exhibited poor behavioral performance and alterations in information flow, manifested in the form of the loss of top-down connections, reversal of connections, and hyperconnectivity. Significant correlations were observed between connection strengths and behavioral measures. The connection between the posterior parietal cortex (PCC) and left posterior parietal lobule, which was present in both groups, showed a negative correlation with performance accuracy on incongruent trials. The connection between the left dorsolateral prefrontal cortex and PCC showed a positive correlation with performance accuracy on incongruent trials. However, the adaptive nature of this connection was not significant on a behavioral level as the PPMS group performed significantly worse compared to the HC group during the Stroop task. Thus, the current study provides important evidence about effective connectivity patterns that can be characterized as maladaptive cerebral re-organization in the PPMS brain. Hum Brain Mapp 38:2580-2588, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ekaterina Dobryakova
- Neuroimaging Research Unit, Vita-Salute San Raffaele University, Milan, Italy.,Traumatic Brain Injury Research, Kessler Foundation, West Orange, New Jersey
| | - Maria Assunta Rocca
- Neuroimaging Research Unit, Vita-Salute San Raffaele University, Milan, Italy.,Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Paola Valsasina
- Neuroimaging Research Unit, Vita-Salute San Raffaele University, Milan, Italy
| | - John DeLuca
- Traumatic Brain Injury Research, Kessler Foundation, West Orange, New Jersey.,Department of Physical Medicine and Rehabilitation, Rutgers, New Jersey Medical School, Newark, New Jersey
| | - Massimo Filippi
- Neuroimaging Research Unit, Vita-Salute San Raffaele University, Milan, Italy.,Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
11
|
Sharp KG, Gramer R, Page SJ, Cramer SC. Increased Brain Sensorimotor Network Activation after Incomplete Spinal Cord Injury. J Neurotrauma 2016; 34:623-631. [PMID: 27528274 DOI: 10.1089/neu.2016.4503] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
After complete spinal cord injury (SCI), activation during attempted movement of paralyzed limbs is sharply reduced, but after incomplete SCI-the more common form of human injury-it is unknown how attempts to move voluntarily are accompanied by activation of brain motor and sensory networks. Here, we assessed brain activation during ankle movement in subjects with incomplete SCI, among whom voluntary motor function is partially preserved. Adults with incomplete SCI (n = 20) and healthy controls (n = 15) underwent functional magnetic resonance imaging that alternated rest with 0.3-Hz right ankle dorsiflexion. In both subject groups, ankle movement was associated with bilateral activation of primary and secondary sensory and motor areas, with significantly (p < 0.001) greater activation in subjects with SCI within right hemisphere areas, including primary sensorimotor cortex and pre-motor cortex. This result was further evaluated using linear regression analysis with respect to core clinical variables. Poorer locomotor function correlated with larger activation within several right hemisphere areas, including pre- and post-central gyri, possibly reflecting increased movement complexity and effort, whereas longer time post-SCI was associated with larger activation in left post-central gyrus and bilateral supplementary motor area, which may reflect behaviorally useful adaptations. The results indicate that brain adaptations after incomplete SCI differ sharply from complete SCI, are related to functional behavioral status, and evolve with increasing time post-SCI. The results suggest measures that might be useful for understanding and treating incomplete SCI in human subjects.
Collapse
Affiliation(s)
- Kelli G Sharp
- 1 Reeve-Irvine Research Center, University of California , Irvine, Irvine, California.,2 Department of Dance, University of California , Irvine, Irvine, California
| | - Robert Gramer
- 3 Departments of Neurology, Anatomy & Neurobiology, and Physical Medicine & Rehabilitation, University of California , Irvine, Irvine, California
| | - Stephen J Page
- 4 Division of Occupational Therapy, The Ohio State University Medical Center , Columbus, Ohio
| | - Steven C Cramer
- 1 Reeve-Irvine Research Center, University of California , Irvine, Irvine, California.,3 Departments of Neurology, Anatomy & Neurobiology, and Physical Medicine & Rehabilitation, University of California , Irvine, Irvine, California.,5 The Sue and Bill Gross Stem Cell Research Center, University of California , Irvine, Irvine, California
| |
Collapse
|
12
|
The Neural Correlates of Long-Term Carryover following Functional Electrical Stimulation for Stroke. Neural Plast 2016; 2016:4192718. [PMID: 27073701 PMCID: PMC4814690 DOI: 10.1155/2016/4192718] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 01/16/2023] Open
Abstract
Neurorehabilitation effective delivery for stroke is likely to be improved by establishing a mechanistic understanding of how to enhance adaptive plasticity. Functional electrical stimulation is effective at reducing poststroke foot drop; in some patients, the effect persists after therapy has finished with an unknown mechanism. We used fMRI to examine neural correlates of functional electrical stimulation key elements, volitional intent to move and concurrent stimulation, in a group of chronic stroke patients receiving functional electrical stimulation for foot-drop correction. Patients exhibited task-related activation in a complex network, sharing bilateral sensorimotor and supplementary motor activation with age-matched controls. We observed consistent separation of patients with and without carryover effect on the basis of brain responses. Patients who experienced the carryover effect had responses in supplementary motor area that correspond to healthy controls; the interaction between experimental factors in contralateral angular gyrus was seen only in those without carryover. We suggest that the functional electrical stimulation carryover mechanism of action is based on movement prediction and sense of agency/body ownership—the ability of a patient to plan the movement and to perceive the stimulation as a part of his/her own control loop is important for carryover effect to take place.
