1
|
Tanaka M, Vécsei L. Revolutionizing our understanding of Parkinson's disease: Dr. Heinz Reichmann's pioneering research and future research direction. J Neural Transm (Vienna) 2024; 131:1367-1387. [PMID: 39110245 PMCID: PMC11608389 DOI: 10.1007/s00702-024-02812-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/22/2024] [Indexed: 11/17/2024]
Abstract
Millions of individuals around the world are afflicted with Parkinson's disease (PD), a prevalent and incapacitating neurodegenerative disorder. Dr. Reichmann, a distinguished professor and neurologist, has made substantial advancements in the domain of PD research, encompassing both fundamental scientific investigations and practical applications. His research has illuminated the etiology and treatment of PD, as well as the function of energy metabolism and premotor symptoms. As a precursor to a number of neurotransmitters and neuromodulators that are implicated in the pathophysiology of PD, he has also investigated the application of tryptophan (Trp) derivatives in the disease. His principal findings and insights are summarized and synthesized in this narrative review article, which also emphasizes the challenges and implications for future PD research. This narrative review aims to identify and analyze the key contributions of Reichmann to the field of PD research, with the ultimate goal of informing future research directions in the domain. By examining Reichmann's work, the study seeks to provide a comprehensive understanding of his major contributions and how they can be applied to advance the diagnosis and treatment of PD. This paper also explores the potential intersection of Reichmann's findings with emerging avenues, such as the investigation of Trp and its metabolites, particularly kynurenines, which could lead to new insights and potential therapeutic strategies for managing neurodegenerative disorders like PD.
Collapse
Affiliation(s)
- Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, Szeged, H-6725, Hungary.
| | - László Vécsei
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, Szeged, H-6725, Hungary
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
| |
Collapse
|
2
|
Sánchez-Camacho JV, Gómez-Chavarín M, Galindo-Solano N, Padilla-Cortés P, Maldonado-García JL, Pérez-Sánchez G, Pavón L, Ramírez-Santos J, Roldán Roldán G, Gómez-López M, Gutierrez-Ospina G. Non-Categorical Analyses Identify Rotenone-Induced 'Parkinsonian' Rats Benefiting from Nano-Emulsified Punicic Acid (Nano-PSO) in a Phenotypically Diverse Population: Implications for Translational Neurodegenerative Therapies. Int J Mol Sci 2024; 25:12635. [PMID: 39684350 PMCID: PMC11640963 DOI: 10.3390/ijms252312635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/31/2024] [Accepted: 11/10/2024] [Indexed: 12/18/2024] Open
Abstract
The pursuit of nutraceuticals to improve the quality of life for patients with neurodegenerative conditions is a dynamic field within neuropharmacology. Unfortunately, many nutraceuticals that show promise in preclinical studies fail to demonstrate significant clinical benefits in human trials, leading to their exclusion as therapeutic options. This discrepancy may stem from the categorical interpretation of preclinical and clinical results. Basic researchers often assume that non-human experimental animals exhibit less phenotypic variability than humans. This belief overlooks interindividual phenotype variation, thereby leading to categorical conclusions being drawn from experiments. Consequently, when human clinical trials are conducted, the researchers expect similarly conclusive results. If these results are not achieved, the nutraceutical is deemed ineffective for clinical use, even if numerous individuals might benefit. In our study, we evaluated whether analyzing phenotype variability and similarity through non-categorical methods could help identify rotenone (ROT)-treated rats that might benefit from consuming nano-emulsified punicic acid (Nano-PSO), even if the prevention of "parkinsonism" or the restoration of neurometabolic function is inconsistent across individuals. Our findings supported this hypothesis. The benefits of Nano-PSO were not categorical; however, analyzing phenotype variance allowed us to identify ROT rats with varying degrees of benefit from Nano-PSO consumption. Hence, the translational potential of results from basic science studies testing nutraceuticals as pharmaceutical products against neurodegeneration may improve if researchers also interpret their results using non-categorical methods of data analysis for population screening, even if the overall therapeutic outcomes for the entire population show internal inconsistencies.
Collapse
Affiliation(s)
| | - Margarita Gómez-Chavarín
- Laboratorio de Medicina Regenerativa y Canales Iónicos, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Nuria Galindo-Solano
- Laboratorio de Biología de Sistemas, Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (N.G.-S.); (J.R.-S.)
- Programa de Doctorado en Ciencias Biomédicas, Unidad de Posgrado, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Patricia Padilla-Cortés
- Unidad de Cromatografía, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - José Luis Maldonado-García
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Gilberto Pérez-Sánchez
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñíz”, Ciudad de México 14370, Mexico
| | - Lenin Pavón
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñíz”, Ciudad de México 14370, Mexico
| | - Jesús Ramírez-Santos
- Laboratorio de Biología de Sistemas, Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (N.G.-S.); (J.R.-S.)
| | - Gabriel Roldán Roldán
- Laboratorio de Neurología Conductual, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Modesto Gómez-López
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico;
| | - Gabriel Gutierrez-Ospina
- Laboratorio de Biología de Sistemas, Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (N.G.-S.); (J.R.-S.)
