1
|
Vinding MC, Waldthaler J, Eriksson A, Manting CL, Ferreira D, Ingvar M, Svenningsson P, Lundqvist D. Oscillatory and non-oscillatory features of the magnetoencephalic sensorimotor rhythm in Parkinson's disease. NPJ Parkinsons Dis 2024; 10:51. [PMID: 38443402 PMCID: PMC10915140 DOI: 10.1038/s41531-024-00669-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 02/26/2024] [Indexed: 03/07/2024] Open
Abstract
Parkinson's disease (PD) is associated with changes in neural activity in the sensorimotor alpha and beta bands. Using magnetoencephalography (MEG), we investigated the role of spontaneous neuronal activity within the somatosensory cortex in a large cohort of early- to mid-stage PD patients (N = 78) on Parkinsonian medication and age- and sex-matched healthy controls (N = 60) using source reconstructed resting-state MEG. We quantified features of the time series data in terms of oscillatory alpha power and central alpha frequency, beta power and central beta frequency, and 1/f broadband characteristics using power spectral density. Furthermore, we characterised transient oscillatory burst events in the mu-beta band time-domain signals. We examined the relationship between these signal features and the patients' disease state, symptom severity, age, sex, and cortical thickness. PD patients and healthy controls differed on PSD broadband characteristics, with PD patients showing a steeper 1/f exponential slope and higher 1/f offset. PD patients further showed a steeper age-related decrease in the burst rate. Out of all the signal features of the sensorimotor activity, the burst rate was associated with increased severity of bradykinesia, whereas the burst duration was associated with axial symptoms. Our study shows that general non-oscillatory features (broadband 1/f exponent and offset) of the sensorimotor signals are related to disease state and oscillatory burst rate scales with symptom severity in PD.
Collapse
Affiliation(s)
- Mikkel C Vinding
- NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark.
| | - Josefine Waldthaler
- NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Section of Neurology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, University Hospital Marburg, Marburg, Germany
| | - Allison Eriksson
- NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Cassia Low Manting
- NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Cognitive Neuroimaging Centre, Lee Kong Chien School of Medicine, Nanyang Technological University, Singapore, Singapore
- McGovern Institute of Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Daniel Ferreira
- Division of Clinical Geriatrics, Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
- Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, Las Palmas de Gran, Canaria, España
| | - Martin Ingvar
- NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Per Svenningsson
- Section of Neurology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Daniel Lundqvist
- NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Seo K, Matunari I, Yamamoto T. Cerebral cortical thinning in Parkinson's disease depends on the age of onset. PLoS One 2023; 18:e0281987. [PMID: 36809440 PMCID: PMC9942965 DOI: 10.1371/journal.pone.0281987] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 02/06/2023] [Indexed: 02/23/2023] Open
Abstract
Patients with older-onset Parkinson's disease (PD) have more severe motor symptoms, faster progression, and a worse prognosis. The thinning of the cerebral cortex is one of the causes of these issues. Patients with older-onset PD manifest more extended neurodegeneration associated with α-synuclein deposition in the cerebral cortex; however, the cortical regions that undergo thinning are unclear. We aimed to identify cortical regions with different thinning depending on the age of onset in patients with PD. Sixty-two patients with PD were included in this study. Patients with PD onset at <63 years old were included in the early or middle-onset PD group, and those with PD onset at >63 years old were included in the late-onset PD (LOPD) group. Brain magnetic resonance imaging data of these patients were processed using FreeSurfer to measure their cortical thickness. The LOPD group displayed less cortical thickness in the superior frontal gyrus, middle frontal gyrus, precentral gyrus, postcentral gyrus, superior temporal gyrus, temporal pole, paracentral lobule, superior parietal lobule, precuneus, and occipital lobe than the early or middle-onset PD group. Compared with patients with early and middle-onset PD, elderly patients displayed extended cortical thinning with disease progression. Differences in the clinical manifestations of PD according to the age of onset were partly due to variations in the morphological changes in the brain.
