1
|
Ciubotaru A, Smihor MI, Grosu C, Alexa D, Covali R, Anicăi RC, Păvăleanu I, Cucu AI, Bobu AM, Ghiciuc CM, Ignat EB. Neurodegenerative Biomarkers in Multiple Sclerosis: At the Interface Between Research and Clinical Practice. Diagnostics (Basel) 2025; 15:1178. [PMID: 40361996 PMCID: PMC12071590 DOI: 10.3390/diagnostics15091178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disorder characterized by inflammation, demyelination, and neurodegeneration within the central nervous system (CNS). While the inflammatory components of MS have been extensively studied, the progressive neurodegenerative aspect remains a critical factor contributing to long-term disability. Therefore, the identification and validation of biomarkers associated with neurodegenerative processes are essential for improved diagnosis, prognosis, and treatment monitoring. This review explores cerebrospinal fluid (CSF) and blood-based biomarkers, including neurofilaments, lipid markers, kynurenines, and other molecular indicators that provide insights into neurodegeneration in MS.
Collapse
Affiliation(s)
- Alin Ciubotaru
- Department of Neurology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.C.); (C.G.); (D.A.); (E.B.I.)
| | - Mădălina Irina Smihor
- Grigore T. Popa, University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.I.S.); (R.-C.A.)
| | - Cristina Grosu
- Department of Neurology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.C.); (C.G.); (D.A.); (E.B.I.)
| | - Daniel Alexa
- Department of Neurology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.C.); (C.G.); (D.A.); (E.B.I.)
| | - Roxana Covali
- Department of Radiology, Biomedical Engineering Faculty, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | | | - Ioana Păvăleanu
- Mother and Child Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Andrei Ionuț Cucu
- Faculty of Medicine and Biological Sciences, University Stefan cel Mare of Suceava, 720229 Suceava, Romania;
| | | | - Cristina Mihaela Ghiciuc
- Department of Morpho-Functional Sciences II—Pharmacology and Clinical Pharmacology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- “Saint Mary” Emergency Children Hospital, 700887 Iasi, Romania
| | - Emilian Bogdan Ignat
- Department of Neurology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.C.); (C.G.); (D.A.); (E.B.I.)
| |
Collapse
|
2
|
De Angelis F, Ammoscato F, Parker RA, Plantone D, Doshi A, John NA, Williams T, Stutters J, MacManus D, Schmierer K, Barkhof F, Weir CJ, Giovannoni G, Chataway J, Gnanapavan S. Neurofilament heavy chain in secondary progressive multiple sclerosis. Mult Scler 2025; 31:303-313. [PMID: 39844621 PMCID: PMC11907725 DOI: 10.1177/13524585241311212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/27/2024] [Accepted: 12/11/2024] [Indexed: 01/24/2025]
Abstract
BACKGROUND Biomarkers are needed to track progression in MS trials. Neurofilament heavy chain (NfH) has been underutilized due to assay limitations. OBJECTIVE To investigate the added value of cerebrospinal fluid (CSF) NfH in secondary progressive multiple sclerosis (SPMS) using contemporary immunoassays. METHODS This exploratory study was part of the MS-SMART trial. Clinical assessments (including expanded disability status scale, upper and lower limb function, visual acuity and symbol digit modalities test (SDMT)), CSF and serum sampling were acquired at baseline (n = 54), 48 and 96 weeks. Brain magnetic resonance imagings (MRIs) were obtained at baseline and 96 weeks. The NfL and NfH were measured using single-molecule array assay. RESULTS Baseline CSF NfH and NfL correlated with information processing speed at 96 weeks, with CSF NfH showing stronger correlations (r = -0.49 for SDMT) than CSF NfL (r = -0.37 for SDMT). Baseline CSF NfL predicted poorer hand dexterity at baseline, 48 and 96 weeks. CSF NfH was the only predictor of cortical grey matter at baseline, while baseline CSF NfL was the only predictor of brain atrophy at 96 weeks. Serum neurofilaments showed limited associations. CONCLUSION CSF neurofilaments are better outcomes than serum neurofilaments in small SPMS studies. CSF NfH and NfL variably predict worsening hand function, information processing speed and brain volume loss, possibly reflecting complementary aspects of neurodegeneration.
Collapse
Affiliation(s)
- Floriana De Angelis
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, University College London Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- National Institute for Health and Care Research, University College London Hospitals Biomedical Research Centre, London, UK
| | | | - Richard A Parker
- Edinburgh Clinical Trials Unit, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Domenico Plantone
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, University College London Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Anisha Doshi
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, University College London Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Nevin A John
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, University College London Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, VIC, Australia
- Department of Neurology, Monash Health, Melbourne, VIC, Australia
| | - Thomas Williams
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, University College London Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Jonathan Stutters
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, University College London Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Dave MacManus
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, University College London Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | | | - Frederik Barkhof
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, University College London Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- National Institute for Health and Care Research, University College London Hospitals Biomedical Research Centre, London, UK
- Department of Radiology and Nuclear Medicine, VU University Medical Centre, Amsterdam, The Netherlands
- Department of Medical Physics and Biomedical Engineering, Centre for Medical Image Computing (CMIC), University College London, London, UK
| | - Christopher J Weir
- Edinburgh Clinical Trials Unit, Usher Institute, University of Edinburgh, Edinburgh, UK
| | | | - Jeremy Chataway
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, University College London Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- National Institute for Health and Care Research, University College London Hospitals Biomedical Research Centre, London, UK
| | | |
Collapse
|
3
|
Sheikhi K, Ghaderi S, Firouzi H, Rahimibarghani S, Shabani E, Afkhami H, Yarahmadi A. Recent advances in mesenchymal stem cell therapy for multiple sclerosis: clinical applications and challenges. Front Cell Dev Biol 2025; 13:1517369. [PMID: 39963155 PMCID: PMC11830822 DOI: 10.3389/fcell.2025.1517369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/09/2025] [Indexed: 02/20/2025] Open
Abstract
Multiple sclerosis (MS), a chronic autoimmune disorder of the central nervous system (CNS), is characterized by inflammation, demyelination, and neurodegeneration, leading to diverse clinical manifestations such as fatigue, sensory impairment, and cognitive dysfunction. Current pharmacological treatments primarily target immune modulation but fail to arrest disease progression or entirely reverse CNS damage. Mesenchymal stem cell (MSC) therapy offers a promising alternative, leveraging its immunomodulatory, neuroprotective, and regenerative capabilities. This review provides an in-depth analysis of MSC mechanisms of action, including immune system regulation, promotion of remyelination, and neuroregeneration. It examines preclinical studies and clinical trials evaluating the efficacy, safety, and limitations of MSC therapy in various MS phenotypes. Special attention is given to challenges such as delivery routes, dosing regimens, and integrating MSCs with conventional therapies. By highlighting advancements and ongoing challenges, this review underscores the potential of MSCs to revolutionize MS treatment, paving the way for personalized and combinatory therapeutic approaches.
Collapse
Affiliation(s)
- Kamran Sheikhi
- Kurdistan University of Medical Sciences, Kurdistan, Iran
| | | | - Hassan Firouzi
- Department of Medical Laboratory, Faculty of Medicine, Sari Branch, Islamic Azad University, Sari, Iran
| | - Sarvenaz Rahimibarghani
- Department of Physical Medicine and Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Shabani
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| |
Collapse
|
4
|
Khedr EM, Nasreldein A, El-Deen HB, El-Mokhtar MA, Mahmoud DM. A real-world data of serum neurofilament light chain in a large cohort of Egyptian multiple sclerosis patients: Hospital-based study. Mult Scler Relat Disord 2025; 94:106286. [PMID: 39879939 DOI: 10.1016/j.msard.2025.106286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/27/2024] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
BACKGROUND Serum neurofilament light chain (sNFL) is a promising biomarker for neuroaxonal injury in multiple sclerosis (MS). Traditional clinical and radiological examinations often fail to capture the underlying neurodegeneration, particularly in the absence of clinical relapses or gadolinium-enhanced lesions. This study aims to assess sNFL levels in real-world MS patients who have no evidence of activity, to evaluate the potential of sNFL as a biomarker for smoldering-associated worsening (SAW). MATERIALS AND METHODS A cross-sectional study, involved 162 MS patients without evidence of disease activity and 40 healthy, age, sex, and education matched controls (HCs). Patients were classified according to MS subtype, DMT status, and type. sNFL levels were measured using an enzyme-linked immunosorbent assay (ELISA) and levels were compared in each group. RESULTS sNFL levels were significantly higher in MS patients compared to (HCs) (p < 0.001). Median sNFL levels were lowest in the clinically isolated (CIS) group and steady increase in RRMS and reaching the highest levels in the SPMS group (p < 0.001). Despite a slight decrease in sNFL levels in patients who started DMT for a year or less than in the naïve group, sNFL levels were highest in patients who were on DMTs for longer durations (p = 0.003). EDSS score was the sole independent predictor of sNFL levels (B = 0.415, p = 0.002). A cut-off value of 23.25 pg/ml was set to distinguish cases and HCs (92 % specificity and 90 % sensitivity), and 75.48 pg/ml was set to distinguish progressive forms (70.00 % sensitivity and 78.30 % specificity). CONCLUSION sNFL is sensitive for detecting subclinical neurodegeneration in the absence of relapse or gadolinium-enhanced lesions, supporting the utility of sNFL measurements into routine clinical practice to improve monitoring and management of MS.