Collapse
|
13
|
D'Amico E, Leone C, Hayrettin T, Patti F. Can we define a rehabilitation strategy for cognitive impairment in progressive multiple sclerosis? A critical appraisal. Mult Scler 2016; 22:581-9. [PMID: 26920381 DOI: 10.1177/1352458516632066] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 01/17/2016] [Indexed: 01/25/2023]
Abstract
Cognitive impairment (CI) has been shown to be severe in patients with progressive forms of multiple sclerosis (MS), and the most frequently impaired domains are sustained attention, information processing speed, memory, and executive functions. In contrast to relapsing forms of MS, where studies have shown favorable results from cognitive rehabilitation, there is a lack of data on cognitive rehabilitation in progressive forms of MS. A specific approach in assessing CI and in designing and administering rehabilitation training for patients with progressive forms of MS is needed.
Collapse
Affiliation(s)
| | | | - Tumani Hayrettin
- Klinik und PoliklinikfürNeurologie der Universität Ulm, Ulm, Germany
| | | |
Collapse
|
14
|
Pantano P, Petsas N, Tona F, Sbardella E. The Role of fMRI to Assess Plasticity of the Motor System in MS. Front Neurol 2015; 6:55. [PMID: 25852634 PMCID: PMC4360702 DOI: 10.3389/fneur.2015.00055] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 02/27/2015] [Indexed: 01/07/2023] Open
Affiliation(s)
- Patrizia Pantano
- Department of Neurology and Psychiatry, Sapienza University of Rome , Rome , Italy ; IRCCS Neuromed , Pozzilli , Italy
| | - Nikolaos Petsas
- Department of Neurology and Psychiatry, Sapienza University of Rome , Rome , Italy
| | - Francesca Tona
- Department of Neurology and Psychiatry, Sapienza University of Rome , Rome , Italy
| | - Emilia Sbardella
- Department of Neurology and Psychiatry, Sapienza University of Rome , Rome , Italy
| |
Collapse
|
15
|
Iandolo R, Marre I, Bellini A, Bommarito G, Oesingmann N, Fleysher L, Levrero F, Mancardi G, Casadio M, Inglese M. Neural correlates of ankle movements during different motor tasks: A feasibility study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2015:4679-4682. [PMID: 26737338 DOI: 10.1109/embc.2015.7319438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This ongoing study investigates the neural correlates of ankle dorsi-plantar flexion in active, passive, and proprioceptive tasks. Specifically, we investigated two proprioceptive matching tasks that required a simple combination of active and passive ankle movements: (1) a memory-based ipsilateral matching task and (2) a contralateral concurrent matching task. As expected, during the passive tasks, subjects recruited the same brain areas involved in the correspondent active movements (primary motor cortex (M1), premotor cortex (PM) supplementary motor cortex (SMA) and primary somatosensory cortex (S1)), but the activations were lower. Instead, in both the proprioceptive matching tasks, subjects recruited more motor and sensory-motor areas of the brain and the activations were greater.
Collapse
|
16
|
Weiss S, Mori F, Rossi S, Centonze D. Disability in multiple sclerosis: When synaptic long-term potentiation fails. Neurosci Biobehav Rev 2014; 43:88-99. [DOI: 10.1016/j.neubiorev.2014.03.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 02/11/2014] [Accepted: 03/31/2014] [Indexed: 12/13/2022]
|
17
|
Bai B, Liu J, Ke L, Guo H. Spatiotemporal independent component analysis combine general linear model applied to fMRI for eliminating neural noise. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2014; 37:121-32. [PMID: 24532392 DOI: 10.1007/s13246-014-0242-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 01/06/2014] [Indexed: 05/28/2023]
Abstract
Functional magnetic resonance imaging (fMRI) has recently become an effective means to explore the mechanism of functional rehabilitation in stroke patients. Neural noise is an inevitable structural noise, and is an important factor caused individual differences in fMRI data, therefore, eliminating the neural noise is being regarded as one of the task that cannot be ignored. In this paper, a new algorithm combines spatiotemporal independent component analysis and general linear model (GLM) is proposed to eliminate the effect caused by excess neural activity. This new algorithm simultaneously maximizes the independence over time and space in fMRI data for establishing the spatiotemporal balance. The new technique was applied to extract the active regions of ankle dorsiflexion during fMRI scanning process. Compared to results of GLM, the results of new combined algorithm is more reasonable with an 8% improvement in correlation coefficient. It confirmed that this new algorithm is effective in eliminating system noise and neural disturbance.