Collapse
Affiliation(s)
- Kazuhide Seo
- Department of Neurology, Saitama Medical University, Saitama, Japan
- * E-mail:
| | - Ichiro Matunari
- Department of Radiology, Division of Nuclear Medicine, Saitama Medical University, Saitama, Japan
| | | |
Collapse
|
3
|
Du T, Wang L, Liu W, Zhu G, Chen Y, Zhang J. Biomarkers and the Role of α-Synuclein in Parkinson's Disease. Front Aging Neurosci 2021; 13:645996. [PMID: 33833675 PMCID: PMC8021696 DOI: 10.3389/fnagi.2021.645996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/05/2021] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the presence of α-synuclein (α-Syn)-rich Lewy bodies (LBs) and the preferential loss of dopaminergic (DA) neurons in the substantia nigra (SN) pars compacta (SNpc). However, the widespread involvement of other central nervous systems (CNS) structures and peripheral tissues is now widely documented. The onset of the molecular and cellular neuropathology of PD likely occurs decades before the onset of the motor symptoms characteristic of PD, so early diagnosis of PD and adequate tracking of disease progression could significantly improve outcomes for patients. Because the clinical diagnosis of PD is challenging, misdiagnosis is common, which highlights the need for disease-specific and early-stage biomarkers. This review article aims to summarize useful biomarkers for the diagnosis of PD, as well as the biomarkers used to monitor disease progression. This review article describes the role of α-Syn in PD and how it could potentially be used as a biomarker for PD. Also, preclinical and clinical investigations encompassing genetics, immunology, fluid and tissue, imaging, as well as neurophysiology biomarkers are discussed. Knowledge of the novel biomarkers for preclinical detection and clinical evaluation will contribute to a deeper understanding of the disease mechanism, which should more effectively guide clinical applications.
Collapse
Affiliation(s)
- Tingting Du
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Le Wang
- Molecular Biology Laboratory for Neuropsychiatric Diseases, Department of Neurobiology, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Weijin Liu
- Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Key Laboratory of Neural Regeneration and Repair, Beijing Key Laboratory on Parkinson’s Disease, Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Guanyu Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yingchuan Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jianguo Zhang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing Municipal Science and Technology Commission, Beijing, China
| |
Collapse
|
4
|
Sheng L, Zhao P, Ma H, Radua J, Yi Z, Shi Y, Zhong J, Dai Z, Pan P. Cortical thickness in Parkinson's disease: a coordinate-based meta-analysis. Aging (Albany NY) 2021; 13:4007-4023. [PMID: 33461168 PMCID: PMC7906199 DOI: 10.18632/aging.202368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/30/2020] [Indexed: 12/24/2022]
Abstract
Parkinson's disease (PD) is a common age-related neurodegenerative disease that affects the structural architecture of the cerebral cortex. Cortical thickness (CTh) via surface-based morphometry (SBM) analysis is a popular measure to assess brain structural alterations in the gray matter in PD. However, the results of CTh analysis in PD lack consistency and have not been systematically reviewed. We conducted a comprehensive coordinate-based meta-analysis (CBMA) of 38 CTh studies (57 comparison datasets) in 1,843 patients with PD using the latest seed-based d mapping software. Compared with 1,172 healthy controls, no significantly consistent CTh alterations were found in patients with PD, suggesting CTh as an unreliable neuroimaging marker for PD. The lack of consistent CTh alterations in PD could be ascribed to the heterogeneity in clinical populations, variations in imaging methods, and underpowered small sample sizes. These results highlight the need to control for potential confounding factors to produce robust and reproducible CTh results in PD.