Collapse
Affiliation(s)
- Eman M Khedr
- Department of Neurology and Psychiatry, Faculty of Medicine Assiut University, Assiut, Egypt; Department of Neurology and Psychiatry, Faculty of Medicine Aswan University, Aswan, Egypt.
| | - Ahmed Nasreldein
- Department of Neurology and Psychiatry, Faculty of Medicine Assiut University, Assiut, Egypt.
| | - Hussein Bahey El-Deen
- Department of Neurology and Psychiatry, Faculty of Medicine, South Valley University, Qena, Egypt.
| | - Mohamed A El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | - Doaa M Mahmoud
- Department of Neurology and Psychiatry, Faculty of Medicine Assiut University, Assiut, Egypt.
| |
Collapse
|
5
|
Louis ED, Sharma VD, Hajjar I, Hernandez N. Serum Neurofilament Light-Chain Levels in Essential Tremor: A Replication Study. NEURODEGENER DIS 2024; 24:141-147. [PMID: 39626650 DOI: 10.1159/000542922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/14/2024] [Indexed: 12/13/2024] Open
Abstract
INTRODUCTION Essential tremor (ET) is a highly prevalent neurological disease. At present, there are no clinical biomarkers. Neurofilament light (NfL) has been studied as a measure of neuronal damage in a considerable number of neurological disorders. There have been three studies of ET, and results are inconsistent. METHODS Forty ET cases were enrolled in a research study between February and November 2023 and compared to two control groups from study 1 (n = 41) and study 2 (n = 185). Total tremor score was a measure of the severity of action tremor. Blood samples were analyzed for serum NfL level on the Simoa® platform using an NF-Light™ kit as a marker of axonal injury. RESULTS Serum log NfL levels were higher in ET cases than controls in study 1 (p < 0.001) and study 2 (p < 0.001). In a multivariate linear regression model, ET cases (p = 0.03) and individuals of older age (p < 0.001) had higher serum log NfL levels than controls (combined in studies 1 and 2). There was no association in ET cases between serum log NfL level and total tremor score (Pearson's r = 0.08, p = 0.63). CONCLUSION This new study further validates the elevation in serum NfL levels in ET, now representing the third study to do so. In combination, the converging data suggest that there is an overall increase in serum NfL levels in ET. The demonstration of elevated serum levels of NfL in ET adds an additional piece of evidence that there is neuronal damage in ET.
Collapse
Affiliation(s)
- Elan D Louis
- Department of Neurology, University of Texas Southwestern, Dallas, Texas, USA
- Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Vibhash D Sharma
- Department of Neurology, University of Texas Southwestern, Dallas, Texas, USA
- Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ihab Hajjar
- Department of Neurology, University of Texas Southwestern, Dallas, Texas, USA
- Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Nora Hernandez
- Department of Neurology, University of Texas Southwestern, Dallas, Texas, USA
| |
Collapse
|
6
|
Sharma P, Giri A, Tripathi PN. Emerging Trends: Neurofilament Biomarkers in Precision Neurology. Neurochem Res 2024; 49:3208-3225. [PMID: 39347854 DOI: 10.1007/s11064-024-04244-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024]
Abstract
Neurofilaments are structural proteins found in the cytoplasm of neurons, particularly in axons, providing structural support and stability to the axon. They consist of multiple subunits, including NF-H, NF-M, and NF-L, which form long filaments along the axon's length. Neurofilaments are crucial for maintaining the shape and integrity of neurons, promoting axonal transport, and regulating neuronal function. They are part of the intermediate filament (IF) family, which has approximately 70 tissue-specific genes. This diversity allows for a customizable cytoplasmic meshwork, adapting to the unique structural demands of different tissues and cell types. Neurofilament proteins show increased levels in both cerebrospinal fluid (CSF) and blood after neuroaxonal damage, indicating injury regardless of the underlying etiology. Precise measurement and long-term monitoring of damage are necessary for determining prognosis, assessing disease activity, tracking therapeutic responses, and creating treatments. These investigations contribute to our understanding of the importance of proper NF composition in fundamental neuronal processes and have implications for neurological disorders associated with NF abnormalities along with its alteration in different animal and human models. Here in this review, we have highlighted various neurological disorders such as Alzheimer's, Parkinson's, Huntington's, Dementia, and paved the way to use neurofilament as a marker in managing neurological disorders.
Collapse
Affiliation(s)
- Priti Sharma
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, India
| | - Aditi Giri
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, India.
| | - Prabhash Nath Tripathi
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, India.
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
| |
Collapse
|
7
|
Müller-Miny L, Lünemann J. Molekulare Biomarker bei neuroinflammatorischen
Erkrankungen. FORTSCHRITTE DER NEUROLOGIE-PSYCHIATRIE 2024; 92:468-481. [PMID: 39510124 DOI: 10.1055/a-2335-0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
|
8
|
Bava CI, Valentino P, Malucchi S, Bottero R, Martire S, Sapio AD, Bertolotto A. Prevalence of elevated sNFL in a real-world setting: Results on 908 patients with different multiple sclerosis types and treatment conditions. Mult Scler Relat Disord 2024; 88:105748. [PMID: 38959590 DOI: 10.1016/j.msard.2024.105748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/18/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND In the field of research for new validated surrogate biomarkers of treatment efficacy, disease activity and progression in Multiple Sclerosis (MS), serum neurofilament light-chain (sNFL) are actually the best candidate for MS patient monitoring. However, before they can be implemented in clinical practice, their usefulness as additional red flag routine measure must be demonstrated. To tackle the problem, this real-life cross-sectional study at the Regional Referring Center for Multiple Sclerosis (CRESM) aims to characterize sNFL levels and prevalence of elevated sNFL, according to our age-dependent cut-off values, in a large group of patients with different types of MS and treatment conditions. METHODS 908 serum samples from as many MS patients being admitted at CRESM for diagnostic definition and/or during routinary treatment monitoring were consecutively collected between January 2019 and January 2020. sNFL levels were measured by single molecule array (Simoa™) technology on SR-X instrument using NF-light assays (Quanterix); results were interpreted using previously published cut-off values. RESULTS Primary and Secondary Progressive MS (PPMS, SPMS) forms demonstrate higher levels and prevalence of elevated sNFL (PPMS= 32 %, SPMS= 21 %) compared to the Relapse and Remitting one (RRMS = 12 %). Besides, naïve samples of RRMS and PPMS subtypes showed higher prevalence of elevated sNFL (RRMS naïve= 31 %, PPMS naïve=67 %) compared to samples from patients treated for more than 12 months (RRMS treat>12m= 9 %, PPMS treat>12m= 19 %); treated SPMS patients demonstrated higher sNFL levels and a prevalence (22 %) of elevated sNFL compared to RRMS treated patients. Focusing on RRMS, no statistical difference was found between groups of patients treated for whatever time (up to or more than 60 months) and with either DMT type (high or low-efficacy DMT). Finally, RRMS patients treated with all DMTs for more than 12 months, with the exception of teriflunomide and alemtuzumab showed a prevalence of elevated sNFL in the range of 5-10 %. CONCLUSION in a real-world setting comprising about 1000 MS patients, sNFL quantification was elevated in 5-to-67 % of patients, in different MS forms and treatment conditions. Elevated levels of sNFL must be considered a red-flag suggesting the need of a further clinical monitoring in any circumstance, as it can be indicative of new inflammation, ongoing degeneration or co-morbidities. This study supports the introduction of sNFL quantification in everyday patient management.
Collapse
Affiliation(s)
- Cecilia Irene Bava
- NICO - Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy; CRESM Biobank, University Hospital San Luigi Gonzaga, Orbassano, Italy; Department of Neurology and CRESM, University Hospital San Luigi Gonzaga, Orbassano, Italy.
| | - Paola Valentino
- NICO - Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
| | - Simona Malucchi
- Department of Neurology and CRESM, University Hospital San Luigi Gonzaga, Orbassano, Italy
| | - Rugiada Bottero
- Department of Neurology and CRESM, University Hospital San Luigi Gonzaga, Orbassano, Italy
| | - Serena Martire
- CRESM Biobank, University Hospital San Luigi Gonzaga, Orbassano, Italy; Department of Neuroscience "Rita Levi Montalcini", University of Turin, Italy
| | - Alessia Di Sapio
- CRESM Biobank, University Hospital San Luigi Gonzaga, Orbassano, Italy; Department of Neurology and CRESM, University Hospital San Luigi Gonzaga, Orbassano, Italy
| | | |
Collapse
|
9
|
Tan IL, Modderman R, Stachurska A, Almeida R, de Vries R, Heersema DJ, Gacesa R, Wijmenga C, Jonkers IH, Meilof JF, Withoff S. Potential biomarkers for multiple sclerosis stage from targeted proteomics and microRNA sequencing. Brain Commun 2024; 6:fcae209. [PMID: 38978729 PMCID: PMC11229703 DOI: 10.1093/braincomms/fcae209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/08/2024] [Accepted: 06/12/2024] [Indexed: 07/10/2024] Open
Abstract
Multiple sclerosis is a chronic demyelinating disease of the central nervous system. There is a need for new circulating biomarkers for multiple sclerosis, in particular, markers that differentiate multiple sclerosis subtypes (relapsing-remitting, secondary progressive and primary progressive multiple sclerosis), as this can help in making treatment decisions. In this study, we explore two classes of potential multiple sclerosis biomarkers-proteins and microRNAs-circulating in the cerebrospinal fluid and serum. Targeted medium-throughput proteomics (92 proteins) and microRNA sequencing were performed on serum samples collected in a cross-sectional case-control cohort (cohort I, controls n = 30, multiple sclerosis n = 75) and a prospective multiple sclerosis cohort (cohort II, n = 93). For cohort I, we also made these measurements in paired cerebrospinal fluid samples. In the cohort I cerebrospinal fluid, we observed differences between multiple sclerosis and controls for 13 proteins, including some previously described to be markers for multiple sclerosis [e.g. CD27, C-X-C motif chemokine 13 (CXCL13) and interleukin-7 (IL7)]. No microRNAs were significantly differentially expressed between multiple sclerosis and controls in the cerebrospinal fluid. In serum, 10 proteins, including angiopoietin-1 receptor (TIE2), and 16 microRNAs were significantly different between relapsing-remitting multiple sclerosis and secondary progressive multiple sclerosis after performing a meta-analysis combining both cohorts. In the prospective part of the study, participants with relapsing-remitting multiple sclerosis were followed for around 3 years, during which time 12 participants converted to secondary progressive multiple sclerosis. In these longitudinally collected serum samples, we observed a peak in granzyme B, A and H proteins around the time of conversion. Single-sample enrichment analysis of serum microRNA profiles revealed that the peak in granzyme B levels around conversion coincides with enrichment for microRNAs that are enriched in CD4+, CD8+ and natural killer cells (e.g. miRNA-150). We identified several proteins and microRNAs in serum that represent potential biomarkers for relapsing-remitting and secondary progressive multiple sclerosis. Conversion to secondary progressive disease is marked by a peak in granzyme B levels and enrichment for immune-related microRNAs. This indicates that specific immune cell-driven processes may contribute to the conversion of relapsing-remitting multiple sclerosis to secondary progressive multiple sclerosis.