Collapse
Affiliation(s)
- Baodong Bai
- Institute of Biomedical and Electromagnetic Engineering, Shenyang University of Technology, Shenyang, 110870, China,
| | | | | | | |
Collapse
|
18
|
Gandolla M, Ferrante S, Molteni F, Guanziroli E, Frattini T, Martegani A, Ferrigno G, Friston K, Pedrocchi A, Ward NS. Re-thinking the role of motor cortex: context-sensitive motor outputs? Neuroimage 2014; 91:366-74. [PMID: 24440530 PMCID: PMC3988837 DOI: 10.1016/j.neuroimage.2014.01.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 12/05/2013] [Accepted: 01/05/2014] [Indexed: 12/05/2022] Open
Abstract
The standard account of motor control considers descending outputs from primary motor cortex (M1) as motor commands and efference copy. This account has been challenged recently by an alternative formulation in terms of active inference: M1 is considered as part of a sensorimotor hierarchy providing top–down proprioceptive predictions. The key difference between these accounts is that predictions are sensitive to the current proprioceptive context, whereas efference copy is not. Using functional electric stimulation to experimentally manipulate proprioception during voluntary movement in healthy human subjects, we assessed the evidence for context sensitive output from M1. Dynamic causal modeling of functional magnetic resonance imaging responses showed that FES altered proprioception increased the influence of M1 on primary somatosensory cortex (S1). These results disambiguate competing accounts of motor control, provide some insight into the synaptic mechanisms of sensory attenuation and may speak to potential mechanisms of action of FES in promoting motor learning in neurorehabilitation. Peripheral functional electrical stimulation provides altered proprioception. Altered proprioception and volitional movement interaction is shown in M1 and S1. M1–S1 connection is modulated by proprioception and therefore is context-sensitive. Context-sensitive M1–S1 pathway supports an active inference motor control account.
Collapse
Affiliation(s)
- Marta Gandolla
- Politecnico di Milano, NearLab, Department of Electronics, Information and Bioengineering, Via G. Colombo 40, 20133 Milano, Italy.
| | - Simona Ferrante
- Politecnico di Milano, NearLab, Department of Electronics, Information and Bioengineering, Via G. Colombo 40, 20133 Milano, Italy.
| | - Franco Molteni
- Valduce Hospital, Villa Beretta Rehabilitation Center, Via N. Sauro 17, 23845 Costamasnaga, LC, Italy.
| | - Eleonora Guanziroli
- Valduce Hospital, Villa Beretta Rehabilitation Center, Via N. Sauro 17, 23845 Costamasnaga, LC, Italy.
| | - Tiziano Frattini
- Valduce Hospital, Unità Operativa Complessa di Radiologia, via D. Alighieri 11, 22100 Como, Italy.
| | - Alberto Martegani
- Valduce Hospital, Unità Operativa Complessa di Radiologia, via D. Alighieri 11, 22100 Como, Italy.
| | - Giancarlo Ferrigno
- Politecnico di Milano, NearLab, Department of Electronics, Information and Bioengineering, Via G. Colombo 40, 20133 Milano, Italy.
| | - Karl Friston
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, 12 Queen Square, London WC1N 3BG, UK.
| | - Alessandra Pedrocchi
- Politecnico di Milano, NearLab, Department of Electronics, Information and Bioengineering, Via G. Colombo 40, 20133 Milano, Italy.
| | - Nick S Ward
- Sobell Department of Movement Neuroscience, UCL Institute of Neurology, 33 Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
19
|
Petsas N, Tinelli E, Lenzi D, Tomassini V, Sbardella E, Tona F, Raz E, Nucciarelli V, Pozzilli C, Pantano P. Evidence of impaired brain activity balance after passive sensorimotor stimulation in multiple sclerosis. PLoS One 2013; 8:e65315. [PMID: 23799005 PMCID: PMC3682993 DOI: 10.1371/journal.pone.0065315] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 04/29/2013] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Examination of sensorimotor activation alone in multiple sclerosis (MS) patients may not yield a comprehensive view of cerebral response to task stimulation. Additional information may be obtained by examining the negative BOLD response (deactivation). Aim of this work was to characterize activation and deactivation patterns during passive hand movements in MS patients. METHODS 13 relapsing remitting-MS patients (RRMS), 18 secondary progressive-MS patients (SPMS) and 15 healthy controls (HC) underwent an fMRI study during passive right-hand movements. Activation and deactivation contrasts in the three groups were entered into ANOVA, age and gender corrected. Post-hoc analysis was performed with one-sample and two-sample t-tests. For each patient we obtained lesion volume (LV) from both T1- and T2-weighted images. RESULTS Activations showed a progressive extension to the ipsilateral brain hemisphere according to the group and the clinical form (HC<RRMS<SPMS). Significant deactivation of the ipsilateral cortical sensorimotor areas was reduced in both patient groups with respect to HC. Deactivation of posterior cortical areas belonging to the default mode network (DMN), was increased in RRMS, but not in SPMS, with respect to HC. The amount of activation in the contralateral sensorimotor cortex was significantly correlated with that of deactivation in the DMN in HC and RRMS, but not in SPMS. Both increased activation and decreased deactivation patterns correlated with LV. CONCLUSION In RRMS patients, increased cortical activation was associated with increased deactivation of the posterior cortex suggesting a greater resting-state activity in the DMN, probably aimed at facilitating sensorimotor circuit engagement during task performance. In SPMS the coupling between increased sensorimotor activation/increased DMN deactivation was not observed suggesting disorganization between anticorrelated functional networks as a consequence of a higher level of disconnection.