- Coordinación de Psicobiología y Neurociencias, Facultad de Psicología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
3
|
Fezeu F, Jbara OF, Jbarah A, Choucha A, De Maria L, Ciaglia E, De Simone M, Samnick S. PET imaging for a very early detection of rapid eye movement sleep behaviour disorder and Parkinson's disease - A model-based cost-effectiveness analysis. Clin Neurol Neurosurg 2024; 243:108404. [PMID: 38944021 DOI: 10.1016/j.clineuro.2024.108404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative condition after Alzheimer's disease and it represents one of the fastest emerging neurological diseases worldwide. PD is usually diagnosed after the third decade of life with symptoms like tremors at rest and muscle stiffness. Rapid Eye Movement sleep behavioral disorder (RBD) is another disorder that is caused by a loss of typical muscle relaxation during sleep with a lot of motor activity. Usually, RBD is strongly associated with PD. Recent studies have demonstrated that PD reduces the life expectancy of patients to 10 and 20 years after being diagnosed. In addition, delayed diagnosis and treatment of these neurological disorders have significant socio-economic impacts on patients, their partners and on the general public. Often, it is not clear about PD associated financial burdens both in low and high-income countries. On the other hand, PD triggers neurological variations that affect differences in the dopamine transporter (DAT) and in glucose metabolism. Therefore, positron emission tomography (PET) using specific DAT radiotracers and fluorine-18 labeled desoxyglucose (FDG) has being considered a key imaging technique that could be applied clinically for the very early diagnosis of RBD and in PD. However, a few myths about PET is that it is very expensive. Here, we looked at the cost of treatment of PD and RBD in relation to early PET imaging. Our finding suggests that PET imaging might also be a cost sparing diagnostic option in the management of patients with PD and RBD, not only for first world countries as it is the case now but also for the third world countries. Therefore, PET is a cost-effective imaging technique for very early diagnostic of RBD and PD.
Collapse
Affiliation(s)
- Francis Fezeu
- Brain Global, Department of Neurology & Neurological Surgery, 27659 Arabian Drive, Salisbury, MD 21801, USA
| | - Omar F Jbara
- Neuropedia for Training and Scientific Research, Amman, Jordan
| | | | - Anis Choucha
- Department of Neurosurgery, Aix Marseille University, APHM, UH Timone, Marseille 13005, France
| | - Lucio De Maria
- Unit of Neurosurgery, Department of Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia 25123, Italy; Unit of Neurosurgery, Department of Clinical Neuroscience, Geneva University Hospitals (HUG), Geneva 1205, Switzerland
| | - Elena Ciaglia
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via S. Allende, Baronissi 84081, Italy
| | - Matteo De Simone
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via S. Allende, Baronissi 84081, Italy.
| | - Samuel Samnick
- Interdisciplinary PET Centre and Radiopharmacy at the Department of Nuclear Medicine of the University Würzburg, Germany; Interdisciplinary PET-Centre at the Julius-Maximilians University Würzburg, Germany
| |
Collapse
|
4
|
Onder H, Cetin BN, Comoglu S. A rare patient with Parkinson's disease presenting with isolated progressive micrographia. Neurocase 2024; 30:153-155. [PMID: 39369269 DOI: 10.1080/13554794.2024.2406591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/04/2024] [Indexed: 10/07/2024]
Abstract
Although handwriting impairment is a frequent sign of Parkinson's disease (PD), its significance in the evaluation processes of these patients may be overlooked among physicians. Therefore, we would like to report an illustrative patient who presented with isolated micrographia initially; but received the diagnosis of PD in the follow-up.
Collapse
Affiliation(s)
- Halil Onder
- Neurology Clinic, Diskapi Yildirim Beyazit Training and Research Hospital, Ankara, Turkey
| | - Beyza Nur Cetin
- Neurology Clinic, Diskapi Yildirim Beyazit Training and Research Hospital, Ankara, Turkey
| | - Selcuk Comoglu
- Neurology Clinic, Diskapi Yildirim Beyazit Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
5
|
Goto H, Ono N. Progressive Micrographia in Trial Writing with a Ballpoint Pen. Intern Med 2024; 63:615-616. [PMID: 37407460 PMCID: PMC10937117 DOI: 10.2169/internalmedicine.2057-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/21/2023] [Indexed: 07/07/2023] Open
Affiliation(s)
- Hirofumi Goto
- Department of Neurology, Imari Arita Kyoritsu Hospital, Japan
| | - Natsuki Ono
- Department of Neurology, Imari Arita Kyoritsu Hospital, Japan
| |
Collapse
|
6
|
Amo-Salas J, Olivares-Gil A, García-Bustillo Á, García-García D, Arnaiz-González Á, Cubo E. Computer Vision for Parkinson's Disease Evaluation: A Survey on Finger Tapping. Healthcare (Basel) 2024; 12:439. [PMID: 38391815 PMCID: PMC10888014 DOI: 10.3390/healthcare12040439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder whose prevalence has steadily been rising over the years. Specialist neurologists across the world assess and diagnose patients with PD, although the diagnostic process is time-consuming and various symptoms take years to appear, which means that the diagnosis is prone to human error. The partial automatization of PD assessment and diagnosis through computational processes has therefore been considered for some time. One well-known tool for PD assessment is finger tapping (FT), which can now be assessed through computer vision (CV). Artificial intelligence and related advances over recent decades, more specifically in the area of CV, have made it possible to develop computer systems that can help specialists assess and diagnose PD. The aim of this study is to review some advances related to CV techniques and FT so as to offer insight into future research lines that technological advances are now opening up.