Collapse
Affiliation(s)
- Ineke L Tan
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Rutger Modderman
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Anna Stachurska
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Rodrigo Almeida
- Telespazio Belgium S.R.L. for the European Space Agency (ESA), 2200AG Noordwijk, The Netherlands
| | - Riemer de Vries
- Department of Neurology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Dorothea J Heersema
- Department of Neurology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- MS Center Noord Nederland, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ranko Gacesa
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Iris H Jonkers
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Jan F Meilof
- MS Center Noord Nederland, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Sebo Withoff
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
10
|
Salinas M, Salinas VH, McGurn M, Hernandez N, Louis ED. Serum Neurofilament Light-Chain Concentrations in Essential Tremor: a Case-Control Study. CEREBELLUM (LONDON, ENGLAND) 2024; 23:951-956. [PMID: 37466893 DOI: 10.1007/s12311-023-01583-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 07/20/2023]
Abstract
Essential tremor (ET) is a common neurological disorder, with clinical and pathophysiological links to the cerebellum. Inquiries into the etiology, pathophysiology, and nosology of ET stand to benefit from the identification of disease biomarkers. Serum neurofilament light chain (NfL) has emerged as a novel signature of conditions in which neuronal injury reflects an outcome of the ongoing disease process. We sought to investigate the concentrations of NfL in ET patients and healthy controls. In this case-control study, our powered study population of 41 ET patients and 40 age-matched healthy controls underwent clinical assessments and measurement of serum NfL concentration using Simoa technology. Serum NfL was elevated in ET patients - mean log-transformed serum NfL concentration = 1.23 ± 0.19 (95% confidence interval [CI] = 1.17-1.29) vs. 1.08 ± 0.15 (95% CI = 1.03-1.13), p = 0.0002. This difference persisted after accounting for age, sex and Montreal Cognitive Assessment score in a multiple linear regression model (p = 0.002) and in an age-matched sample subset of 35 ET cases and 35 controls (p = 0.006). There was no association between tremor severity and serum NfL levels (p = 0.73). In this sample of ET patients and controls, serum NfL concentrations were significantly higher in ET. Studies in additional cohorts of ET cases would be of value in attempting to replicate these results and assessing diagnostic utility.
Collapse
Affiliation(s)
- Meagen Salinas
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA.
- Neurology Section, VA North Texas Health Care System, Dallas, TX, USA.
| | - Victor H Salinas
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
- Neurology Section, VA North Texas Health Care System, Dallas, TX, USA
| | - Maisie McGurn
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Nora Hernandez
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Elan D Louis
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| |
Collapse
|
11
|
Desu HL, Sawicka KM, Wuerch E, Kitchin V, Quandt JA. A rapid review of differences in cerebrospinal neurofilament light levels in clinical subtypes of progressive multiple sclerosis. Front Neurol 2024; 15:1382468. [PMID: 38654736 PMCID: PMC11035744 DOI: 10.3389/fneur.2024.1382468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Background Multiple sclerosis (MS) is divided into three clinical phenotypes: relapsing-remitting MS (RRMS), secondary progressive MS (SPMS), and primary progressive MS (PPMS). It is unknown to what extent SPMS and PPMS pathophysiology share inflammatory or neurodegenerative pathological processes. Cerebrospinal (CSF) neurofilament light (NfL) has been broadly studied in different MS phenotypes and is a candidate biomarker for comparing MS subtypes. Research question Are CSF NfL levels different among clinical subtypes of progressive MS? Methods A search strategy identifying original research investigating fluid neurodegenerative biomarkers in progressive forms of MS between 2010 and 2022 was applied to Medline. Identified articles underwent title and abstract screen and full text review against pre-specified criteria. Data abstraction was limited to studies that measured NfL levels in the CSF. Reported statistical comparisons of NfL levels between clinical phenotypes were abstracted qualitatively. Results 18 studies that focused on investigating direct comparisons of CSF NfL from people with MS were included in the final report. We found NfL levels were typically reported to be higher in relapsing and progressive MS compared to healthy controls. Notably, higher NfL levels were not clearly associated with progressive MS subtypes when compared to relapsing MS, and there was no observed difference in NfL levels between PPMS and SPMS in articles that separately assessed these phenotypes. Conclusion CSF NfL levels distinguish individuals with MS from healthy controls but do not differentiate MS subtypes. Broad biological phenotyping is needed to overcome limitations of current clinical phenotyping and improve biomarker translatability to decision-making in the clinic.
Collapse
Affiliation(s)
- Haritha L. Desu
- Neuroimmunology Unit, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montreal, QC, Canada
| | - Katherine M. Sawicka
- Child Health Evaluative Sciences Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada
- Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Emily Wuerch
- Hotchkiss Brain Institute and the Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada
| | - Vanessa Kitchin
- University of British Columbia Library, Vancouver, BC, Canada
| | - Jacqueline A. Quandt
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
12
|
Baka P, Steenken L, Escolano‐Lozano F, Steffen F, Papagianni A, Sommer C, Pogatzki‐Zahn E, Hirsch S, Protopapa M, Bittner S, Birklein F. Studying serum neurofilament light chain levels as a potential new biomarker for small fiber neuropathy. Eur J Neurol 2024; 31:e16192. [PMID: 38189534 PMCID: PMC11235889 DOI: 10.1111/ene.16192] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND AND PURPOSE Diagnosing small fiber neuropathies can be challenging. To address this issue, whether serum neurofilament light chain (sNfL) could serve as a potential biomarker of damage to epidermal Aδ- and C-fibers was tested. METHODS Serum NfL levels were assessed in 30 patients diagnosed with small fiber neuropathy and were compared to a control group of 19 healthy individuals. Electrophysiological studies, quantitative sensory testing and quantification of intraepidermal nerve fiber density after skin biopsy were performed in both the proximal and distal leg. RESULTS Serum NfL levels were not increased in patients with small fiber neuropathy compared to healthy controls (9.1 ± 3.9 and 9.4 ± 3.8, p = 0.83) and did not correlate with intraepidermal nerve fiber density at the lateral calf or lateral thigh or with other parameters of small fiber impairment. CONCLUSION Serum NfL levels cannot serve as a biomarker for small fiber damage.
Collapse
Affiliation(s)
- Panoraia Baka
- Department of NeurologyUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - Livia Steenken
- Department of NeurologyUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - Fabiola Escolano‐Lozano
- Department of NeurologyUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - Falk Steffen
- Department of NeurologyUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | | | - Claudia Sommer
- Department of NeurologyUniversity Hospital of WürzburgWürzburgGermany
| | - Esther Pogatzki‐Zahn
- Department of Anaesthesiology, Intensive Care and Pain MedicineUniversity Hospital MünsterMünsterGermany
| | - Silke Hirsch
- Department of NeurologyUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - Maria Protopapa
- Department of NeurologyUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - Stefan Bittner
- Department of NeurologyUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - Frank Birklein
- Department of NeurologyUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| |
Collapse
|
13
|
Huang MC, Tu HY, Chung RH, Kuo HW, Liu TH, Chen CH, Mochly-Rosen D, Liu YL. Changes of neurofilament light chain in patients with alcohol dependence following withdrawal and the genetic effect from ALDH2 Polymorphism. Eur Arch Psychiatry Clin Neurosci 2024; 274:423-432. [PMID: 37314537 PMCID: PMC10719424 DOI: 10.1007/s00406-023-01635-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 05/29/2023] [Indexed: 06/15/2023]
Abstract
Neurofilament light chain (NFL), as a measure of neuroaxonal injury, has recently gained attention in alcohol dependence (AD). Aldehyde dehydrogenase 2 (ALDH2) is the major enzyme which metabolizes the alcohol breakdown product acetaldehyde. An ALDH2 single nucleotide polymorphism (rs671) is associated with less ALDH2 enzyme activity and increased neurotoxicity. We examined the blood NFL levels in 147 patients with AD and 114 healthy controls using enzyme-linked immunosorbent assay and genotyped rs671. We also followed NFL level, alcohol craving and psychological symptoms in patients with AD after 1 and 2 weeks of detoxification. We found the baseline NFL level was significantly higher in patients with AD than in controls (mean ± SD: 264.2 ± 261.8 vs. 72.1 ± 35.6 pg/mL, p < 0.001). The receiver operating characteristic curve revealed that NFL concentration could discriminate patients with AD from controls (area under the curve: 0.85; p < 0.001). The NFL levels were significantly reduced following 1 and 2 weeks of detoxification, with the extent of reduction correlated with the improvement of craving, depression, and anxiety (p < 0.001). Carriers with the rs671 GA genotype, which is associated with less ALDH2 activity, had higher NLF levels either at baseline or after detoxification compared with GG carriers. In conclusion, plasma NFL level was increased in patients with AD and reduced after early abstinence. Reduction in NFL level corroborated well with the improvement of clinical symptoms. The ALDH2 rs671 polymorphism may play a role in modulating the extent of neuroaxonal injury and its recovery.