Collapse
Affiliation(s)
- LiQin Sheng
- Department of Neurology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, PR China
| | - PanWen Zhao
- Department of Central Laboratory, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, PR China
| | - HaiRong Ma
- Department of Neurology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, PR China
| | - Joaquim Radua
- Imaging of Mood- and Anxiety-Related Disorders (IMARD) Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBERSAM, Barcelona, Spain
- Early Psychosis: Interventions and Clinical-Detection (EPIC) Laboratory, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Centre for Psychiatric Research and Education, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - ZhongQuan Yi
- Department of Central Laboratory, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, PR China
| | - YuanYuan Shi
- Department of Central Laboratory, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, PR China
| | - JianGuo Zhong
- Department of Neurology, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, PR China
| | - ZhenYu Dai
- Department of Radiology, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, PR China
| | - PingLei Pan
- Department of Neurology, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, PR China
| |
Collapse
|
5
|
Sheng L, Zhao P, Ma H, Radua J, Yi Z, Shi Y, Zhong J, Dai Z, Pan P. Cortical thickness in Parkinson disease: A coordinate-based meta-analysis. Medicine (Baltimore) 2020; 99:e21403. [PMID: 32756136 PMCID: PMC7402896 DOI: 10.1097/md.0000000000021403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND A growing number of studies have used surface-based morphometry (SBM) analyses to investigate gray matter cortical thickness (CTh) abnormalities in Parkinson disease (PD). However, the results across studies are inconsistent and have not been systematically reviewed. A clear picture of CTh alterations in PD remains lacked. Coordinate-based meta-analysis (CBMA) is a powerful tool to quantitatively integrate the results of individual voxel-based neuroimaging studies to identify the functional or structural neural substrates of particular neuropsychiatric disorders. Recently, CBMA has been updated for integrating SBM studies. METHODS The online databases PubMed, Embase, Web of Science, China National Knowledge Infrastructure (CNKI), WanFang, and SinoMed were comprehensively searched without language limitations from the database inception to February 2, 2020. We will include all SBM studies that compared regional CTh between patients with idiopathic PD and healthy control subjects at the whole-cortex level using Seed-based d Mapping with Permutation of Subject Images (SDM-PSI). In addition to the main CBMA, we will conduct several supplementary analyses to test the robustness of the results, such as jackknife analyses, subgroup analyses, heterogeneity analyses, publication bias analyses, and meta-regression analyses. RESULTS This CBMA will offer the latest evidence of CTh alterations in PD. CONCLUSIONS Consistent and robust evidence of CTh alterations will feature brain morphometry of PD and may facilitate biomarker development. PROSPERO REGISTRATION NUMBER CRD42020148775.
Collapse
Affiliation(s)
- LiQin Sheng
- Department of Neurology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan
| | | | - HaiRong Ma
- Department of Neurology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan
| | - Joaquim Radua
- Imaging of Mood- and Anxiety-Related Disorders (IMARD) group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomèdica en Red de Salud Mental, Barcelona, Spain
- Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Clinical Neuroscience, Centre for Psychiatric Research and Education, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | - ZhenYu Dai
- Department of Radiology, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, P.R. China
| | - PingLei Pan
- Department of Central Laboratory
- Department of Neurology
| |
Collapse
|
6
|
Zhou C, Gao T, Guo T, Wu J, Guan X, Zhou W, Huang P, Xuan M, Gu Q, Xu X, Xia S, Kong D, Wu J, Zhang M. Structural Covariance Network Disruption and Functional Compensation in Parkinson's Disease. Front Aging Neurosci 2020; 12:199. [PMID: 32714179 PMCID: PMC7351504 DOI: 10.3389/fnagi.2020.00199] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 06/08/2020] [Indexed: 12/27/2022] Open
Abstract
Purpose: To investigate the structural covariance network disruption in Parkinson’s disease (PD), and explore the functional alterations of disrupted structural covariance network. Methods: A cohort of 100 PD patients and 70 healthy participants underwent structural and functional magnetic resonance scanning. Independent component analysis (ICA) was applied separately to both deformation-based morphometry (DBM) maps and functional maps with the same calculating parameters (both decomposed into 20 independent components (ICs) and computed 20 times the Infomax algorithm in ICASSO). Disrupted structural covariance network in PD patients was identified, and then, we performed goodness of fit analysis to obtain the functional network that showed the highest spatial overlap with it. We investigated the relationship between structural covariance network and functional network alterations. Finally, to further understand the structural and functional alterations over time, we performed a longitudinal subgroup analysis (51 patients were followed up for 2 years) with the same procedures. Results: In a cross-sectional analysis, PD patients showed decreased structural covariance between anterior and posterior cingulate subnetworks. The functional components showed best overlap with anterior and posterior cingulate structural subnetworks were selected as anterior and posterior cingulate functional subnetworks. The functional connectivity between them was significantly increased [assessed by Functional Network Connectivity (FNC) toolbox]; and the increased functional connectivity was negatively correlated with cingulate structural covariance network integrity. Longitudinal subgroup analysis showed cingulate structural covariance network disruption was worse at follow-up, while the functional connectivity between anterior and posterior cingulate network was increased at baseline and decreased at follow-up. Conclusion: This study indicated that the cingulate structural covariance network displayed a high susceptibility in PD patients. This study indicated that the cingulate structural covariance network displayed a high susceptibility in PD patients. Considering that disrupted structural covariance network coexisted with enhanced/remained functional activity during disease development, enhanced functional activity underlying the disrupted cingulate structural covariance network might represent a temporal compensation for maintaining clinical performance.