Collapse
Affiliation(s)
- Javier Amo-Salas
- Escuela Politécnica Superior, Departamento de Ingeniería Informática, Universidad de Burgos, 09001 Burgos, Spain
| | - Alicia Olivares-Gil
- Escuela Politécnica Superior, Departamento de Ingeniería Informática, Universidad de Burgos, 09001 Burgos, Spain
| | - Álvaro García-Bustillo
- Facultad de Ciencias de la Salud, Departamento de Ciencias de la Salud, Universidad de Burgos, 09001 Burgos, Spain
| | - David García-García
- Escuela Politécnica Superior, Departamento de Ingeniería Informática, Universidad de Burgos, 09001 Burgos, Spain
| | - Álvar Arnaiz-González
- Escuela Politécnica Superior, Departamento de Ingeniería Informática, Universidad de Burgos, 09001 Burgos, Spain
| | - Esther Cubo
- Servicio de Neurología, Hospital Universitario de Burgos, 09006 Burgos, Spain
| |
Collapse
|
7
|
Cossu D, Hatano T, Hattori N. The Role of Immune Dysfunction in Parkinson's Disease Development. Int J Mol Sci 2023; 24:16766. [PMID: 38069088 PMCID: PMC10706591 DOI: 10.3390/ijms242316766] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Recent research has unveiled intriguing insights suggesting that the body's immune system may be implicated in Parkinson's disease (PD) development. Studies have observed disparities in pro-inflammatory and anti-inflammatory markers between PD patients and healthy individuals. This finding underscores the potential influence of immune system dysfunction in the genesis of this condition. A dysfunctional immune system can serve as a primary catalyst for systemic inflammation in the body, which may contribute to the emergence of various brain disorders. The identification of several genes associated with PD, as well as their connection to neuroinflammation, raises the likelihood of disease susceptibility. Moreover, advancing age and mitochondrial dysfunction can weaken the immune system, potentially implicating them in the onset of the disease, particularly among older individuals. Compromised integrity of the blood-brain barrier could facilitate the immune system's access to brain tissue. This exposure may lead to encounters with native antigens or infections, potentially triggering an autoimmune response. Furthermore, there is mounting evidence supporting the notion that gut dysbiosis might represent an initial trigger for brain inflammation, ultimately promoting neurodegeneration. In this comprehensive review, we will delve into the numerous hypotheses surrounding the role of both innate and adaptive immunity in PD.
Collapse
Affiliation(s)
- Davide Cossu
- Department of Neurology, Juntendo University, Tokyo 1138431, Japan
- Department of Biomedical Sciences, Sassari University, 07100 Sassari, Italy
| | - Taku Hatano
- Department of Neurology, Juntendo University, Tokyo 1138431, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University, Tokyo 1138431, Japan
- Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain Science, Saitama 3510918, Japan
| |
Collapse
|
8
|
Simonet C, Mahlknecht P, Marini K, Seppi K, Gill A, Bestwick JP, Lees AJ, Giovannoni G, Schrag A, Noyce AJ. The Emergence and Progression of Motor Dysfunction in Individuals at Risk of Parkinson's Disease. Mov Disord 2023; 38:1636-1644. [PMID: 37317903 DOI: 10.1002/mds.29496] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND PREDICT-PD is a United Kingdom population-based study aiming to stratify individuals for future Parkinson's disease (PD) using a risk algorithm. METHODS A randomly selected, representative sample of participants in PREDICT-PD were examined using several motor assessments, including the motor section of the Movement Disorder Society-Sponsored Revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS)-III, at baseline (2012) and after an average of 6 years of follow-up. We checked for new PD diagnoses in participants seen at baseline and examined the association between risk scores and incident sub-threshold parkinsonism, motor decline (increasing ≥5 points in MDS-UPDRS-III) and single motor domains in the MDS-UPDRS-III. We replicated analyses in two independent datasets (Bruneck and Parkinson's Progression Markers Initiative [PPMI]). RESULTS After 6 years of follow-up, the PREDICT-PD higher-risk group (n = 33) had a greater motor decline compared with the lower-risk group (n = 95) (30% vs. 12.5%, P = 0.031). Two participants (both considered higher risk at baseline) were given a diagnosis of PD during follow-up, with motor signs emerging between 2 and 5 years before diagnosis. A meta-analysis of data from PREDICT-PD, Bruneck, and PPMI showed an association between PD risk estimates and incident sub-threshold parkinsonism (odds ratio [OR], 2.01 [95% confidence interval (CI), 1.55-2.61]), as well as new onset bradykinesia (OR, 1.69 [95% CI, 1.33-2.16]) and action tremor (OR, 1.61 [95% CI, 1.30-1.98]). CONCLUSIONS Risk estimates using the PREDICT-PD algorithm were associated with the occurrence of sub-threshold parkinsonism, including bradykinesia and action tremor. The algorithm could also identify individuals whose motor examination experience a decline over time. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Cristina Simonet
- Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom
| | - Philipp Mahlknecht
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Kathrin Marini
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Klaus Seppi
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Aneet Gill
- Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom
| | - Jonathan P Bestwick
- Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom
| | - Andrew J Lees
- Reta Lila Weston Institute of Neurological Studies, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Gavin Giovannoni
- Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom
- Blizard Institute, Queen Mary University, London, United Kingdom
| | - Anette Schrag
- Reta Lila Weston Institute of Neurological Studies, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Alastair J Noyce
- Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
9
|
Pérez‐Carbonell L, Simonet C, Chohan H, Gill A, Leschziner G, Schrag A, Noyce AJ. The Views of Patients with Isolated Rapid Eye Movement Sleep Behavior Disorder on Risk Disclosure. Mov Disord 2023; 38:1089-1093. [PMID: 37046409 PMCID: PMC10947281 DOI: 10.1002/mds.29403] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/20/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Isolated rapid eye movement sleep behavior disorder (iRBD) is associated with an increased risk of Parkinson's disease and other synucleinopathies. There is no consensus about disclosure of this risk to patients with iRBD. OBJECTIVE The objective of our study was to assess the experiences of risk disclosure in a group of patients with iRBD and their views on what, when, and how this should be done. METHODS A survey was administered to patients with iRBD to explore their experiences and views on risk disclosure. RESULTS Thirty-one patients with iRBD (28 males; mean age, 70 [SD 8.7] years; mean disease duration, 8.7 [SD 6.4] years) were included. A third reported they had not been informed about the link between iRBD and other conditions by clinicians at diagnosis, but 90% would have liked to have received prognostic information, and 60% indicated that this should happen at the point that iRBD was diagnosed. Most participants wanted this information to come from the clinician diagnosing and treating iRBD (90.3%). Almost three-quarters (72.2%) had searched for this information online. CONCLUSIONS Patients with iRBD mostly wished to have received information regarding the potential implications of iRBD when the diagnosis was made. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Laura Pérez‐Carbonell
- Sleep Disorders Centre, Guy's and St Thomas' NHS Foundation TrustLondonUnited Kingdom
| | - Cristina Simonet
- Preventive Neurology Unit, Wolfson Institute of Population HealthQueen Mary University of LondonLondonUnited Kingdom
| | - Harneek Chohan
- Preventive Neurology Unit, Wolfson Institute of Population HealthQueen Mary University of LondonLondonUnited Kingdom
| | - Aneet Gill
- Preventive Neurology Unit, Wolfson Institute of Population HealthQueen Mary University of LondonLondonUnited Kingdom
| | - Guy Leschziner
- Sleep Disorders Centre, Guy's and St Thomas' NHS Foundation TrustLondonUnited Kingdom
| | - Anette Schrag
- Department of Clinical and Movement NeuroscienceUCL Institute of NeurologyLondonUnited Kingdom
| | - Alastair J. Noyce