Collapse
Affiliation(s)
- Nikolaos Petsas
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
de Lago E, Gómez-Ruiz M, Moreno-Martet M, Fernández-Ruiz J. Cannabinoids, multiple sclerosis and neuroprotection. Expert Rev Clin Pharmacol 2012; 2:645-60. [PMID: 22112258 DOI: 10.1586/ecp.09.42] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The cannabinoid signaling system participates in the control of cell homeostasis in the CNS, which explains why, in different neurodegenerative diseases including multiple sclerosis (MS), alterations in this system have been found to serve both as a pathogenic factor (malfunctioning of this system has been found at early phases of these diseases) and as a therapeutic target (the management of this system has beneficial effects). MS is an autoimmune disease that affects the CNS and it is characterized by inflammation, demyelination, remyelination, gliosis and axonal damage. Although it has been considered mainly as an inflammatory disorder, recent studies have recognized the importance of axonal loss both in the progression of the disorder and in the appearance of neurological disability, even in early stages of the disease. In recent years, several laboratories have addressed the therapeutic potential of cannabinoids in MS, given the experience reported by some MS patients who self-medicated with marijuana. Most of these studies focused on the alleviation of symptoms (spasticity, tremor, anxiety and pain) or on the inflammatory component of the disease. However, recent data also revealed the important neuroprotective action that could be exerted by cannabinoids in this disorder. The present review will be precisely centered on this neuroprotective potential, which is based mainly on antioxidant, anti-inflammatory and anti-excitotoxic properties, exerted through the activation of CB1 or CB2 receptors or other unknown mechanisms.
Collapse
Affiliation(s)
- Eva de Lago
- Departamento de Bioquímica y Biología Molecular and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain.
| | | | | | | |
Collapse
|
21
|
Rocca MA, Absinta M, Filippi M. The role of advanced magnetic resonance imaging techniques in primary progressive MS. J Neurol 2011; 259:611-21. [PMID: 21814822 DOI: 10.1007/s00415-011-6195-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 07/13/2011] [Accepted: 07/14/2011] [Indexed: 12/31/2022]
Abstract
Primary progressive multiple sclerosis (PPMS) is characterized by a steady progression of irreversible disability from the onset of the disease. Although magnetic resonance imaging (MRI) is a valuable tool to quantify the disease burden in the brain and spinal cord of patients with MS, measures derived from conventional MRI, including T2-visible lesions, gadolinium-enhancing lesions and atrophy, are correlated only weakly with the clinical manifestations of PPMS. On the contrary, advanced MRI techniques are contributing significantly to the understanding of the mechanisms underlying the irreversible accumulation of disability in PPMS patients. Data from quantitative MRI studies suggest that the extent and topography of "diffuse" damage in different central nervous system (CNS) compartments (i.e. normal-appearing brain white matter and grey matter and the spinal cord) is associated with the severity of disability in PPMS and can predict subsequent medium-term disease evolution. Functional MRI studies have shown that the impairment of the adaptive capacity of the cortex to limit the clinical consequences of structural CNS damage is yet another factor contributing to the manifestations of this condition.
Collapse
Affiliation(s)
- Maria A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Vita-Salute San Raffaele University, Via Olgettina 60, 20132 Milan, Italy
| | | | | |
Collapse
|
22
|
Fox RJ, Beall E, Bhattacharyya P, Chen JT, Sakaie K. Advanced MRI in multiple sclerosis: current status and future challenges. Neurol Clin 2011; 29:357-80. [PMID: 21439446 PMCID: PMC3073625 DOI: 10.1016/j.ncl.2010.12.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
MRI has rapidly become a leading research tool in the study of multiple sclerosis (MS). Conventional imaging is useful in diagnosis and management of the inflammatory stages of MS but has limitations in describing the degree of tissue injury and cause of progressive disability seen in later stages. Advanced MRI techniques hold promise for filling this void. These imaging tools hold great promise to increase understanding of MS pathogenesis and provide greater insight into the efficacy of new MS therapies.
Collapse
Affiliation(s)
- Robert J Fox
- Mellen Center for Multiple Sclerosis, Neurological Institute, 9500 Euclid Avenue, U-10, Cleveland, OH 44195, USA.
| | | | | | | | | |
Collapse
|
23
|
Kalmar Z, Kovacs N, Perlaki G, Nagy F, Aschermann Z, Kerekes Z, Kaszas B, Balas I, Orsi G, Komoly S, Schwarcz A, Janszky J. Reorganization of Motor System in Parkinson’s Disease. Eur Neurol 2011; 66:220-6. [DOI: 10.1159/000330658] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 06/22/2011] [Indexed: 11/19/2022]
|
24
|
Rocca MA, Riccitelli G, Rodegher M, Ceccarelli A, Falini A, Falautano M, Meani A, Comi G, Filippi M. Functional MR imaging correlates of neuropsychological impairment in primary-progressive multiple sclerosis. AJNR Am J Neuroradiol 2010; 31:1240-6. [PMID: 20299439 PMCID: PMC7965463 DOI: 10.3174/ajnr.a2071] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 01/11/2010] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Cognitive deficits affect MATERIALS AND METHODS From 16 right-handed patients with PPMS and 17 matched controls, structural and fMRIs (during the performance of the 2-back task) were acquired. Neuropsychological tests exploring memory, attention, and frontal lobe cognitive domains were administered. T2 LL, NBV, and CC areas were measured. RESULTS Six patients with PPMS were CI. Structural MR imaging measures did not differ between patients who were CI and those who were CP. Compared with patients who were CI, patients who were CP had increased activations of the left caudate nucleus, PFC, and inferior parietal lobule. Compared with controls and patients who were CP, patients who were CI had increased activations of the SII, cerebellum, and insula. Compared with controls, they also had increased activations of the right precentral gyrus and a reduced recruitment of the left PFC. In patients with PPMS, a decreased composite cognitive score correlated with increased activity of the cerebellum, insula, and SII, as well as decreased PFC activity. T2 LL correlated with decreased PFC recruitment and increased SII recruitment. CONCLUSIONS In PPMS, an increased recruitment of cognitive-related networks might represent a functional reserve with the potential to limit the severity of cognitive impairment. The accumulation of T2 lesions and the consequent exhaustion of frontal lobe plasticity might contribute to cognitive impairment in PPMS.