Collapse
Affiliation(s)
- Ming-Chyi Huang
- Department of Addiction Sciences, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Psychiatric Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Hsueh-Yuan Tu
- Department of Addiction Sciences, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan
| | - Ren-Hua Chung
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Hsiang-Wei Kuo
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Tung-Hsia Liu
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Che-Hong Chen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yu-Li Liu
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan.
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan.
| |
Collapse
|
14
|
Kodosaki E, Watkins WJ, Loveless S, Kreft KL, Richards A, Anderson V, Hurler L, Robertson NP, Zelek WM, Tallantyre EC. Combination protein biomarkers predict multiple sclerosis diagnosis and outcomes. J Neuroinflammation 2024; 21:52. [PMID: 38368354 PMCID: PMC10874571 DOI: 10.1186/s12974-024-03036-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/01/2024] [Indexed: 02/19/2024] Open
Abstract
Establishing biomarkers to predict multiple sclerosis diagnosis and prognosis has been challenging using a single biomarker approach. We hypothesised that a combination of biomarkers would increase the accuracy of prediction models to differentiate multiple sclerosis from other neurological disorders and enhance prognostication for people with multiple sclerosis. We measured 24 fluid biomarkers in the blood and cerebrospinal fluid of 77 people with multiple sclerosis and 80 people with other neurological disorders, using ELISA or Single Molecule Array assays. Primary outcomes were multiple sclerosis versus any other diagnosis, time to first relapse, and time to disability milestone (Expanded Disability Status Scale 6), adjusted for age and sex. Multivariate prediction models were calculated using the area under the curve value for diagnostic prediction, and concordance statistics (the percentage of each pair of events that are correctly ordered in time for each of the Cox regression models) for prognostic predictions. Predictions using combinations of biomarkers were considerably better than single biomarker predictions. The combination of cerebrospinal fluid [chitinase-3-like-1 + TNF-receptor-1 + CD27] and serum [osteopontin + MCP-1] had an area under the curve of 0.97 for diagnosis of multiple sclerosis, compared to the best discriminative single marker in blood (osteopontin: area under the curve 0.84) and in cerebrospinal fluid (chitinase-3-like-1 area under the curve 0.84). Prediction for time to next relapse was optimal with a combination of cerebrospinal fluid[vitamin D binding protein + Factor I + C1inhibitor] + serum[Factor B + Interleukin-4 + C1inhibitor] (concordance 0.80), and time to Expanded Disability Status Scale 6 with cerebrospinal fluid [C9 + Neurofilament-light] + serum[chitinase-3-like-1 + CCL27 + vitamin D binding protein + C1inhibitor] (concordance 0.98). A combination of fluid biomarkers has a higher accuracy to differentiate multiple sclerosis from other neurological disorders and significantly improved the prediction of the development of sustained disability in multiple sclerosis. Serum models rivalled those of cerebrospinal fluid, holding promise for a non-invasive approach. The utility of our biomarker models can only be established by robust validation in different and varied cohorts.
Collapse
Affiliation(s)
- Eleftheria Kodosaki
- UK Dementia Research Institute at University College London, London, WC1E6BT, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N3BG, UK
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, CF14 4XW, UK
| | - W John Watkins
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Sam Loveless
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, CF14 4XW, UK
| | - Karim L Kreft
- Department of Neurology, University Hospital of Wales, Cardiff, UK
| | - Aidan Richards
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, CF14 4XW, UK
| | - Valerie Anderson
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, CF14 4XW, UK
| | - Lisa Hurler
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, 1085, Hungary
| | - Neil P Robertson
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, CF14 4XW, UK
- Department of Neurology, University Hospital of Wales, Cardiff, UK
| | - Wioleta M Zelek
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Emma C Tallantyre
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, CF14 4XW, UK.
- Department of Neurology, University Hospital of Wales, Cardiff, UK.
| |
Collapse
|
15
|
Spirin NN, Kiseleva EV, Spirina NN. [Neurofilament light chain: a diagnostic potential for multiple sclerosis]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:115-119. [PMID: 39072576 DOI: 10.17116/jnevro2024124061115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
OBJECTIVE To evaluate the influence of disease activity, the degree of patient disability and pathogenetic therapy on the concentration of neurofilament light chain (NFL) in the blood serum of patients with multiple sclerosis (MS). MATERIAL AND METHODS One hundred and fourteen patients (84 women and 30 men) with definite MS were examined. The concentration of NFL in the blood serum of patients with MS was determined by enzyme immunoassay. The level of NFL was analyzed depending on the characteristics of the course and activity of the demyelinating process, the severity of neurological disorders as well as disease modifying drugs (DMDs). RESULTS An NFL level equal to or greater than 4201 pg/ml was found to be associated with a higher risk of developing a clinical exacerbation in the next 4 months. In patients with progression of disability over the next 2 years, the initial concentration of NFL was significantly higher than in the group with a stable EDSS score. The NFL level (4943 pg/ml and higher), which may be a predictor of increased disability in the next two years, was established. CONCLUSION The study demonstrates the possibility of using serum NFL levels as a diagnostic marker of possible exacerbation, as well as predicting disability in patients with MS.
Collapse
Affiliation(s)
- N N Spirin
- Yaroslavl State Medical University, Yaroslavl, Russia
| | - E V Kiseleva
- Yaroslavl State Medical University, Yaroslavl, Russia
| | - N N Spirina
- Yaroslavl State Medical University, Yaroslavl, Russia
| |
Collapse
|
16
|
Ghezzi A, Neuteboom RF. Neurofilament Light Chain in Adult and Pediatric Multiple Sclerosis: A Promising Biomarker to Better Characterize Disease Activity and Personalize MS Treatment. Neurol Ther 2023; 12:1867-1881. [PMID: 37682513 PMCID: PMC10630260 DOI: 10.1007/s40120-023-00535-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/15/2023] [Indexed: 09/09/2023] Open
Abstract
Many biological markers have been explored in multiple sclerosis (MS) to better quantify disease burden and better evaluate response to treatments, beyond clinical and MRI data. Among these, neurofilament light chain (Nf-L), although non-specific for this disease and found to be increased in other neurological conditions, has been shown to be the most promising biomarker for assessing axonal damage in MS, with a definite role in predicting the development of MS in patients at the first neurological episode suggestive of MS, and also in a preclinical phase. There is strong evidence that Nf-L levels are increased more in relapsing versus stable MS patients, and that they predict future disease evolution (relapses, progression, MRI measures of activity/progression) in MS patients, providing information on response to therapy, helping to anticipate clinical decisions in patients with an apparently stable evolution, and identifying patient non-responders to disease-modifying treatments. Moreover, Nf-L can contribute to the better understanding of the mechanisms of demyelination and axonal damage in adult and pediatric MS. A fundamental requirement for its clinical use is the accurate standardization of normal values, corrected for confounding factors, in particular age, sex, body mass index, and presence of comorbidities. In this review, a guide is provided to update clinicians on the use of Nf-L in clinical activity.
Collapse
Affiliation(s)
- Angelo Ghezzi
- Dipartimento di Scienze della Salute, Università Piemonte Orientale A. Avogadro, Via Solaroli 17, 28100, Novara, Italy.
| | - R F Neuteboom
- Department of Neurology, ErasMS Center, Erasmus MC, PO Box 2040, 3000, Rotterdam, The Netherlands
| |
Collapse
|
17
|
Adamczyk B, Morawiec N, Mamak G, Boczek S, Brzęk D, Trędota N, Walocha P, Czuba ZP, Błachut M, Bartman W, Adamczyk-Sowa M. The Comparison of the Selected Parameters of Brain Injury and Interleukins in the CSF in Patients Diagnosed De Novo with RRMS Compared to the Control Group. Diagnostics (Basel) 2023; 13:3436. [PMID: 37998571 PMCID: PMC10670079 DOI: 10.3390/diagnostics13223436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic autoimmune disorder affecting the central nervous system (CNS). Due to the different phenotypes of the disease and non-specific symptoms of MS, there is a great need for a validated panel of biomarkers to facilitate the diagnosis, predict disease progression, and evaluate treatment outcomes. METHODS We determined the levels of the parameters of brain injury (NF-H, GPAF, S100B, and UCHL1) and the selected cytokines in the cerebrospinal fluid (CSF) in 101 patients diagnosed de novo with RRMS and 75 healthy controls. All determinations were made using the Bio-Plex method. RESULTS We found higher levels of NF-H and GFAP in the relapsing-remitting multiple sclerosis (RRMS) group compared to the controls. The concentrations of both molecules were significantly increased in patients with Gd+ lesions on brain MRI. The level of S100B did not differ significantly between the groups. UCHL1 concentrations were higher in the control group. We found some correlations between the selected cytokines, the levels of the parameters of brain injury, and the time from the first symptoms to the diagnosis of MS. CONCLUSIONS The role of the above molecules in MS is promising. However, further research is warranted to define their precise functions.