- Preventive Neurology Unit, Wolfson Institute of Population HealthQueen Mary University of LondonLondonUnited Kingdom
| |
Collapse
|
10
|
Chahine LM, Merchant K, Siderowf A, Sherer T, Tanner C, Marek K, Simuni T. Proposal for a Biologic Staging System of Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2023; 13:297-309. [PMID: 37066922 DOI: 10.3233/jpd-225111] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
The Parkinson's disease (PD) research field has seen the advent of several promising biomarkers and a deeper understanding of the clinical features of the disease from the earliest stages of pathology to manifest disease. Despite progress, a biologically based PD staging system does not exist. Such staging would be a useful framework within which to model the disease, develop and validate biomarkers, guide therapeutic development, and inform clinical trials design. We propose that the presence of aggregated neuronal α-synuclein, dopaminergic neuron dysfunction/degeneration, and clinical signs and symptoms identifies a group of individuals that have Lewy body pathology, which in early stages manifests with what is now referred to as prodromal non-motor features and later stages with the manifestations of PD and related Lewy body diseases as defined by clinical diagnostic criteria. Based on the state of the field, we herein propose a definition and staging of PD based on biology. We present the biologic basis for such a staging system and review key assumptions and evidence that support the proposed approach. We identify gaps in knowledge and delineate crucial research priorities that will inform the ultimate integrated biologic staging system for PD.
Collapse
Affiliation(s)
- Lana M Chahine
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kalpana Merchant
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Andrew Siderowf
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Todd Sherer
- The Michael J Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Caroline Tanner
- Department of Neurology, Weill Institute for Neurosciences, University of San Francisco, San Francisco, CA, USA
| | | | - Tanya Simuni
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
11
|
Wu Z, Gu H, Hong R, Xing Z, Zhang Z, Peng K, He Y, Xie L, Zhang J, Gao Y, Jin Y, Su X, Zhi H, Guan Q, Pan L, Jin L. Kinect-based objective evaluation of bradykinesia in patients with Parkinson's disease. Digit Health 2023; 9:20552076231176653. [PMID: 37223774 PMCID: PMC10201004 DOI: 10.1177/20552076231176653] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/02/2023] [Indexed: 05/25/2023] Open
Abstract
Objective To quantify bradykinesia in Parkinson's disease (PD) with a Kinect depth camera-based motion analysis system and to compare PD and healthy control (HC) subjects. Methods Fifty PD patients and twenty-five HCs were recruited. The Movement Disorder Society-Sponsored Revision of the Unified Parkinson's Disease Rating Scale part III (MDS-UPDRS III) was used to evaluate the motor symptoms of PD. Kinematic features of five bradykinesia-related motor tasks were collected using Kinect depth camera. Then, kinematic features were correlated with the clinical scales and compared between groups. Results Significant correlations were found between kinematic features and clinical scales (P < 0.05). Compared with HCs, PD patients exhibited a significant decrease in the frequency of finger tapping (P < 0.001), hand movement (P < 0.001), hand pronation-supination movements (P = 0.005), and leg agility (P = 0.003). Meanwhile, PD patients had a significant decrease in the speed of hand movements (P = 0.003) and toe tapping (P < 0.001) compared with HCs. Several kinematic features exhibited potential diagnostic value in distinguishing PD from HCs with area under the curve (AUC) ranging from 0.684-0.894 (P < 0.05). Furthermore, the combination of motor tasks exhibited the best diagnostic value with the highest AUC of 0.955 (95% CI = 0.913-0.997, P < 0.001). Conclusion The Kinect-based motion analysis system can be applied to evaluate bradykinesia in PD. Kinematic features can be used to differentiate PD patients from HCs and combining kinematic features from different motor tasks can significantly improve the diagnostic value.
Collapse
Affiliation(s)
- Zhuang Wu
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons’ Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- Neurotoxin Research Center, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hongkai Gu
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons’ Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- Neurotoxin Research Center, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ronghua Hong
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons’ Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- Neurotoxin Research Center, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ziwen Xing
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons’ Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- Neurotoxin Research Center, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhuoyu Zhang
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons’ Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- Neurotoxin Research Center, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Kangwen Peng
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons’ Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- Neurotoxin Research Center, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yijing He
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons’ Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- Neurotoxin Research Center, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ludi Xie
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons’ Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- Neurotoxin Research Center, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jingxing Zhang
- Neurotoxin Research Center, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yichen Gao
- IFLYTEK Suzhou Research Institute, Suzhou, China
| | - Yue Jin
- IFLYTEK Suzhou Research Institute, Suzhou, China
| | - Xiaoyun Su
- IFLYTEK Suzhou Research Institute, Suzhou, China
| | - Hongping Zhi
- IFLYTEK Suzhou Research Institute, Suzhou, China
| | - Qiang Guan
- Neurotoxin Research Center, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lizhen Pan
- Neurotoxin Research Center, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lingjing Jin
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons’ Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- Neurotoxin Research Center, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China
| |
Collapse
|
12
|
Chahine LM. Prodromal α-Synucleinopathies. Continuum (Minneap Minn) 2022; 28:1268-1280. [DOI: 10.1212/con.0000000000001153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Höllerhage M, Klietz M, Höglinger GU. Disease modification in Parkinsonism: obstacles and ways forward. J Neural Transm (Vienna) 2022; 129:1133-1153. [PMID: 35695938 PMCID: PMC9463344 DOI: 10.1007/s00702-022-02520-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/21/2022] [Indexed: 12/19/2022]
Abstract
To date, the diagnoses of Parkinson syndromes are based on clinical examination. Therefore, these specific diagnoses are made, when the neuropathological process is already advanced. However, disease modification or neuroprotection, is considered to be most effective before marked neurodegeneration has occurred. In recent years, early clinical or prodromal stages of Parkinson syndromes came into focus. Moreover, subtypes of distinct diseases will allow predictions of the individual course of the diseases more precisely. Thereby, patients will be enrolled into clinical trials with more specific disease entities and endpoints. Furthermore, novel fluid and imaging biomarkers that allow biochemical diagnoses are under development. These will lead to earlier diagnoses and earlier therapy in the future as consequence. Furthermore, therapeutic approaches will take the underlying neuropathological process of neurodegenerative Parkinson syndromes more specific into account. Specifically, future therapies will target the aggregation of aggregation-prone proteins such as alpha-synuclein and tau, the degradation of pathological aggregates, and the spreading of pathological protein aggregates throughout the brain. Many of these approaches are already in (pre)clinical development. In addition, anti-inflammatory approaches are in development. Furthermore, drug-repurposing is a feasible approach to shorten the developmental process of new drugs.