Collapse
Affiliation(s)
- M A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Scientific Institute and University Ospedale San Raffaele, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Giorgio A, Portaccio E, Stromillo ML, Marino S, Zipoli V, Battaglini M, Blandino A, Bartolozzi ML, Siracusa G, Amato MP, De Stefano N. Cortical functional reorganization and its relationship with brain structural damage in patients with benign multiple sclerosis. Mult Scler 2010; 16:1326-34. [DOI: 10.1177/1352458510377333] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Patients with multiple sclerosis (MS) who have a favourable clinical status several years after disease onset are classified as ‘benign’. In many cases brain tissue damage does not differ between benign MS and the ‘classical’ MS forms. Objective: To assess whether the favourable clinical course in benign MS could be explained by the presence of an efficient functional cortical reorganization. Method: Twenty-five right-handed patients with benign MS (defined as having Expanded Disability Status Scale ≤ 3 and disease duration >15 years) underwent functional MRI during a simple motor task (right-hand tapping) to assess movement-associated brain activation. This was compared with that of 10 patients with relapsing—remitting MS and 10 normal controls. Benign MS patients also underwent conventional brain MRI and magnetization transfer imaging, which was compared with an identical examination obtained 1 year before. Quantitative structural magnetic resonance measures were baseline and changes over time in T2-lesion volume, magnetization transfer ratio in T2 lesions and normal-appearing brain and total brain volume. Results: Movement-related activation was greater in patients with benign MS than in those with relapsing—remitting MS or normal controls, extensively involving bilateral regions of the sensorimotor network as well as basal ganglia, insula and cerebellum. Greater activation correlated with lower T2-lesion magnetization transfer ratio, and with decreasing brain volume and increasing T2 lesion volume. Conclusions: The results suggest that bilateral brain networks, beyond those normally engaged in motor tasks, are recruited during a simple hand movement in patients with benign MS. This increased activation is probably the expression of an extensive, compensatory and tissue-damage related functional cortical reorganization. This can explain, at least in part, the favourable clinical expression of patients with benign MS.
Collapse
Affiliation(s)
- Antonio Giorgio
- Neurology and Neurometabolic Unit, Department of Neurological and Behavioural Sciences, University of Siena, Italy
| | | | - Maria Laura Stromillo
- Neurology and Neurometabolic Unit, Department of Neurological and Behavioural Sciences, University of Siena, Italy
| | - Silvia Marino
- Neurology and Neurometabolic Unit, Department of Neurological and Behavioural Sciences, University of Siena, Italy, IRCCS Centro Neurolesi, 'Bonino-Pulejo', Messina, Italy
| | | | - Marco Battaglini
- Neurology and Neurometabolic Unit, Department of Neurological and Behavioural Sciences, University of Siena, Italy
| | - Anita Blandino
- Neurology and Neurometabolic Unit, Department of Neurological and Behavioural Sciences, University of Siena, Italy
| | | | | | | | - Nicola De Stefano
- Neurology and Neurometabolic Unit, Department of Neurological and Behavioural Sciences, University of Siena, Italy,
| |
Collapse
|
26
|
Roosendaal SD, Schoonheim MM, Hulst HE, Sanz-Arigita EJ, Smith SM, Geurts JJG, Barkhof F. Resting state networks change in clinically isolated syndrome. ACTA ACUST UNITED AC 2010; 133:1612-21. [PMID: 20356855 DOI: 10.1093/brain/awq058] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Task-functional magnetic resonance imaging studies have shown that early cortical recruitment exists in multiple sclerosis, which can partly explain the discrepancy between conventional magnetic resonance imaging and clinical disability. The study of the brain 'at rest' may provide additional information, because task-induced metabolic changes are relatively small compared to the energy use of the resting brain. We therefore questioned whether functional changes exist at rest in the early phase of multiple sclerosis, and addressed this question by a network analysis of no-task functional magnetic resonance imaging data. Fourteen patients with symptoms suggestive of multiple sclerosis (clinically isolated syndrome), 31 patients with relapsing remitting multiple sclerosis and 41 healthy controls were included. Resting state functional magnetic resonance imaging data were brought to standard space using non-linear registration, and further analysed using multi-subject independent component analysis and individual time-course regression. Eight meaningful resting state networks were identified in our subjects and compared between the three groups with non-parametric permutation testing, using threshold-free cluster enhancement to correct for multiple comparisons. Additionally, quantitative measures of structural damage were obtained. Grey and white matter volumes, normalized for head size, were measured for each subject. White matter integrity was investigated with diffusion tensor measures that were compared between groups voxel-wise using tract-based spatial statistics. Patients with clinically isolated syndrome showed increased synchronization in six of the eight resting state networks, including the default mode network and sensorimotor network, compared to controls or relapsing remitting patients. No significant decreases were found in patients with clinically isolated syndrome. No significant resting state synchronization differences were found between relapsing remitting patients and controls. Normalized grey matter volume was decreased and white matter diffusivity measures were abnormal in relapsing remitting patients compared to controls, whereas no atrophy or diffusivity changes were found for the clinically isolated syndrome group. Thus, early synchronization changes are found in patients with clinically isolated syndrome that are suggestive of cortical reorganization of resting state networks. These changes are lost in patients with relapsing remitting multiple sclerosis with increasing brain damage, indicating that cortical reorganization of resting state networks is an early and finite phenomenon in multiple sclerosis.