Collapse
Affiliation(s)
- Bożena Adamczyk
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, ul. 3 Maja 13-15, 41-800 Zabrze, Poland; (N.M.); (G.M.); (S.B.); (D.B.); (N.T.); (P.W.); (W.B.); (M.A.-S.)
| | - Natalia Morawiec
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, ul. 3 Maja 13-15, 41-800 Zabrze, Poland; (N.M.); (G.M.); (S.B.); (D.B.); (N.T.); (P.W.); (W.B.); (M.A.-S.)
| | - Gabriela Mamak
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, ul. 3 Maja 13-15, 41-800 Zabrze, Poland; (N.M.); (G.M.); (S.B.); (D.B.); (N.T.); (P.W.); (W.B.); (M.A.-S.)
| | - Sylwia Boczek
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, ul. 3 Maja 13-15, 41-800 Zabrze, Poland; (N.M.); (G.M.); (S.B.); (D.B.); (N.T.); (P.W.); (W.B.); (M.A.-S.)
| | - Dominika Brzęk
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, ul. 3 Maja 13-15, 41-800 Zabrze, Poland; (N.M.); (G.M.); (S.B.); (D.B.); (N.T.); (P.W.); (W.B.); (M.A.-S.)
| | - Natalia Trędota
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, ul. 3 Maja 13-15, 41-800 Zabrze, Poland; (N.M.); (G.M.); (S.B.); (D.B.); (N.T.); (P.W.); (W.B.); (M.A.-S.)
| | - Patryk Walocha
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, ul. 3 Maja 13-15, 41-800 Zabrze, Poland; (N.M.); (G.M.); (S.B.); (D.B.); (N.T.); (P.W.); (W.B.); (M.A.-S.)
| | - Zenon P. Czuba
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, ul. Jordana 19, 41-808 Zabrze, Poland;
| | - Michał Błachut
- Clinical Department of Psychiatry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Wojciech Bartman
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, ul. 3 Maja 13-15, 41-800 Zabrze, Poland; (N.M.); (G.M.); (S.B.); (D.B.); (N.T.); (P.W.); (W.B.); (M.A.-S.)
| | - Monika Adamczyk-Sowa
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, ul. 3 Maja 13-15, 41-800 Zabrze, Poland; (N.M.); (G.M.); (S.B.); (D.B.); (N.T.); (P.W.); (W.B.); (M.A.-S.)
| |
Collapse
|
18
|
Rosenkranz SC, Gutmann L, Has Silemek AC, Dorr M, Häußler V, Lüpke M, Mönch A, Reinhardt S, Kuhle J, Tilsley P, Heesen C, Friese MA, Brandt A, Paul F, Zimmermann H, Stellmann JP. Visual function resists early neurodegeneration in the visual system in primary progressive multiple sclerosis. J Neurol Neurosurg Psychiatry 2023; 94:924-933. [PMID: 37433662 DOI: 10.1136/jnnp-2023-331183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/31/2023] [Indexed: 07/13/2023]
Abstract
BACKGROUND Neurodegeneration in multiple sclerosis (MS) affects the visual system but dynamics and pathomechanisms over several years especially in primary progressive MS (PPMS) are not fully understood. METHODS We assessed longitudinal changes in visual function, retinal neurodegeneration using optical coherence tomography, MRI and serum NfL (sNfL) levels in a prospective PPMS cohort and matched healthy controls. We investigated the changes over time, correlations between outcomes and with loss of visual function. RESULTS We followed 81 patients with PPMS (mean disease duration 5.9 years) over 2.7 years on average. Retinal nerve fibre layer thickness (RNFL) was reduced in comparison with controls (90.1 vs 97.8 µm; p<0.001). Visual function quantified by the area under the log contrast sensitivity function (AULCSF) remained stable over a continuous loss of RNFL (0.46 µm/year, 95% CI 0.10 to 0.82; p=0.015) up until a mean turning point of 91 µm from which the AULCSF deteriorated. Intereye RNFL asymmetry above 6 µm, suggestive of subclinical optic neuritis, occurred in 15 patients and was related to lower AULCSF but occurred also in 5 out of 44 controls. Patients with an AULCSF progression had a faster increase in Expanded Disability Status Scale (beta=0.17/year, p=0.043). sNfL levels were elevated in patients (12.2 pg/mL vs 8.0 pg/mL, p<0.001), but remained stable during follow-up (beta=-0.14 pg/mL/year, p=0.291) and were not associated with other outcomes. CONCLUSION Whereas neurodegeneration in the anterior visual system is already present at onset, visual function is not impaired until a certain turning point. sNfL is not correlated with structural or functional impairment in the visual system.
Collapse
Affiliation(s)
- Sina C Rosenkranz
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS), Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Lilija Gutmann
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS), Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Arzu Ceylan Has Silemek
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS), Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
| | | | - Vivien Häußler
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS), Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Margareta Lüpke
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS), Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Andrea Mönch
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS), Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Stefanie Reinhardt
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS), Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Jens Kuhle
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Penelope Tilsley
- CEMEREM, APHM, Hôpital de la Timone, Marseille, France
- CRMBM, Aix Marseille Univ, CNRS, Marseille, France
| | - Christoph Heesen
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS), Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Manuel A Friese
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS), Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Alexander Brandt
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, University of California Irvine, Irvine, California, USA
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Hanna Zimmermann
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jan-Patrick Stellmann
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS), Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
- CEMEREM, APHM, Hôpital de la Timone, Marseille, France
- CRMBM, Aix Marseille Univ, CNRS, Marseille, France
| |
Collapse
|
19
|
Pogoda-Wesołowska A, Dziedzic A, Maciak K, Stȩpień A, Dziaduch M, Saluk J. Neurodegeneration and its potential markers in the diagnosing of secondary progressive multiple sclerosis. A review. Front Mol Neurosci 2023; 16:1210091. [PMID: 37781097 PMCID: PMC10535108 DOI: 10.3389/fnmol.2023.1210091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/25/2023] [Indexed: 10/03/2023] Open
Abstract
Approximately 70% of relapsing-remitting multiple sclerosis (RRMS) patients will develop secondary progressive multiple sclerosis (SPMS) within 10-15 years. This progression is characterized by a gradual decline in neurological functionality and increasing limitations of daily activities. Growing evidence suggests that both inflammation and neurodegeneration are associated with various pathological processes throughout the development of MS; therefore, to delay disease progression, it is critical to initiate disease-modifying therapy as soon as it is diagnosed. Currently, a diagnosis of SPMS requires a retrospective assessment of physical disability exacerbation, usually over the previous 6-12 months, which results in a delay of up to 3 years. Hence, there is a need to identify reliable and objective biomarkers for predicting and defining SPMS conversion. This review presents current knowledge of such biomarkers in the context of neurodegeneration associated with MS, and SPMS conversion.
Collapse
Affiliation(s)
| | - Angela Dziedzic
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Karina Maciak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Adam Stȩpień
- Clinic of Neurology, Military Institute of Medicine–National Research Institute, Warsaw, Poland
| | - Marta Dziaduch
- Medical Radiology Department of Military Institute of Medicine – National Research Institute, Warsaw, Poland
| | - Joanna Saluk
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
20
|
Gill AJ, Schorr EM, Gadani SP, Calabresi PA. Emerging imaging and liquid biomarkers in multiple sclerosis. Eur J Immunol 2023; 53:e2250228. [PMID: 37194443 PMCID: PMC10524168 DOI: 10.1002/eji.202250228] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/10/2023] [Accepted: 05/12/2023] [Indexed: 05/18/2023]
Abstract
The advent of highly effective disease modifying therapy has transformed the landscape of multiple sclerosis (MS) care over the last two decades. However, there remains a critical, unmet need for sensitive and specific biomarkers to aid in diagnosis, prognosis, treatment monitoring, and the development of new interventions, particularly for people with progressive disease. This review evaluates the current data for several emerging imaging and liquid biomarkers in people with MS. MRI findings such as the central vein sign and paramagnetic rim lesions may improve MS diagnostic accuracy and evaluation of therapy efficacy in progressive disease. Serum and cerebrospinal fluid levels of several neuroglial proteins, such as neurofilament light chain and glial fibrillary acidic protein, show potential to be sensitive biomarkers of pathologic processes such as neuro-axonal injury or glial-inflammation. Additional promising biomarkers, including optical coherence tomography, cytokines and chemokines, microRNAs, and extracellular vesicles/exosomes, are also reviewed, among others. Beyond their potential integration into MS clinical care and interventional trials, several of these biomarkers may be informative of MS pathogenesis and help elucidate novel targets for treatment strategies.