Collapse
Affiliation(s)
- M Höllerhage
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - M Klietz
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - G U Höglinger
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
14
|
Phonemes based detection of parkinson's disease for telehealth applications. Sci Rep 2022; 12:9687. [PMID: 35690657 PMCID: PMC9188600 DOI: 10.1038/s41598-022-13865-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 05/30/2022] [Indexed: 12/22/2022] Open
Abstract
Dysarthria is an early symptom of Parkinson’s disease (PD) which has been proposed for detection and monitoring of the disease with potential for telehealth. However, with inherent differences between voices of different people, computerized analysis have not demonstrated high performance that is consistent for different datasets. The aim of this study was to improve the performance in detecting PD voices and test this with different datasets. This study has investigated the effectiveness of three groups of phoneme parameters, i.e. voice intensity variation, perturbation of glottal vibration, and apparent vocal tract length (VTL) for differentiating people with PD from healthy subjects using two public databases. The parameters were extracted from five sustained phonemes; /a/, /e/, /i/, /o/, and /u/, recorded from 50 PD patients and 50 healthy subjects of PC-GITA dataset. The features were statistically investigated, and then classified using Support Vector Machine (SVM). This was repeated on Viswanathan dataset with smartphone-based recordings of /a/, /o/, and /m/ of 24 PD and 22 age-matched healthy people. VTL parameters gave the highest difference between voices of people with PD and healthy subjects; classification accuracy with the five vowels of PC-GITA dataset was 84.3% while the accuracy for other features was between 54% and 69.2%. The accuracy for Viswanathan’s dataset was 96.0%. This study has demonstrated that VTL obtained from the recording of phonemes using smartphone can accurately identify people with PD. The analysis was fully computerized and automated, and this has the potential for telehealth diagnosis for PD.
Collapse
|
15
|
Steinhardt J, Hanssen H, Heldmann M, Sprenger A, Laabs B, Domingo A, Reyes CJ, Prasuhn J, Brand M, Rosales R, Münte TF, Klein C, Westenberger A, Oropilla JQ, Diesta C, Brüggemann N. Prodromal X‐Linked Dystonia‐Parkinsonism is Characterized by a Subclinical Motor Phenotype. Mov Disord 2022; 37:1474-1482. [DOI: 10.1002/mds.29033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/04/2022] [Accepted: 04/03/2022] [Indexed: 11/11/2022] Open
Affiliation(s)
| | - Henrike Hanssen
- Department of Neurology University of Lübeck Lübeck Germany
- Institute of Neurogenetics University of Lübeck Lübeck Germany
| | | | | | - Björn‐Hergen Laabs
- Institute of Medical Biometry and Statistics University of Lübeck University Hospital Schleswig‐Holstein Lübeck Germany
| | | | - Charles Jourdan Reyes
- Institute of Neurogenetics University of Lübeck Lübeck Germany
- Massachusetts General Hospital Boston Massachusetts USA
| | - Jannik Prasuhn
- Department of Neurology University of Lübeck Lübeck Germany
- Institute of Neurogenetics University of Lübeck Lübeck Germany
| | - Max Brand
- Institute of Neurogenetics University of Lübeck Lübeck Germany
| | - Raymond Rosales
- Department of Neurology and Psychiatry University of Santo Thomas Manila Philippines
| | | | - Christine Klein
- Institute of Neurogenetics University of Lübeck Lübeck Germany
| | | | - Jean Q. Oropilla
- Makati Medical Center Makati Philippines
- Asian Hospital and Medical Center Manila Philippines
| | - Cid Diesta
- Makati Medical Center Makati Philippines
- Asian Hospital and Medical Center Manila Philippines
| | - Norbert Brüggemann
- Department of Neurology University of Lübeck Lübeck Germany
- Institute of Neurogenetics University of Lübeck Lübeck Germany
| |
Collapse
|
16
|
Azadi H, Akbarzadeh-T. MR, Shoeibi A, Kobravi HR. Evaluating the Effect of Parkinson's Disease on Jitter and Shimmer Speech Features. Adv Biomed Res 2021; 10:54. [PMID: 35127581 PMCID: PMC8781904 DOI: 10.4103/abr.abr_254_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 08/22/2021] [Accepted: 08/31/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a neurological disorder caused by decreasing dopamine in the brain. Speech is one of the first functions that are disrupted. Accordingly, speech features are a promising indicator in PD diagnosis for telemedicine applications. The purpose of this study is to investigate the impact of Parkinson's disease on a minimal set of Jitter and Shimmer voice indicators and studying the difference between male and female speech features in noisy/noiseless environments. MATERIALS AND METHODS Our data includes 47 samples from nursing homes and neurology clinics, with 23 patients and 24 healthy individuals. The optimal feature for each category is studied separately for the men's and women's samples. The focus here is on the phonation in which the vowel/a/is expressed by the participants. The main features, including Jitter and Shimmer perturbations, are extracted. To find an optimal pair under both noisy and noiseless circumstance, we use the Relief feature selection strategy. RESULTS This research shows that the Jitter feature for men and women with Parkinson's is 21 and 33.4, respectively. While the Shimmer feature is 0.1 and 0.06. In addition, by using these two features alone, we reach a correct diagnosis rate of 79% and 81% for noisy and noiseless states, respectively. CONCLUSION The PD effects on the speech features can be accurately identified. Evaluating the extracted features suggests that the absolute value of the selected feature in men with PD is higher than for healthy ones. Whereas, in the case of women, this is the opposite.