Collapse
Affiliation(s)
- Stefan D Roosendaal
- VU University Medical Centre, Department of Radiology, PO Box 7057, 1007 MB Amsterdam, the Netherlands.
| | | | | | | | | | | | | |
Collapse
|
27
|
Ceccarelli A, Rocca MA, Valsasina P, Rodegher M, Falini A, Comi G, Filippi M. Structural and functional magnetic resonance imaging correlates of motor network dysfunction in primary progressive multiple sclerosis. Eur J Neurosci 2010; 31:1273-80. [PMID: 20345920 DOI: 10.1111/j.1460-9568.2010.07147.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We combined functional magnetic resonance imaging (fMRI) and diffusion tensor tractography to investigate the functional and structural substrates of motor network dysfunction in patients with primary progressive multiple sclerosis (PPMS). In 15 right-handed PPMS patients and 15 age-matched healthy controls, we acquired diffusion tensor magnetic resonance imaging and fMRI during the performance of a simple motor task. Tractography was used to calculate diffusion tensor-derived measures of the corpus callosum, the corticospinal tract, the optic radiation, the fronto-occipital fasciculus, and the inferior longitudinal fasciculus. Analyses of fMRI activations and functional connectivity were performed using statistical parametric mapping (cluster threshold of P = 0.001, and extent cluster threshold of 10 voxels for comparison of activations; P < 0.05, family-wise error corrected for functional connectivity). As compared with controls, PPMS patients had more significant activations of the left postcentral gyrus, left secondary sensorimotor area, left parahippocampal gyrus, left cerebellum, right primary sensorimotor cortex (SMC), right basal ganglia, right insula, right cingulum, and cuneus bilaterally. As compared with PPMS patients, controls had increased functional connectivity between the left primary SMC and the ipsilateral inferior frontal gyrus. Conversely, PPMS patients showed increased functional connectivity between the left primary SMC and the right cuneus. Moderate correlations were found between functional activations and damage to the tracts studied (r-values between 0.82 and 0.84; P < 0.001). These results suggest that, as compared with healthy controls, PPMS patients show increased activations and abnormal functional connectivity measures in several areas of the sensorimotor network. Such changes are correlated with the structural damage to the white matter fiber bundles connecting these regions.
Collapse
Affiliation(s)
- Antonia Ceccarelli
- Neuroimaging Research Unit, Institute of Experimental Neurology, Scientific Institute and University Ospedale San Raffaele, Via Olgettina, 60, 20132 Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Newton JM, Dong Y, Hidler J, Plummer-D'Amato P, Marehbian J, Albistegui-Dubois RM, Woods RP, Dobkin BH. Reliable assessment of lower limb motor representations with fMRI: use of a novel MR compatible device for real-time monitoring of ankle, knee and hip torques. Neuroimage 2008; 43:136-46. [PMID: 18675363 PMCID: PMC2658811 DOI: 10.1016/j.neuroimage.2008.07.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 06/25/2008] [Accepted: 07/01/2008] [Indexed: 11/17/2022] Open
Abstract
This study describes the use of a novel magnetic resonance imaging (MRI) compatible system capable of measuring isometric ankle, knee and hip joint torques in real-time during functional MRI (fMRI) testing in healthy volunteers. The motor representations of three isometric torques--ankle dorsiflexion, ankle plantarflexion and knee extension--were studied at two time points. The reliability of motor performance and fMRI-derived measures of brain activity across sessions was examined. Reproducible motor performance was observed for each of the tasks; torques of the requested amplitude, assisted by visual feedback, were generated at the relevant joint with good accuracy, both within and across the two sessions. Significant blood oxygen level dependent (BOLD) signal increases were observed in the left primary sensorimotor cortex (SM1) in the paracentral lobule and in secondary motor areas for all tasks. Within these areas there was substantial overlap of the motor representations though differential activation was observed in SM1, with greater activation of inferior paracentral lobule during knee extension than for either ankle task. Also, BOLD signal decreases were observed bilaterally within SM1 in the hand knob region for all tasks. No major session-related effects were identified at the group level. High intraclass correlation coefficients were observed for t-values of voxels in cortical motor areas for each contraction type for individuals, suggesting that fMRI-derived activity across time points was reliable. These findings support the use of this apparatus in serial studies of lower limb function.