Collapse
Affiliation(s)
- Cheng Zhou
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ting Gao
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Guo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjing Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiwen Zhou
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Min Xuan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Quanquan Gu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shunren Xia
- Zhejiang University City College, Hangzhou, China
| | - Dexing Kong
- School of Mathematical Sciences, Zhejiang University, Hangzhou, China
| | - Jian Wu
- AdvanCed Computing aNd SysTem Laboratory, College of Computer Science and Technology, Zhejiang University, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
7
|
De Micco R, Russo A, Tessitore A. Structural MRI in Idiopathic Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 141:405-438. [PMID: 30314605 DOI: 10.1016/bs.irn.2018.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Among modern neuroimaging modalities, magnetic resonance imaging (MRI) is a widely available, non-invasive, and cost-effective method to detect structural and functional abnormalities related to neurodegenerative disorders. In the last decades, MRI have been widely implemented to support PD diagnosis as well as to provide further insights into motor and non-motor symptoms pathophysiology, complications and treatment-related effects. Different aspects of the brain morphology and function may be derived from a single scan, by applying different analytic approaches. Biomarkers of neurodegeneration as well as tissue microstructural changes may be extracted from structural MRI techniques. In this chapter, we analyze the role of structural imaging to differentiate PD patients from controls and to define neural substrates of motor and non-motor PD symptoms. Evidence collected in the premotor PD phase will be also critically discussed. White matter as well as gray matter integrity imaging studies has been reviewed, aiming to highlight points of strength and limits to their potential application in clinical settings.
Collapse
Affiliation(s)
- Rosa De Micco
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy; MRI Research Center SUN-FISM, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Antonio Russo
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy; MRI Research Center SUN-FISM, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Alessandro Tessitore
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy; MRI Research Center SUN-FISM, University of Campania "Luigi Vanvitelli", Napoli, Italy.
| |
Collapse
|
8
|
Niccolini F, Wilson H, Pagano G, Coello C, Mehta MA, Searle GE, Gunn RN, Rabiner EA, Foltynie T, Politis M. Loss of phosphodiesterase 4 in Parkinson disease. Neurology 2017; 89:586-593. [DOI: 10.1212/wnl.0000000000004201] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 04/11/2017] [Indexed: 02/04/2023] Open
Abstract
Objective:To assess in vivo the expression of phosphodiesterase 4 (PDE4) and its relevance to cognitive symptoms in patients with Parkinson disease (PD) using [11C]rolipram PET.Methods:We studied 12 levodopa-treated patients with PD with no concurrent diagnosis of mild cognitive impairment or dementia. Their data were compared with those from 12 healthy controls. All participants underwent neuropsychiatric and cognitive assessment using the Cambridge Neuropsychological Test Automated Battery. Parametric images of [11C]rolipram volume of distribution (VT) values were determined with the Logan plot.Results:Patients with PD performed worse than healthy controls in cognitive examinations assessing psychomotor speed, episodic memory, and spatial working memory and executive function. Patients with PD showed reductions in [11C]rolipram VT compared to healthy controls, in the caudate (28%), thalamus (23%), hypothalamus (32%), and cortex (16%). Within thalamic subregions, [11C]rolipram VT values in patients with PD were decreased by 12%–32%, with most marked decreases observed in prefrontal and temporal thalamic nuclei, whereas motor nuclei were less affected. Within the cortex, [11C]rolipram VT values in patients with PD were decreased by 11%–20%, with most marked decreases observed in posterior dorsolateral frontal cortex, medial frontal cortex, and supplementary motor area, whereas orbitofrontal cortex was less affected. Worse performance in spatial working memory correlated with lower [11C]rolipram VT values in posterior dorsolateral frontal cortex, medial frontal cortex, supplementary motor area, precentral gyrus, caudate, and prefrontal thalamic nuclei.Conclusions:Our findings demonstrate loss of PDE4 expression in the striato-thalamo-cortical circuit, which is associated with deficits of spatial working memory in patients with PD.