Collapse
Affiliation(s)
- Hamid Azadi
- Department of Electrical Engineering, Biomedical Engineering Group, Center of Excellence on Soft Computing and Intelligent Information Processing, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad-R. Akbarzadeh-T.
- Department of Electrical Engineering, Biomedical Engineering Group, Center of Excellence on Soft Computing and Intelligent Information Processing, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Shoeibi
- Department of Neurology. School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Kobravi
- Department of Biomedical Engineering, Islamic Azad University of Mashhad, Mashhad, Iran
| |
Collapse
|
17
|
Auffret M, Meuric V, Boyer E, Bonnaure-Mallet M, Vérin M. Oral Health Disorders in Parkinson's Disease: More than Meets the Eye. JOURNAL OF PARKINSONS DISEASE 2021; 11:1507-1535. [PMID: 34250950 PMCID: PMC8609694 DOI: 10.3233/jpd-212605] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite clinical evidence of poor oral health and hygiene in Parkinson’s disease (PD) patients, the mouth is often overlooked by both patients and the medical community, who generally focus on motor or psychiatric disorders considered more burdensome. Yet, oral health is in a two-way relationship with overall health—a weakened status triggering a decline in the quality of life. Here, we aim at giving a comprehensive overview of oral health disorders in PD, while identifying their etiologies and consequences. The physical (abnormal posture, muscle tone, tremor, and dyskinesia), behavioral (cognitive and neuropsychiatric disorders), and iatrogenic patterns associated with PD have an overall detrimental effect on patients’ oral health, putting them at risk for other disorders (infections, aspiration, pain, malnutrition), reducing their quality of life and increasing their isolation (anxiety, depression, communication issues). Interdisciplinary cooperation for prevention, management and follow-up strategies need to be implemented at an early stage to maintain and improve patients’ overall comfort and condition. Recommendations for practice, including (non-)pharmacological management strategies are discussed, with an emphasis on the neurologists’ role. Of interest, the oral cavity may become a valuable tool for diagnosis and prognosis in the near future (biomarkers). This overlooked but critical issue requires further attention and interdisciplinary research.
Collapse
Affiliation(s)
- Manon Auffret
- Behavior & Basal Ganglia Research Unit (EA 4712), University of Rennes 1, Rennes, France.,Institut des Neurosciences Cliniques de Rennes (INCR), Rennes, France
| | - Vincent Meuric
- INSERM, INRAE, Université de Rennes 1, CHU de Rennes, Nutrition Metabolisms and Cancer, Rennes, France
| | - Emile Boyer
- INSERM, INRAE, Université de Rennes 1, CHU de Rennes, Nutrition Metabolisms and Cancer, Rennes, France
| | - Martine Bonnaure-Mallet
- INSERM, INRAE, Université de Rennes 1, CHU de Rennes, Nutrition Metabolisms and Cancer, Rennes, France
| | - Marc Vérin
- Behavior & Basal Ganglia Research Unit (EA 4712), University of Rennes 1, Rennes, France.,Institut des Neurosciences Cliniques de Rennes (INCR), Rennes, France.,Movement Disorders Unit, Neurology Department, Pontchaillou University Hospital, Rennes, France
| |
Collapse
|
18
|
Simonet C, Galmes MA, Lambert C, Rees RN, Haque T, Bestwick JP, Lees AJ, Schrag A, Noyce AJ. Slow Motion Analysis of Repetitive Tapping (SMART) Test: Measuring Bradykinesia in Recently Diagnosed Parkinson's Disease and Idiopathic Anosmia. JOURNAL OF PARKINSONS DISEASE 2021; 11:1901-1915. [PMID: 34180422 DOI: 10.3233/jpd-212683] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Bradykinesia is the defining motor feature of Parkinson's disease (PD). There are limitations to its assessment using standard clinical rating scales, especially in the early stages of PD when a floor effect may be observed. OBJECTIVE To develop a quantitative method to track repetitive tapping movements and to compare people in the early stages of PD, healthy controls, and individuals with idiopathic anosmia. METHODS This was a cross-sectional study of 99 participants (early-stage PD = 26, controls = 64, idiopathic anosmia = 9). For each participant, repetitive finger tapping was recorded over 20 seconds using a smartphone at 240 frames per second. From each video, amplitude between fingers, frequency (number of taps per second), and velocity (distance travelled per second) was extracted. Clinical assessment was based on the motor section of the MDS-UPDRS. RESULTS People in the early stage of PD performed the task with slower velocity (p < 0.001) and with greater frequency slope than controls (p = 0.003). The combination of reduced velocity and greater frequency slope obtained the best accuracy to separate early-stage PD from controls based on metric thresholds alone (AUC = 0.88). Individuals with anosmia exhibited slower velocity (p = 0.001) and smaller amplitude (p < 0.001) compared with controls. CONCLUSION We present a simple, proof-of-concept method to detect early motor dysfunction in PD. Mean tap velocity appeared to be the best parameter to differentiate patients with PD from controls. Patients with anosmia also showed detectable differences in motor performance compared with controls which may suggest that some were in the prodromal phase of PD.