Collapse
Affiliation(s)
- Jennifer M Newton
- Department of Neurology, University of California, Los Angeles, CA 90095-1769, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Tintoré M, Sastre-Garriga J. New treatment measurements for treatment effects on relapses and progression. J Neurol Sci 2008; 274:80-3. [PMID: 18822433 DOI: 10.1016/j.jns.2008.08.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 08/25/2008] [Accepted: 08/26/2008] [Indexed: 11/18/2022]
Abstract
Multiple sclerosis (MS) is considered to be a two stage disease: a first stage in which inflammatory phenomena are crucial and a later one in which degenerative processes become the hallmark. The role of magnetic resonance imaging (MRI) is nowadays of great help both to establish the diagnosis and to rule out other conditions. At the clinically isolated syndrome (CIS) stage, MRI is an important tool both to predict the appearance of a second attack or the development of disability at long term. In the relapsing-remitting (RR) phase of the disease conventional MRI is probably less helpful to predict future relapses and disability. Cross sectional and longitudinal studies have shown very weak correlations between lesion burden on brain T2 and disability in the progressive forms of MS. Regarding T2 burden of disease, a plateau effect for EDSS values greater than 4.5 has been observed. Measures related to brain or spinal cord atrophy together with MR Spectroscopy, Magnetization Transfer Imaging and Diffusion Tensor Imaging may be useful in the future to better monitor disease progression in the late degenerative phase of the condition. MRI has also been of great help in monitoring the effect of immunomodulatory drugs in CIS or RRMS clinical trials. Its role to predict treatment response is still controversial on an individual basis.
Collapse
Affiliation(s)
- Mar Tintoré
- Unitat de Neuroimmunologia Clínica, Multiple Sclerosis Centre of Catalonia (CEM-Cat) Hospital Vall d'Hebron, Barcelona, Spain.
| | | |
Collapse
|
31
|
Affiliation(s)
- Jeroen J G Geurts
- Department of Radiology, VU University Medical Centre, Amsterdam, Netherlands.
| | | |
Collapse
|
32
|
Enzinger C, Johansen-Berg H, Dawes H, Bogdanovic M, Collett J, Guy C, Ropele S, Kischka U, Wade D, Fazekas F, Matthews PM. Functional MRI correlates of lower limb function in stroke victims with gait impairment. Stroke 2008; 39:1507-13. [PMID: 18340092 PMCID: PMC7610857 DOI: 10.1161/strokeaha.107.501999] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Accepted: 09/20/2007] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Although knowledge concerning cortical reorganization related to upper limb function after ischemic stroke is growing, similar data for lower limb movements are limited. Previous studies with hand movement suggested increasing recruitment of motor areas in the unlesioned hemisphere with increasing disability. We used ankle movement as a lower limb analog to test for similarities and differences in recovery patterns. METHODS Eighteen subjects were selected with chronic residual gait impairment due to a single subcortical ischemic stroke. Functional MRI scans were obtained at 3.0 T during active and passive ankle dorsiflexion in the patients (8 females, 10 males; mean age, 59.9+/-13.5 years; range, 32 to 74 years) and 18 age-matched healthy control subjects. RESULTS We observed substantial neocortical activity associated with foot movement both in the patients with stroke and in the healthy control subjects. Our primary finding was increased cortical activation with increasing functional impairment. The extent of activation (particularly in the primary sensorimotor cortex and the supplementary motor area of the unlesioned hemisphere) increased with disability. The changes were most prominent with the active movement task. CONCLUSIONS Using ankle movement, we observed increased activation in the unlesioned hemisphere associated with worse function of the paretic leg, consistent with studies on movement of paretic upper limbs. We interpret this finding as potentially adaptive recruitment of undamaged ipsilateral motor control pathways from the supplementary motor area and (possibly maladaptive) disinhibition of the ipsilateral sensorimotor cortex.
Collapse
Affiliation(s)
- Christian Enzinger
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, A-8036 Graz, Austria.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wegner C, Filippi M, Korteweg T, Beckmann C, Ciccarelli O, De Stefano N, Enzinger C, Fazekas F, Agosta F, Gass A, Hirsch J, Johansen-Berg H, Kappos L, Barkhof F, Polman C, Mancini L, Manfredonia F, Marino S, Miller DH, Montalban X, Palace J, Rocca M, Ropele S, Rovira A, Smith S, Thompson A, Thornton J, Yousry T, Matthews PM. Relating functional changes during hand movement to clinical parameters in patients with multiple sclerosis in a multi-centre fMRI study. Eur J Neurol 2008; 15:113-22. [PMID: 18217881 DOI: 10.1111/j.1468-1331.2007.02027.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We performed a prospective multi-centre study using functional magnetic resonance imaging (fMRI) to better characterize the relationships between clinical expression and brain function in patients with multiple sclerosis (MS) at eight European sites (56 MS patients and 60 age-matched, healthy controls). Patients showed greater task-related activation bilaterally in brain regions including the pre- and post-central, inferior and superior frontal, cingulate and superior temporal gyri and insula (P < 0.05, all statistics corrected for multiple comparisons). Both patients and healthy controls showed greater brain activation with increasing age in the ipsilateral pre-central and inferior frontal gyri (P < 0.05). Patients, but not controls, showed greater brain activation in the anterior cingulate gyrus and the bilateral ventral striatum (P < 0.05) with less hand dexterity. An interaction between functional activation changes in MS and age was found. This large fMRI study over a broadly selected MS patient population confirms that movement for patients demands significantly greater cognitive 'resource allocation' and suggests age-related differences in brain responses to the disease. These observations add to evidence that brain functional responses (including potentially adaptive brain plasticity) contribute to modulation of clinical expression of MS pathology and demonstrate the feasibility of a multi-site functional MRI study of MS.