Collapse
|
9
|
Caeyenberghs K, Pijnenburg M, Goossens N, Janssens L, Brumagne S. Associations between Measures of Structural Morphometry and Sensorimotor Performance in Individuals with Nonspecific Low Back Pain. AJNR Am J Neuroradiol 2017; 38:183-191. [PMID: 27884877 DOI: 10.3174/ajnr.a5020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 08/18/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND PURPOSE To date, most structural brain imaging studies in individuals with nonspecific low back pain have evaluated volumetric changes. These alterations are particularly found in sensorimotor-related areas. Although it is suggested that specific measures, such as cortical surface area and cortical thickness, reflect different underlying neural architectures, the literature regarding these different measures in individuals with nonspecific low back pain is limited. Therefore, the current study was designed to investigate the association between the performance on a sensorimotor task, more specifically the sit-to-stand-to-sit task, and cortical surface area and cortical thickness in individuals with nonspecific low back pain and healthy controls. MATERIALS AND METHODS Seventeen individuals with nonspecific low back pain and 17 healthy controls were instructed to perform 5 consecutive sit-to-stand-to-sit movements as fast as possible. In addition, T1-weighted anatomic scans of the brain were acquired and analyzed with FreeSurfer. RESULTS Compared with healthy controls, individuals with nonspecific low back pain needed significantly more time to perform 5 sit-to-stand-to-sit movements (P < .05). Brain morphometric analyses revealed that cortical thickness of the ventrolateral prefrontal cortical regions was increased in patients with nonspecific low back pain compared with controls. Furthermore, decreased cortical thickness of the rostral anterior cingulate cortex was associated with lower sit-to-stand-to-sit performance on an unstable support surface in individuals with nonspecific low back pain and healthy controls (r = -0.47, P < .007). In addition, a positive correlation was found between perceived pain intensity and cortical thickness of the superior frontal gyrus (r = 0.70, P < .002) and the pars opercularis of the inferior ventrolateral prefrontal cortex (r = 0.67, P < .004). Hence, increased cortical thickness was associated with increased levels of pain intensity in individuals with nonspecific low back pain. No associations were found between cortical surface area and the pain characteristics in this group. CONCLUSIONS The current study suggests that cortical thickness may contribute to different aspects of sit-to-stand-to-sit performance and perceived pain intensity in individuals with nonspecific low back pain.
Collapse
Affiliation(s)
- K Caeyenberghs
- From the School of Psychology (K.C.), Faculty of Health Sciences, Australian Catholic University, Sydney, New South Wales, Australia
| | - M Pijnenburg
- Department of Rehabilitation Sciences (M.P., N.G., L.J., S.B.), Katholieke Universiteit Leuven, Leuven, Belgium
| | - N Goossens
- Department of Rehabilitation Sciences (M.P., N.G., L.J., S.B.), Katholieke Universiteit Leuven, Leuven, Belgium
| | - L Janssens
- Department of Rehabilitation Sciences (M.P., N.G., L.J., S.B.), Katholieke Universiteit Leuven, Leuven, Belgium
- Hasselt University (L.J.), Biomedical Research Institute, Diepenbeek, Belgium
| | - S Brumagne
- Department of Rehabilitation Sciences (M.P., N.G., L.J., S.B.), Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Politis M, Pagano G, Niccolini F. Imaging in Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 132:233-274. [DOI: 10.1016/bs.irn.2017.02.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
11
|
Sterling N, Lewis M, Du G, Huang X. Structural Imaging and Parkinson's Disease: Moving Toward Quantitative Markers of Disease Progression. JOURNAL OF PARKINSON'S DISEASE 2016; 6:557-67. [PMID: 27258697 PMCID: PMC5008231 DOI: 10.3233/jpd-160824] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 04/27/2016] [Indexed: 12/16/2022]
Abstract
Parkinson's disease (PD) is a progressive age-related neurodegenerative disorder. Although the pathological hallmark of PD is dopaminergic cell death in the substantia nigra pars compacta, widespread neurodegenerative changes occur throughout the brain as disease progresses. Postmortem studies, for example, have demonstrated the presence of Lewy pathology, apoptosis, and loss of neurotransmitters and interneurons in both cortical and subcortical regions of PD patients. Many in vivo structural imaging studies have attempted to gauge PD-related pathology, particularly in gray matter, with the hope of identifying an imaging biomarker. Reports of brain atrophy in PD, however, have been inconsistent, most likely due to differences in the studied populations (i.e. different disease stages and/or clinical subtypes), experimental designs (i.e. cross-sectional vs. longitudinal), and image analysis methodologies (i.e. automatic vs. manual segmentation). This review attempts to summarize the current state of gray matter structural imaging research in PD in relationship to disease progression, reconciling some of the differences in reported results, and to identify challenges and future avenues.