Collapse
Affiliation(s)
- Cristina Simonet
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Miquel A Galmes
- Physical and Analytical Chemistry Department, Jaume I University, Castelló de la Plana, Spain
| | | | - Richard N Rees
- Department of Clinical and Movement Neuroscience, UCL Institute of Neurology, London, United Kingdom
| | - Tahrina Haque
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Jonathan P Bestwick
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Andrew J Lees
- Reta Lila Weston Institute of Neurological Studies, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Anette Schrag
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Department of Clinical and Movement Neuroscience, UCL Institute of Neurology, London, United Kingdom
| | - Alastair J Noyce
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Department of Clinical and Movement Neuroscience, UCL Institute of Neurology, London, United Kingdom
| |
Collapse
|
19
|
Simonet C, Noyce A. Mild parkinsonian signs: the interface between aging and Parkinson’s disease. ADVANCES IN CLINICAL NEUROSCIENCE & REHABILITATION 2021. [DOI: 10.47795/khgp5988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mild Parkinsonian Signs (MPS) describe a spectrum that exists between the expected motor decline of normal aging and a more serious motor deterioration resulting from Parkinson’s disease (PD) and neurodegeneration. Although MPS are a feature of the prodromal stage of PD, their formal definition is unclear and still relies somewhat on conventional clinical criteria for PD. This review will summarise the early motor features of PD and methods of assessment, from conventional clinical scales to advances in quantitative measures. Finally, the boundaries of motor decline as part of normal aging and pathological neurodegeneration will be discussed.
Collapse
|
20
|
Pah ND, Motin MA, Kempster P, Kumar DK. Detecting Effect of Levodopa in Parkinson's Disease Patients Using Sustained Phonemes. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2021; 9:4900409. [PMID: 33796418 PMCID: PMC8007086 DOI: 10.1109/jtehm.2021.3066800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/05/2021] [Accepted: 03/01/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND Parkinson's disease (PD) is a multi-symptom neurodegenerative disease generally managed with medications, of which levodopa is the most effective. Determining the dosage of levodopa requires regular meetings where motor function can be observed. Speech impairment is an early symptom in PD and has been proposed for early detection and monitoring of the disease. However, findings from previous research on the effect of levodopa on speech have not shown a consistent picture. METHOD This study has investigated the effect of medication on PD patients for three sustained phonemes; /a/, /o/, and /m/, which were recorded from 24 PD patients during medication off and on stages, and from 22 healthy participants. The differences were statistically investigated, and the features were classified using Support Vector Machine (SVM). RESULTS The results show that medication has a significant effect on the change of time and amplitude perturbation (jitter and shimmer) and harmonics of /m/, which was the most sensitive individual phoneme to the levodopa response. /m/ and /o/ performed at a comparable level in discriminating PD-off from control recordings. However, SVM classifications based on the combined use of the three phonemes /a/, /o/, and /m/ showed the best classifications, both for medication effect and for separating PD from control voice. The SVM classification for PD-off versus PD-on achieved an AUC of 0.81. CONCLUSION Studies of phonation by computerized voice analysis in PD should employ recordings of multiple phonemes. Our findings are potentially relevant in research to identify early parkinsonian dysarthria, and to tele-monitoring of the levodopa response in patients with established PD.
Collapse
Affiliation(s)
- Nemuel D. Pah
- Electrical Engineering DepartmentUniversitas SurabayaSurabaya60293Indonesia
- School of EngineeringRMIT UniversityMelbourneVIC3000Australia
| | - Mohammod A. Motin
- School of EngineeringRMIT UniversityMelbourneVIC3000Australia
- Department of Electrical and Electronic EngineeringRajshahi University of Engineering and TechnologyRajshahi6204Bangladesh
| | | | - Dinesh K. Kumar
- School of EngineeringRMIT UniversityMelbourneVIC3000Australia
| |
Collapse
|
21
|
Gonçalves VC, Cuenca-Bermejo L, Fernandez-Villalba E, Martin-Balbuena S, da Silva Fernandes MJ, Scorza CA, Herrero MT. Heart Matters: Cardiac Dysfunction and Other Autonomic Changes in Parkinson's Disease. Neuroscientist 2021; 28:530-542. [PMID: 33583239 DOI: 10.1177/1073858421990000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It has been more than 200 years since James Parkinson made the first descriptions of the disease that bears his name. Since then, knowledge about Parkinson's disease has been improved, and its pathophysiology, diagnosis, and treatments are well described in the scientific and medical literature. However, there is no way to prevent the disease from its progressive nature yet and only its symptoms can be minimized. It is known that the process of neurodegeneration begins before the onset of motor signs and symptoms of the disease, when diagnosis is usually made. Therefore, recognizing manifested non-motor symptoms can make an early diagnosis possible and lead to a better understanding of the disease. Autonomic dysfunctions are important non-motor manifestations of Parkinson's disease and affect the majority of patients. Importantly, heart failure is the third leading cause of death in people suffering from Parkinson's disease. Several evidences have shown the correlation between Parkinson's disease and the preexistence of cardiovascular diseases. Therefore, cardiovascular monitoring and identification of its dysfunctions can have a prodromal role for Parkinson's disease. This review presents studies of the literature that can lead to a better understanding of Parkinson's disease with special attention to its relation to heart and cardiovascular parameters.