Collapse
Affiliation(s)
- Alexander J. Gill
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, US
| | - Emily M. Schorr
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, US
| | - Sachin P. Gadani
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, US
| | - Peter A. Calabresi
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, US
- Department of Neuroscience, Baltimore, MD, US
- Department of Ophthalmology, Baltimore, MD, US
| |
Collapse
|
21
|
Ellen O, Ye S, Nheu D, Dass M, Pagnin M, Ozturk E, Theotokis P, Grigoriadis N, Petratos S. The Heterogeneous Multiple Sclerosis Lesion: How Can We Assess and Modify a Degenerating Lesion? Int J Mol Sci 2023; 24:11112. [PMID: 37446290 DOI: 10.3390/ijms241311112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/21/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Multiple sclerosis (MS) is a heterogeneous disease of the central nervous system that is governed by neural tissue loss and dystrophy during its progressive phase, with complex reactive pathological cellular changes. The immune-mediated mechanisms that promulgate the demyelinating lesions during relapses of acute episodes are not characteristic of chronic lesions during progressive MS. This has limited our capacity to target the disease effectively as it evolves within the central nervous system white and gray matter, thereby leaving neurologists without effective options to manage individuals as they transition to a secondary progressive phase. The current review highlights the molecular and cellular sequelae that have been identified as cooperating with and/or contributing to neurodegeneration that characterizes individuals with progressive forms of MS. We emphasize the need for appropriate monitoring via known and novel molecular and imaging biomarkers that can accurately detect and predict progression for the purposes of newly designed clinical trials that can demonstrate the efficacy of neuroprotection and potentially neurorepair. To achieve neurorepair, we focus on the modifications required in the reactive cellular and extracellular milieu in order to enable endogenous cell growth as well as transplanted cells that can integrate and/or renew the degenerative MS plaque.
Collapse
Affiliation(s)
- Olivia Ellen
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Sining Ye
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Danica Nheu
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Mary Dass
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Maurice Pagnin
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Ezgi Ozturk
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Paschalis Theotokis
- Laboratory of Experimental Neurology and Neuroimmunology, Department of Neurology, AHEPA University Hospital, Stilponos Kiriakides Str. 1, 54636 Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology, Department of Neurology, AHEPA University Hospital, Stilponos Kiriakides Str. 1, 54636 Thessaloniki, Greece
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| |
Collapse
|
22
|
Sen MK, Hossain MJ, Mahns DA, Brew BJ. Validity of serum neurofilament light chain as a prognostic biomarker of disease activity in multiple sclerosis. J Neurol 2023; 270:1908-1930. [PMID: 36520240 DOI: 10.1007/s00415-022-11507-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022]
Abstract
Multiple sclerosis (MS) is a chronic demyelinating and neuroinflammatory disease of the human central nervous system with complex pathoetiology, heterogeneous presentations and an unpredictable course of disease progression. There remains an urgent need to identify and validate a biomarker that can reliably predict the initiation and progression of MS as well as identify patient responses to disease-modifying treatments/therapies (DMTs). Studies exploring biomarkers in MS and other neurodegenerative diseases currently focus mainly on cerebrospinal fluid (CSF) analyses, which are invasive and impractical to perform on a repeated basis. Recent studies, replacing CSF with peripheral blood samples, have revealed that the elevation of serum neurofilament light chain (sNfL) in the clinical stages of MS is, potentially, an ideal prognostic biomarker for predicting disease progression and for possibly guiding treatment decisions. However, there are unresolved factors (the definition of abnormal values of sNfL concentration, the standardisation of measurement and the amount of change in sNfL concentration that is significant) that are preventing its use as a biomarker in routine clinical practice for MS. This updated review critiques these recent findings and highlights areas for focussed work to facilitate the use of sNfL as a prognostic biomarker in MS management.
Collapse
Affiliation(s)
- Monokesh K Sen
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
- Peter Duncan Neuroscience Research Unit, St Vincent's Centre for Applied Medical Research, Darlinghurst, Sydney, 2010, Australia
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Md Jakir Hossain
- School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - David A Mahns
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Bruce J Brew
- Peter Duncan Neuroscience Research Unit, St Vincent's Centre for Applied Medical Research, Darlinghurst, Sydney, 2010, Australia.
- School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia.
- Department of Neurology, St Vincent's Hospital, Darlinghurst, 2010, Australia.
| |
Collapse
|
23
|
Hernández C, Simó-Servat O, Porta M, Grauslund J, Harding SP, Frydkjaer-Olsen U, García-Arumí J, Ribeiro L, Scanlon P, Cunha-Vaz J, Simó R. Serum glial fibrillary acidic protein and neurofilament light chain as biomarkers of retinal neurodysfunction in early diabetic retinopathy: results of the EUROCONDOR study. Acta Diabetol 2023; 60:837-844. [PMID: 36959506 DOI: 10.1007/s00592-023-02076-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/11/2023] [Indexed: 03/25/2023]
Abstract
AIMS Neurodegeneration and glial activation are primary events in the pathogenesis of diabetic retinopathy. Serum glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) are biomarkers of underlying neuroinflammatory and neurodegenerative disease processes. The aim of the present study was to assess the usefulness of these serum biomarkers for the identification and monitoring of retinal neurodysfunction in subjects with type 2 diabetes. METHODS A case-control study was designed including 38 patients from the placebo arm of the EUROCONDOR clinical trial: 19 with and 19 without retinal neurodysfunction assessed by multifocal electroretinography. GFAP and NfL were measured by Simoa. RESULTS Serum levels of GFAP and NfL directly correlated with age (r = 0.37, p = 0.023 and r = 0.54, p < 0.001, respectively). In addition, a direct correlation between GFAP and NfL was observed (r = 0.495, p = 0.002). Serum levels of GFAP were significantly higher at baseline in those subjects in whom neurodysfunction progressed after the 2 years of follow-up (139.1 ± 52.5 pg/mL vs. 100.2 ± 54.6 pg/mL; p = 0.04). CONCLUSIONS GFAP could be a useful serum biomarker for retinal neurodysfunction. Monitoring retinal neurodysfunction using blood samples would be of benefit in clinical decision-making. However, further research is needed to validate this result as well as to establish the best cutoff values.
Collapse
Affiliation(s)
- Cristina Hernández
- Diabetes and Metabolism Research Unit and CIBERDEM, Vall d'Hebron Research Institute, Vall d'Hebron Barcelona Hospital Campus, Passeig de La Vall d'Hebron, 119-129, 08035, Barcelona, Spain.
| | - Olga Simó-Servat
- Diabetes and Metabolism Research Unit and CIBERDEM, Vall d'Hebron Research Institute, Vall d'Hebron Barcelona Hospital Campus, Passeig de La Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Massimo Porta
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Jakob Grauslund
- Research Unit of Ophthalmology, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Simon P Harding
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, and St. Paul's Eye Unit. Liverpool University Hospitals, Liverpool, UK
| | - Ulrik Frydkjaer-Olsen
- Research Unit of Ophthalmology, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - José García-Arumí
- Department of Ophthalmology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Luísa Ribeiro
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
| | - Peter Scanlon
- Gloucestershire Hospitals National Health Service Foundation Trust, Cheltenham, UK
| | - José Cunha-Vaz
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
| | - Rafael Simó
- Diabetes and Metabolism Research Unit and CIBERDEM, Vall d'Hebron Research Institute, Vall d'Hebron Barcelona Hospital Campus, Passeig de La Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| |
Collapse
|
24
|
Rademacher TD, Meuth SG, Wiendl H, Johnen A, Landmeyer NC. Molecular biomarkers and cognitive impairment in multiple sclerosis: State of the field, limitations, and future direction - A systematic review and meta-analysis. Neurosci Biobehav Rev 2023; 146:105035. [PMID: 36608917 DOI: 10.1016/j.neubiorev.2023.105035] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/20/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Multiple sclerosis (MS) is associated with cognitive impairment (CI) such as slowed information processing speed (IPS). Currently, no immunocellular or molecular markers have been established in cerebrospinal fluid and serum analysis as surrogate biomarkers with diagnostic or predictive value for the development of CI. This systematic review and meta-analysis aims to sum up the evidence regarding currently discussed markers for CI in MS. METHODS A literature search was conducted on molecular biomarkers of CI in MS, such as neurofilament light chain, chitinases, and vitamin D. RESULTS 5543 publications were screened, of which 77 entered the systematic review. 13 studies were included in the meta-analysis. Neurofilament light chain (CSF: rp = -0.294, p = 0.003; serum: rp = -0.137, p = 0.001) and serum levels of vitamin D (rp = 0.190, p = 0.014) were associated with IPS outcomes. CONCLUSIONS Neurofilament light chain and vitamin D are promising biomarkers to track impairments in IPS in MS. Further longitudinal research is needed to establish the use of molecular biomarkers to monitor cognitive decline.
Collapse
Affiliation(s)
| | - Sven G Meuth
- Department of Neurology, University Hospital Düsseldorf, Germany
| | - Heinz Wiendl
- Department of Neurology, University Hospital Münster, Germany
| | - Andreas Johnen
- Department of Neurology, University Hospital Münster, Germany
| | | |
Collapse
|
25
|
Ransohoff RM. Multiple sclerosis: role of meningeal lymphoid aggregates in progression independent of relapse activity. Trends Immunol 2023; 44:266-275. [PMID: 36868982 DOI: 10.1016/j.it.2023.02.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 03/05/2023]
Abstract
The emphasis on mechanisms driving multiple sclerosis (MS) symptomatic worsening suggests that we move beyond categorical clinical classifiers such as relapsing-remitting MS (RR-MS) and progressive MS (P-MS). Here, we focus on the clinical phenomenon progression independent of relapse activity (PIRA), which begins early in the disease course. PIRA occurs throughout MS, becoming more phenotypically evident as patients age. The underlying mechanisms for PIRA include chronic-active demyelinating lesions (CALs), subpial cortical demyelination, and nerve fiber injury following demyelination. We propose that much of the tissue injury associated with PIRA is driven by autonomous meningeal lymphoid aggregates, present before disease onset and unresponsive to current therapeutics. Recently, specialized magnetic resonance imaging (MRI) has identified and characterized CALs as paramagnetic rim lesions in humans, enabling novel radiographic-biomarker-clinical correlations to further understand and treat PIRA.