Collapse
Affiliation(s)
- N.W. Sterling
- Department of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA, USA
| | - M.M. Lewis
- Department of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA, USA
- Department of Pharmacology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA, USA
| | - G. Du
- Department of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA, USA
| | - X. Huang
- Department of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA, USA
- Department of Pharmacology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA, USA
- Department of Radiology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA, USA
- Department of Neurosurgery, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA, USA
- Department of Kinesiology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA, USA
| |
Collapse
|
12
|
Iscan Z, Jin TB, Kendrick A, Szeglin B, Lu H, Trivedi M, Fava M, McGrath PJ, Weissman M, Kurian BT, Adams P, Weyandt S, Toups M, Carmody T, McInnis M, Cusin C, Cooper C, Oquendo MA, Parsey RV, DeLorenzo C. Test-retest reliability of freesurfer measurements within and between sites: Effects of visual approval process. Hum Brain Mapp 2015; 36:3472-85. [PMID: 26033168 PMCID: PMC4545736 DOI: 10.1002/hbm.22856] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 05/11/2015] [Accepted: 05/15/2015] [Indexed: 12/30/2022] Open
Abstract
In the last decade, many studies have used automated processes to analyze magnetic resonance imaging (MRI) data such as cortical thickness, which is one indicator of neuronal health. Due to the convenience of image processing software (e.g., FreeSurfer), standard practice is to rely on automated results without performing visual inspection of intermediate processing. In this work, structural MRIs of 40 healthy controls who were scanned twice were used to determine the test-retest reliability of FreeSurfer-derived cortical measures in four groups of subjects-those 25 that passed visual inspection (approved), those 15 that failed visual inspection (disapproved), a combined group, and a subset of 10 subjects (Travel) whose test and retest scans occurred at different sites. Test-retest correlation (TRC), intraclass correlation coefficient (ICC), and percent difference (PD) were used to measure the reliability in the Destrieux and Desikan-Killiany (DK) atlases. In the approved subjects, reliability of cortical thickness/surface area/volume (DK atlas only) were: TRC (0.82/0.88/0.88), ICC (0.81/0.87/0.88), PD (0.86/1.19/1.39), which represent a significant improvement over these measures when disapproved subjects are included. Travel subjects' results show that cortical thickness reliability is more sensitive to site differences than the cortical surface area and volume. To determine the effect of visual inspection on sample size required for studies of MRI-derived cortical thickness, the number of subjects required to show group differences was calculated. Significant differences observed across imaging sites, between visually approved/disapproved subjects, and across regions with different sizes suggest that these measures should be used with caution.
Collapse
Affiliation(s)
- Zafer Iscan
- Centre for Cognition and Decision MakingNational Research University Higher School of Economics, Russian Federation
| | - Tony B. Jin
- Department of PsychiatryStony Brook UniversityStony BrookNew York
| | | | - Bryan Szeglin
- Department of PsychiatryStony Brook UniversityStony BrookNew York
| | - Hanzhang Lu
- Department of PsychiatryUT Southwestern Medical CenterDallasTexas
| | - Madhukar Trivedi
- Department of PsychiatryUT Southwestern Medical CenterDallasTexas
| | - Maurizio Fava
- Department of PsychiatryMassachusetts General HospitalBostonMassachusetts
| | - Patrick J. McGrath
- New York State Psychiatric InstituteNew YorkNew York
- Department of PsychiatryColumbia University/New York State Psychiatric InstituteNew YorkNew York
| | - Myrna Weissman
- Department of PsychiatryColumbia University/New York State Psychiatric InstituteNew YorkNew York
| | - Benji T. Kurian
- Department of PsychiatryUT Southwestern Medical CenterDallasTexas
| | - Phillip Adams
- New York State Psychiatric InstituteNew YorkNew York
| | - Sarah Weyandt
- Department of PsychiatryUT Southwestern Medical CenterDallasTexas
| | - Marisa Toups
- Department of PsychiatryUT Southwestern Medical CenterDallasTexas
| | - Thomas Carmody
- Department of PsychiatryUT Southwestern Medical CenterDallasTexas
| | - Melvin McInnis
- Department of PsychiatryUniversity of MichiganAnn ArborMichigan
| | - Cristina Cusin
- Department of PsychiatryMassachusetts General HospitalBostonMassachusetts
| | - Crystal Cooper
- Department of PsychiatryUT Southwestern Medical CenterDallasTexas
| | | | - Ramin V. Parsey
- Department of PsychiatryStony Brook UniversityStony BrookNew York
| | - Christine DeLorenzo
- Department of PsychiatryStony Brook UniversityStony BrookNew York