Collapse
Affiliation(s)
- Valeria C Gonçalves
- Clinical & Experimental Neuroscience (NiCE), Biomedical Research Institute of Murcia (IMIB- Arrixaca), Murcia, Spain.,Clinical & Experimental Neuroscience (NiCE), Institute for Ageing Research (IUIE), School of Medicine, Campus Mare Nostrum. University of Murcia, Murcia, Spain.,Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Lorena Cuenca-Bermejo
- Clinical & Experimental Neuroscience (NiCE), Biomedical Research Institute of Murcia (IMIB- Arrixaca), Murcia, Spain.,Clinical & Experimental Neuroscience (NiCE), Institute for Ageing Research (IUIE), School of Medicine, Campus Mare Nostrum. University of Murcia, Murcia, Spain
| | - Emiliano Fernandez-Villalba
- Clinical & Experimental Neuroscience (NiCE), Biomedical Research Institute of Murcia (IMIB- Arrixaca), Murcia, Spain.,Clinical & Experimental Neuroscience (NiCE), Institute for Ageing Research (IUIE), School of Medicine, Campus Mare Nostrum. University of Murcia, Murcia, Spain
| | - Sebastian Martin-Balbuena
- Clinical & Experimental Neuroscience (NiCE), Biomedical Research Institute of Murcia (IMIB- Arrixaca), Murcia, Spain.,Clinical & Experimental Neuroscience (NiCE), Institute for Ageing Research (IUIE), School of Medicine, Campus Mare Nostrum. University of Murcia, Murcia, Spain
| | - Maria Jose da Silva Fernandes
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Carla A Scorza
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Maria-Trinidad Herrero
- Clinical & Experimental Neuroscience (NiCE), Biomedical Research Institute of Murcia (IMIB- Arrixaca), Murcia, Spain.,Clinical & Experimental Neuroscience (NiCE), Institute for Ageing Research (IUIE), School of Medicine, Campus Mare Nostrum. University of Murcia, Murcia, Spain
| |
Collapse
|
22
|
Early autonomic and cognitive dysfunction in PD, DLB and MSA: blurring the boundaries between α-synucleinopathies. J Neurol 2020; 267:3444-3456. [PMID: 32594302 PMCID: PMC7320652 DOI: 10.1007/s00415-020-09985-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 02/08/2023]
Abstract
Differential diagnosis between Parkinson's disease, dementia with Lewy bodies and multiple system atrophy can be difficult, especially because in early phase they might present with overlapping clinical features. Notably, orthostatic hypotension and cognitive dysfunction are common nonmotor aspects of parkinsonian syndromes and can be both present from the earliest stages of all α-synucleinopathies, indicating a common neurobiological basis in their strong relationship. In view of the increasing awareness about the prevalence of mild cognitive dysfunction in multiple system atrophy, the relevance of autonomic dysfunction in demented parkinsonian patients, the critical role of non-motor symptoms in clustering Parkinson's disease patients and the shift to studying patients in the prodromal phase, we will discuss some intrinsic limitations of current clinical diagnostic criteria, even when applied by movement disorder specialists. In particular, we will focus on the early coexistence of autonomic and cognitive dysfunction in the setting of overt or latent parkinsonism as pitfalls in the differential diagnosis of α-synucleinopathies. As early and accurate diagnosis remains of outmost importance for counselling of patients and timely enrolment into disease-modifying clinical trials, a continuous effort of research community is ongoing to further improve the clinical diagnostic accuracy of α-synucleinopathies.
Collapse
|
23
|
Boot E, Mentzel TQ, Palmer LD, van Harten PN, Marras C, Lang AE, Bassett AS. Age-Related Parkinsonian Signs in Microdeletion 22q11.2. Mov Disord 2020; 35:1239-1245. [PMID: 32386091 PMCID: PMC7497092 DOI: 10.1002/mds.28080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/04/2020] [Accepted: 04/07/2020] [Indexed: 01/12/2023] Open
Abstract
Background The recurrent hemizygous 22q11.2 deletion associated with 22q11.2 deletion syndrome has been identified as a genetic risk factor for early‐onset PD. However, little is known about early motor signs in this condition. Objectives We examined the presence, severity and possible factors associated with parkinsonism in adults with 22q11.2 deletion syndrome and without PD. Methods We compared motor signs between 82 adults with 22q11.2 deletion syndrome and 25 healthy controls, using the MDS‐UPDRS part III, and three‐dimensional motion‐tracker technology to quantify components of bradykinesia. Results Median MDS‐UPDRS part III total and bradykinesia subscores were significantly higher in 22q11.2 deletion syndrome (median age: 26 years; range, 17–65) than in controls (P = 0.000; P = 0.000, respectively). Age was a significant contributor to bradykinesia subscore (B = 0.06; P = 0.01) and to the electronic bradykinesia component, velocity (B = –0.02; P = 0.000); psychotic illness did not significantly impact these analyses. In 22q11.2 deletion syndrome, MDS‐UPDRS–defined bradykinesia was present in 18.3%, rigidity in 14.6%, and rest tremor in 12.2%. Conclusions Parkinsonian motor signs appear to be common and age related in 22q11.2 deletion syndrome. Longitudinal studies are needed to investigate possible symptom progression to PD. © 2020 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Erik Boot
- The Dalglish Family 22q Clinic, University Health Network, Toronto, Ontario, Canada.,Advisium,'s Heeren Loo Zorggroep, Amersfoort, The Netherlands.,Department of Psychiatry & Neuropsychology, Maastricht University, Maastricht, The Netherlands
| | - Thierry Q Mentzel
- Innova, Psychiatric Centre GGz Centraal, Amersfoort, The Netherlands
| | - Lisa D Palmer
- The Dalglish Family 22q Clinic, University Health Network, Toronto, Ontario, Canada
| | - Peter N van Harten
- Department of Psychiatry & Neuropsychology, Maastricht University, Maastricht, The Netherlands.,Innova, Psychiatric Centre GGz Centraal, Amersfoort, The Netherlands
| | - Connie Marras
- The Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital and University of Toronto, Toronto, Ontario, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Anthony E Lang
- The Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital and University of Toronto, Toronto, Ontario, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Anne S Bassett
- The Dalglish Family 22q Clinic, University Health Network, Toronto, Ontario, Canada.,Clinical Genetics Research Program, and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, Division of Cardiology, Department of Medicine, and Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|