Collapse
Affiliation(s)
- Richard M Ransohoff
- Third Rock Ventures, Boston, MA, USA; Abata Therapeutics, 100 Forge Road, Suite 200, Boston, MA 02472, USA.
| |
Collapse
|
26
|
Maier S, Barcutean L, Andone S, Manu D, Sarmasan E, Bajko Z, Balasa R. Recent Progress in the Identification of Early Transition Biomarkers from Relapsing-Remitting to Progressive Multiple Sclerosis. Int J Mol Sci 2023; 24:4375. [PMID: 36901807 PMCID: PMC10002756 DOI: 10.3390/ijms24054375] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Despite extensive research into the pathophysiology of multiple sclerosis (MS) and recent developments in potent disease-modifying therapies (DMTs), two-thirds of relapsing-remitting MS patients transition to progressive MS (PMS). The main pathogenic mechanism in PMS is represented not by inflammation but by neurodegeneration, which leads to irreversible neurological disability. For this reason, this transition represents a critical factor for the long-term prognosis. Currently, the diagnosis of PMS can only be established retrospectively based on the progressive worsening of the disability over a period of at least 6 months. In some cases, the diagnosis of PMS is delayed for up to 3 years. With the approval of highly effective DMTs, some with proven effects on neurodegeneration, there is an urgent need for reliable biomarkers to identify this transition phase early and to select patients at a high risk of conversion to PMS. The purpose of this review is to discuss the progress made in the last decade in an attempt to find such a biomarker in the molecular field (serum and cerebrospinal fluid) between the magnetic resonance imaging parameters and optical coherence tomography measures.
Collapse
Affiliation(s)
- Smaranda Maier
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Laura Barcutean
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Sebastian Andone
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
- Doctoral School, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Doina Manu
- Center for Advanced Medical and Pharmaceutical Research, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Emanuela Sarmasan
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
| | - Zoltan Bajko
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Rodica Balasa
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
- Doctoral School, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| |
Collapse
|
27
|
Foley J, Xiong K, Hoyt T, Singh CM, Riddle E, de Moor C, Plavina T, Campbell N. Serum neurofilament light levels in natalizumab-treated patients with multiple sclerosis who switch to extended interval dosing from every-4-week dosing in real-world clinical practice. Mult Scler 2023; 29:196-205. [PMID: 36377744 DOI: 10.1177/13524585221130949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Serum levels of neurofilament light chain (sNfL) are a potentially useful biomarker for assessing the efficacy of multiple sclerosis (MS) treatments. OBJECTIVE To compare levels of sNfL in patients with MS who switched from natalizumab every 4 weeks (Q4W) to extended interval dosing (EID) and patients who remained on Q4W dosing in real-world clinical practice. METHODS This was a retrospective analysis of samples from patients treated with natalizumab from 2010 to 2015 at a single center in the United States. Levels of sNfL were compared in patients who stayed on Q4W dosing or who switched to EID (parallel-arm analyses) and during Q4W and EID periods in patients who switched to EID (pre- and post-switch analyses). RESULTS The analysis included 139 patients (Q4W: n = 79; EID: n = 60). After adjustment, levels of sNfL did not significantly differ between patients who remained on Q4W dosing and those who switched to EID in parallel-arm analyses (adjusted Q4W-EID difference = 0.51 pg/mL; p = 0.60) or pre- and post-switch analyses (adjusted difference = 0.96 pg/mL; p = 0.10). CONCLUSION These sNfL biomarker results suggest that the effectiveness of natalizumab is maintained in patients who switch from Q4W dosing to EID.
Collapse
Affiliation(s)
- John Foley
- Rocky Mountain Multiple Sclerosis Clinic, Salt Lake City, UT, USA
| | | | - Tammy Hoyt
- Rocky Mountain Multiple Sclerosis Clinic, Salt Lake City, UT, USA
| | | | | | | | | | | |
Collapse
|
28
|
Mens H, Fjordside L, Gynthersen R, Ørbaek M, Andersen ÅB, Andreasson U, Blennow K, Sellebjerg F, Zetterberg H, Lebech AM. Plasma neurofilament light significantly decreases following treatment in Lyme neuroborreliosis and is not associated with persistent symptoms. Eur J Neurol 2023; 30:1371-1377. [PMID: 36692938 DOI: 10.1111/ene.15707] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023]
Abstract
BACKGROUND AND PURPOSE Currently there is an unmet need for a highly standardized blood biomarker test to monitor treatment response in Lyme neuroborreliosis (LNB). Differentiating between active or past infection is challenged by the relatively high frequency of persistent symptoms after the end of antibiotic treatment (estimated 15%-20%), the variable clinical course and the long-lasting Borrelia burgdorferi antibodies. The aim was therefore to evaluate plasma neurofilament light chain (pNfL) as a marker for disease activity in LNB. METHODS This was a prospective cohort of definite LNB (N = 36) with blood samples and clinical evaluation including Glasgow Outcome Score at treatment initiation and 3 and 6 months' follow-up. Consecutive plasma was retrospectively analysed for the content of neurofilament light chain by Quanterix® kits (Simoa® NF-light Kit). RESULTS Plasma neurofilament light chain significantly decreased between treatment initiation and the 3-month follow-up (median 83 pg/ml vs. median 14 pg/ml (25 pairs), p < 0.0001). No significant change was observed between 3 and 6 months' follow-up (median 14 pg/ml vs. median 12 pg/ml (21 pairs), p = 0.33). At treatment initiation 90% had pNfL above the age-defined reference compared to only 23% and 7% respectively at 3 and 6 months' follow-up. Decreases in pNfL were mirrored by increasing Glasgow Outcome Score. Reporting persistent symptoms at the 6-month follow-up was not associated with pNfL (relative change from reference or actual values) at baseline or at 6 months' follow-up. CONCLUSION Plasma neurofilament light chain decreases following antibiotic treatment in LNB and is not associated with reporting persistent symptoms. It was therefore speculated that it may prove useful as a treatment response biomarker in LNB.
Collapse
Affiliation(s)
- Helene Mens
- Department of Infectious Diseases, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Lasse Fjordside
- Department of Infectious Diseases, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Rosa Gynthersen
- Department of Infectious Diseases, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Mathilde Ørbaek
- Department of Infectious Diseases, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Åse Bengaard Andersen
- Department of Infectious Diseases, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Ulf Andreasson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Finn Sellebjerg
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital-Rigshospitalet, Glostrup, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong Central College, Hong Kong, China.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Anne-Mette Lebech
- Department of Infectious Diseases, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
29
|
Camara-Lemarroy C, Silva C, Gohill J, Yong VW, Koch M. Serum neurofilament-light and glial fibrillary acidic protein levels in hydroxychloroquine-treated primary progressive multiple sclerosis. Eur J Neurol 2023; 30:187-194. [PMID: 36214614 DOI: 10.1111/ene.15588] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/02/2022] [Accepted: 09/29/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND In a recent trial, hydroxychloroquine (HCQ) treatment reduced the expected rate of disability worsening at 18 months in primary progressive multiple sclerosis (PPMS). Neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) are emerging biomarkers in multiple sclerosis. METHODS We measured NfL and GFAP levels in serum samples from 39 patients with inactive PPMS included in a phase II clinical trial of HCQ treatment in PPMS at multiple time points over 18 months, and investigated the association of these biomarkers with clinical disability at screening and during follow-up. Screening and 12-month retinal nerve fiber layer (RNFL) thickness was also recorded and analyzed. RESULTS NfL and GFAP levels increased over time, but only significantly from screening to month 6. NfL and GFAP levels did not significantly increase from month 6 up to month 18. At screening, NfL and GFAP levels did not correlate with the Expanded Disability Status Scale (EDSS), and GFAP but not NfL modestly correlated with Timed 25-Foot Walk test (T25FW). Screening NfL and GFAP levels did not predict disability worsening (≥20% worsening on the T25FW) at month 18. RNFL thickness decreased significantly from screening to month 12 and independently predicted disability worsening. CONCLUSIONS In this cohort of people with inactive PPMS, HCQ treatment attenuated the increase of NfL and GFAP after 6 months of treatment and up to 18 months of follow-up, suggesting a treatment effect of HCQ over these biomarkers. RNFL thickness, a marker of neuroaxonal atrophy, was associated with disability worsening, and should be explored further as a prognostic marker in this population.