Collapse
Affiliation(s)
- C Wegner
- Centre for Functional Magnetic Resonance Imaging of the Brain, University of Oxford, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
About 10-15% of patients with multiple sclerosis (MS) present with gradually increasing neurological disability, a disorder known as primary-progressive multiple sclerosis (PPMS). Compared with relapse-onset multiple sclerosis, people with PPMS are older at onset and a higher proportion are men. Inflammatory white-matter lesions are less evident but diffuse axonal loss and microglial activation are seen in healthy-looking white matter, in addition to cortical demyelination, and quantitative MRI shows atrophy and intrinsic abnormalities in the grey matter and the white matter. Spinal cord atrophy corresponds to the usual clinical presentation of progressive spastic paraplegia. Although neuroaxonal degeneration seems to underlie PPMS, the pathogenesis and the extent to which immune-mediated mechanisms operate is unclear. MRI of the brain and spinal cord, and examination of the CSF, are important investigations for diagnosis; conventional immunomodulatory therapies, such as interferon beta and glatiramer acetate, are ineffective. Future research should focus on the clarification of the mechanisms of axonal loss, improvements to the design of clinical trials, and the development of effective neuroprotective treatments.
Collapse
Affiliation(s)
- David H Miller
- Department of Neuroinflammation, Institute of Neurology, University College London, London, UK.
| | | |
Collapse
|
35
|
Abstract
There is increasing evidence that the severity of the clinical manifestations of multiple sclerosis (MS) does not simply depend on the extent of tissue destruction, but rather represents a complex balance among tissue damage, tissue repair, and cortical reorganization. Functional magnetic resonance imaging (fMRI) provides information about the extent and nature of brain plasticity, which follows MS structural injury and might have the potential to limit the clinical manifestations of the disease. An altered recruitment of regions normally devoted to the performance of a given task and/or the recruitment of additional areas, which are not typically activated by healthy people for performing that given task, have been described in patients with MS, independent of their clinical phenotype when investigating the visual, cognitive, and motor systems. These functional changes have been related to the extent and severity of brain damage within and outside T2-visible lesions and to the involvement of specific central nervous system (CNS) structures, including the spinal cord and the optic nerve. Brain functional changes have been shown to be dynamic over time, not only after an acute relapse, but also in clinically stable patients. An increased recruitment of the cerebral networks might represent a first step of cortical reorganization with the potential to maintain a normal level of function in the course of MS. The progressive failure of these mechanisms might, on the one hand, result in the activation of previously silent "second-order" compensatory areas, and, on the other, contribute to the clinical manifestations of the disease.
Collapse
Affiliation(s)
- Maria A Rocca
- Neuroimaging Research Unit, Department of Neurology, Scientific Institute and University Ospedale San Raffaele, Milan, Italy
| | | |
Collapse
|
36
|
Moncayo R, Moncayo H. A musculoskeletal model of low grade connective tissue inflammation in patients with thyroid associated ophthalmopathy (TAO): the WOMED concept of lateral tension and its general implications in disease. BMC Musculoskelet Disord 2007; 8:17. [PMID: 17319961 PMCID: PMC1820789 DOI: 10.1186/1471-2474-8-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Accepted: 02/23/2007] [Indexed: 12/16/2022] Open
Abstract
Background Low level connective tissue inflammation has been proposed to play a role in thyroid associated ophthalmopathy (TAO). The aim of this study was to investigate this postulate by a musculoskeletal approach together with biochemical parameters. Methods 13 patients with TAO and 16 controls were examined. Erythrocyte levels of Zn, Cu, Ca2+, Mg, and Fe were determined. The musculoskeletal evaluation included observational data on body posture with emphasis on the orbit-head region. The angular foot position in the frontal plane was quantified following gait observation. The axial orientation of the legs and feet was evaluated in an unloaded supine position. Functional propioceptive tests based on stretch stimuli were done by using foot inversion and foot rotation. Results Alterations in the control group included neck tilt in 3 cases, asymmetrical foot angle during gait in 2, and a reaction to foot inversion in 5 cases. TAO patients presented facial asymmetry with displaced eye fissure inclination (mean 9.1°) as well as tilted head-on-neck position (mean 5.7°). A further asymmetry feature was external rotation of the legs and feet (mean 27°). Both foot inversion as well as foot rotation induced a condition of neuromuscular deficit. This condition could be regulated by gentle acupressure either on the lateral abdomen or the lateral ankle at the acupuncture points gall bladder 26 or bladder 62, respectively. In 5 patients, foot rotation produced a phenomenon of moving toes in the contra lateral foot. In addition foot rotation was accompanied by an audible tendon snapping. Lower erythrocyte Zn levels and altered correlations between Ca2+, Mg, and Fe were found in TAO. Conclusion This whole body observational study has revealed axial deviations and body asymmetry as well as the phenomenon of moving toes in TAO. The most common finding was an arch-like displacement of the body, i.e. eccentric position, with foot inversion and head tilt to the contra lateral side and tendon snapping. We propose that eccentric muscle action over time can be the basis for a low grade inflammatory condition. The general implications of this model and its relations to Zn and Se will be discussed.
Collapse
Affiliation(s)
- Roy Moncayo
- WOMED, Karl-Kapferer-Strasse 5, A-6020 Innsbruck, Austria
| | - Helga Moncayo
- WOMED, Karl-Kapferer-Strasse 5, A-6020 Innsbruck, Austria
| |
Collapse
|