- Department of PsychiatryColumbia University/New York State Psychiatric InstituteNew YorkNew York
| |
Collapse
|
13
|
Decreased Resting-State Interhemispheric Functional Connectivity in Parkinson's Disease. BIOMED RESEARCH INTERNATIONAL 2015; 2015:692684. [PMID: 26180807 PMCID: PMC4477209 DOI: 10.1155/2015/692684] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/27/2014] [Accepted: 10/10/2014] [Indexed: 02/05/2023]
Abstract
BACKGROUND Abnormalities in white matter integrity and specific functional network alterations have been increasingly reported in patients with Parkinson's disease (PD). However, little is known about the inter-hemispheric interaction in PD. METHODS Fifty-one drug naive patients with PD and 51 age- and gender-matched healthy subjects underwent resting-state functional magnetic resonance imaging (rs-fMRI) scans. We compared the inter-hemispheric resting-state functional connectivity between patients with PD and healthy controls, using the voxel-mirrored homotopic connectivity (VMHC) approach. Then, we correlated the results from VMHC and clinical features in PD patients. RESULTS Relative to healthy subject, patients exhibited significantly lower VMHC in putamen and cortical regions associated with sensory processing and motor control (involving sensorimotor and supramarginal cortex), which have been verified to play a critical role in PD. In addition, there were inverse relationships between the UPDRS motor scores and VMHC in the sensorimotor, and between the illness duration and VMHC in the supramarginal gyrus in PD patients. CONCLUSIONS Our results suggest that the functional coordination between homotopic brain regions is impaired in PD patients, extending previous notions about the disconnection of corticostriatal circuit by providing new evidence supporting a disturbance in inter-hemispheric connections in PD.
Collapse
|
14
|
Imaging changes associated with cognitive abnormalities in Parkinson's disease. Brain Struct Funct 2014; 220:2249-61. [PMID: 24816399 DOI: 10.1007/s00429-014-0785-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 04/22/2014] [Indexed: 01/12/2023]
Abstract
The current study investigates both gray and white matter changes in non-demented Parkinson's disease (PD) patients with varying degrees of mild cognitive deficits and elucidates the relationships between the structural changes and clinical sequelae of PD. Twenty-six PD patients and 15 healthy controls (HCs) were enrolled in the study. Participants underwent T1-weighted and diffusion tensor imaging (DTI) scans. Their cognition was assessed using a neuropsychological battery. Compared with HCs, PD patients showed significant cortical thinning in sensorimotor (left pre- and postcentral gyri) and cognitive (left dorsolateral superior frontal gyrus [DLSFG]) regions. The DLSFG cortical thinning correlated with executive and global cognitive impairment in PD patients. PD patients showed white matter abnormalities as well, primarily in bilateral frontal and temporal regions, which also correlated with executive and global cognitive impairment. These results seem to suggest that both gray and white matter changes in the frontal regions may constitute an early pathological substrate of cognitive impairment of PD providing a sensitive biomarker for brain changes in PD.
Collapse
|
15
|
Lindenbach D, Bishop C. Critical involvement of the motor cortex in the pathophysiology and treatment of Parkinson's disease. Neurosci Biobehav Rev 2013; 37:2737-50. [PMID: 24113323 DOI: 10.1016/j.neubiorev.2013.09.008] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 06/20/2013] [Accepted: 09/13/2013] [Indexed: 12/16/2022]
Abstract
This review examines the involvement of the motor cortex in Parkinson's disease (PD), a debilitating movement disorder typified by degeneration of dopamine cells of the substantia nigra. While much of PD research has focused on the caudate/putamen, many aspects of motor cortex function are abnormal in PD patients and in animal models of PD, implicating motor cortex involvement in disease symptoms and their treatment. Herein, we discuss several lines of evidence to support this hypothesis. Dopamine depletion alters regional metabolism in the motor cortex and also reduces interneuron activity, causing a breakdown in intracortical inhibition. This leads to functional reorganization of motor maps and excessive corticostriatal synchrony when movement is initiated. Recent work suggests that electrical stimulation of the motor cortex provides a clinical benefit for PD patients. Based on extant research, we identify a number of unanswered questions regarding the motor cortex in PD and argue that a better understanding of the contribution of the motor cortex to PD symptoms will facilitate the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- David Lindenbach
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University - State University of New York, PO Box 6000, Binghamton, NY 13902-6000, USA.
| | | |
Collapse
|
16
|
Zhang J, Wei L, Hu X, Zhang Y, Zhou D, Li C, Wang X, Feng H, Yin X, Xie B, Wang J. Specific frequency band of amplitude low-frequency fluctuation predicts Parkinson's disease. Behav Brain Res 2013; 252:18-23. [PMID: 23727173 DOI: 10.1016/j.bbr.2013.05.039] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/17/2013] [Accepted: 05/22/2013] [Indexed: 02/08/2023]
Abstract
Resting-state functional magnetic resonance imaging (RS-fMRI) has been considered for development as a biomarker and analytical tool for evaluation of Parkinson's disease (PD). Here we utilized analysis of the amplitude low-frequency fluctuations (ALFF) to determine changes in intrinsic neural oscillations in 72 patients with PD. Two different frequency bands (slow-5: 0.01-0.027 Hz; slow-4: 0.027-0.073 Hz) were analyzed. In the slow-5 band, PD patients compared with controls had increased ALFF values mainly in the caudate and several temporal regions, as well as decreased ALFF values in the cerebellum and the parieto-temporo-occipital cortex. Additionally, in the slow-4 band, PD patients relative to controls exhibited reduced ALFF value in the thalamus, cerebellum, and several occipital regions. Together, our data demonstrate that PD patients have widespread abnormal intrinsic neural oscillations in the corticostriatal network in line with the pathophysiology of PD, and further suggest that the abnormalities are dependent on specific frequency bands. Thus, frequency domain analyses of resting state BOLD signals may provide a useful means to study the pathophysiology of PD and the physiology of the brain's dopaminergic pathways.
Collapse
Affiliation(s)
- Jiuquan Zhang
- Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Boelmans K, Sedlacik J, Niehaus L, Jahn H, Münchau A. Recent advances in structural MRI in Parkinson’s disease and atypical parkinsonian syndromes. Neurodegener Dis Manag 2012. [DOI: 10.2217/nmt.12.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
SUMMARY In the past 2 years, technical developments in conventional and advanced MRI, such as ultra-high-field MRI or mapping of brain mineralization, has allowed novel insights into the nature of Parkinson’s disease (PD) and atypical parkinsonian syndromes, which may aid diagnostic accuracy and differential diagnosis. In addition, sophisticated post-processing analyses, such as morphometry- and surface-based classifications and automated whole-brain analyses, have become available; in PD, this has led to direct visualization of structural substantia nigra abnormalities, monitoring disease progression or screening for brain atrophy associated with dementia. Based on conventional MRI, new MRI rating scales have been established for progressive supranuclear palsy and multiple system atrophy and have been further assessed with a view to their diagnostic accuracy. Clinicopathological series of patients with tauopathies imply that correlations between clinical syndromes, imaging patterns and underlying histopathology are not always strong. Here, some of the issues related to conventional and advanced MRI for the diagnostic accuracy of PD and atypical parkinsonian syndromes are reviewed.
Collapse
Affiliation(s)
- Kai Boelmans
- Department of Psychiatry, Memory Clinic, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg, Germany
| | - Jan Sedlacik
- Department of Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ludwig Niehaus
- Department of Neurology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Holger Jahn
- Department of Psychiatry, Memory Clinic, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg, Germany
| | - Alexander Münchau
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
18
|
Prabhakaran V, Nair VA, Austin BP, La C, Gallagher TA, Wu Y, McLaren DG, Xu G, Turski P, Rowley H. Current status and future perspectives of magnetic resonance high-field imaging: a summary. Neuroimaging Clin N Am 2012; 22:373-97, xii. [PMID: 22548938 DOI: 10.1016/j.nic.2012.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There are several magnetic resonance (MR) imaging techniques that benefit from high-field MR imaging. This article describes a range of novel techniques that are currently being used clinically or will be used in the future for clinical purposes as they gain popularity. These techniques include functional MR imaging, diffusion tensor imaging, cortical thickness assessment, arterial spin labeling perfusion, white matter hyperintensity lesion assessment, and advanced MR angiography.
Collapse
Affiliation(s)
- Vivek Prabhakaran
- Division of Neuroradiology, Department of Radiology, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792-3252, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|