Collapse
Affiliation(s)
- Carlos Camara-Lemarroy
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,UANL School of Medicine, Monterrey, Mexico
| | - Claudia Silva
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jit Gohill
- Section of Ophthalmology, Department of Surgery, University of Calgary, Calgary, Alberta, Canada
| | - V Wee Yong
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Marcus Koch
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
30
|
Ziemssen T, Bhan V, Chataway J, Chitnis T, Campbell Cree BA, Havrdova EK, Kappos L, Labauge P, Miller A, Nakahara J, Oreja-Guevara C, Palace J, Singer B, Trojano M, Patil A, Rauser B, Hach T. Secondary Progressive Multiple Sclerosis. NEUROLOGY - NEUROIMMUNOLOGY NEUROINFLAMMATION 2023; 10:10/1/e200064. [DOI: 10.1212/nxi.0000000000200064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022]
Abstract
Many challenges exist in the precise diagnosis and clinical management of secondary progressive multiple sclerosis (SPMS) because of the lack of definitive clinical, imaging, immunologic, or pathologic criteria that demarcate the transition from relapsing-remitting MS to SPMS. This review provides an overview of the diagnostic criteria/definition and the heterogeneity associated with different SPMS patient populations; it also emphasizes the importance of available prospective/retrospective tools to identify patients with SPMS earlier in the disease course so that approved disease-modifying therapies and nonpharmacological strategies will translate into better outcomes. Delivery of such interventions necessitates an evolving patient-clinician dialog within the context of a multidisciplinary team.
Collapse
|
31
|
Dimitriou NG, Meuth SG, Martinez-Lapiscina EH, Albrecht P, Menge T. Treatment of Patients with Multiple Sclerosis Transitioning Between Relapsing and Progressive Disease. CNS Drugs 2023; 37:69-92. [PMID: 36598730 PMCID: PMC9829585 DOI: 10.1007/s40263-022-00977-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 01/05/2023]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune demyelinating and neurodegenerative disease of the central nervous system with a wide variety of clinical phenotypes. In spite of the phenotypic classification of MS patients, current data provide evidence that diffuse neuroinflammation and neurodegeneration coexist in all MS forms, the latter gaining increasing clinical relevance in progressive phases. Given that the transition phase of relapsing-remitting MS (RRMS) to secondary progressive MS (SPMS) is not well defined, and widely accepted criteria for SPMS are lacking, randomised controlled trials (RCTs) specifically designed for the transition phase have not been conducted. This review summarizes primary and secondary analyses and reports derived from phase III prospective clinical RCTs listed in PubMed of compounds authorised through the European Medicines Agency (EMA) and the US Food and Drug Administration (FDA) for the treatment of MS. The best data are available for interferon beta-1a (IFNb-1a) subcutaneous (s.c.), IFNb-1b s.c., mitoxantrone and siponimod, the latter being the most modern compound with likely the best risk-to-effect ratio. Moreover, there is a labels discrepancy for many disease-modifying treatments (DMTs) between the FDA and EMA, which have to be taken into consideration when opting for a specific DMT.
Collapse
Affiliation(s)
- Nikolaos G. Dimitriou
- grid.411327.20000 0001 2176 9917Department of Neurology, Heinrich-Heine-University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Sven G. Meuth
- grid.411327.20000 0001 2176 9917Department of Neurology, Heinrich-Heine-University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Elena H. Martinez-Lapiscina
- grid.10403.360000000091771775Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Universitat de Barcelona, Barcelona, Spain ,grid.452397.eOffice of Therapies for Neurological and Psychiatric Disorders, Human Medicines Division, European Medicines Agency, Amsterdam, The Netherlands
| | - Philipp Albrecht
- Department of Neurology, Heinrich-Heine-University Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany. .,Department of Neurology, Maria Hilf Clinic, Mönchengladbach, Germany.
| | - Til Menge
- grid.411327.20000 0001 2176 9917Department of Neurology, LVR-Klinikum Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
32
|
Loonstra FC, de Ruiter LRJ, Koel-Simmelink MJA, Schoonheim MM, Strijbis EMM, Moraal B, Barkhof F, Uitdehaag BMJ, Teunissen C, Killestein J. Neuroaxonal and Glial Markers in Patients of the Same Age With Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 10:10/2/e200078. [PMID: 36543540 PMCID: PMC9773420 DOI: 10.1212/nxi.0000000000200078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/01/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND OBJECTIVES The specificity of novel blood biomarkers for multiple sclerosis (MS)-related neurodegeneration is unclear because neurodegeneration also occurs during normal aging. To understand which aspects of neurodegeneration the serum biomarkers neurofilament light (sNfL), serum glial fibrillary acidic protein (sGFAP), and serum contactin-1 (sCNTN1) reflect, we here explore their cross-sectional association with disability outcome measures and MRI volumes in a unique cohort of people with MS (PwMS) of the same age. METHODS sNfL, sGFAP (both singe-molecule array technology) and sCNTN1 (Luminex) were measured in serum samples of 288 PwMS and 125 healthy controls (HCs) of the Project Y cohort, a population-based cross-sectional study of PwMS born in the Netherlands in 1966 and age-matched HC. RESULTS sNfL (9.83 pg/mL [interquartile range {IQR}: 7.8-12.0]) and sGFAP (63.7 pg/mL [IQR: 48.5-84.5]) were higher in PwMS compared with HC (sNfL: 8.8 pg/mL [IQR: 7.0-10.5]; sGFAP: 51.7 pg/mL [IQR: 40.1-68.3]) (p < 0.001), whereas contactin-1 (7,461.3 pg/mL [IQR: 5,951.8-9,488.6]) did not significantly differ between PwMS compared with HC (7,891.2 pg/mL [IQR: 6,120.0-10,265.8]) (p = 0.068). sNfL and sGFAP levels were 1.2-fold higher in secondary progressive patients (SPMS) compared with relapsing remitting patients (p = 0.009 and p = 0.043). Stratified by MS subtype, no relations were seen for CNTN1, whereas sNfL and sGFAP correlated with the Expanded Disability Status Scale (ρ = 0.43 and ρ = 0.39), Nine-Hole Peg Test, Timed 25-Foot Walk Test, and Symbol Digit Modalities Test (average ρ = 0.38) only in patients with SPMS. Parallel to these clinical findings, correlations were only found for sNfL and sGFAP with MRI volumes. The strongest correlations were observed between sNfL and thalamic volume (ρ = -0.52) and between sGFAP with deep gray matter volume (ρ = - 0.56) in primary progressive patients. DISCUSSION In our cohort of patients of the same age, we report consistent correlations of sNfL and sGFAP with a range of metrics, especially in progressive MS, whereas contactin-1 was not related to clinical or MRI measures. This demonstrates the potential of sNfL and sGFAP as complementary biomarkers of neurodegeneration, reflected by disability, in progressive MS.
Collapse
Affiliation(s)
- Floor C Loonstra
- From the MS Center Amsterdam (F.C.L., L.R.J.R., E.M.M.S., B.M.J.U., J.K.), Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; Neurochemistry Laboratory (M.J.A.K.-S., C.T.), Clinical Chemistry, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; MS Center Amsterdam (B.M., F.B.), Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; andQueen Square Institute of Neurology and Centre for Medical Image Computing (F.B.), University College London, United Kingdom.
| | - Lodewijk R J de Ruiter
- From the MS Center Amsterdam (F.C.L., L.R.J.R., E.M.M.S., B.M.J.U., J.K.), Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; Neurochemistry Laboratory (M.J.A.K.-S., C.T.), Clinical Chemistry, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; MS Center Amsterdam (B.M., F.B.), Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; andQueen Square Institute of Neurology and Centre for Medical Image Computing (F.B.), University College London, United Kingdom
| | - Marleen J A Koel-Simmelink
- From the MS Center Amsterdam (F.C.L., L.R.J.R., E.M.M.S., B.M.J.U., J.K.), Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; Neurochemistry Laboratory (M.J.A.K.-S., C.T.), Clinical Chemistry, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; MS Center Amsterdam (B.M., F.B.), Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; andQueen Square Institute of Neurology and Centre for Medical Image Computing (F.B.), University College London, United Kingdom
| | - Menno M Schoonheim
- From the MS Center Amsterdam (F.C.L., L.R.J.R., E.M.M.S., B.M.J.U., J.K.), Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; Neurochemistry Laboratory (M.J.A.K.-S., C.T.), Clinical Chemistry, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; MS Center Amsterdam (B.M., F.B.), Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; andQueen Square Institute of Neurology and Centre for Medical Image Computing (F.B.), University College London, United Kingdom
| | - Eva M M Strijbis
- From the MS Center Amsterdam (F.C.L., L.R.J.R., E.M.M.S., B.M.J.U., J.K.), Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; Neurochemistry Laboratory (M.J.A.K.-S., C.T.), Clinical Chemistry, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; MS Center Amsterdam (B.M., F.B.), Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; andQueen Square Institute of Neurology and Centre for Medical Image Computing (F.B.), University College London, United Kingdom
| | - Bastiaan Moraal
- From the MS Center Amsterdam (F.C.L., L.R.J.R., E.M.M.S., B.M.J.U., J.K.), Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; Neurochemistry Laboratory (M.J.A.K.-S., C.T.), Clinical Chemistry, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; MS Center Amsterdam (B.M., F.B.), Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; andQueen Square Institute of Neurology and Centre for Medical Image Computing (F.B.), University College London, United Kingdom
| | - Frederik Barkhof
- From the MS Center Amsterdam (F.C.L., L.R.J.R., E.M.M.S., B.M.J.U., J.K.), Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; Neurochemistry Laboratory (M.J.A.K.-S., C.T.), Clinical Chemistry, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; MS Center Amsterdam (B.M., F.B.), Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; andQueen Square Institute of Neurology and Centre for Medical Image Computing (F.B.), University College London, United Kingdom
| | - Bernard M J Uitdehaag
- From the MS Center Amsterdam (F.C.L., L.R.J.R., E.M.M.S., B.M.J.U., J.K.), Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; Neurochemistry Laboratory (M.J.A.K.-S., C.T.), Clinical Chemistry, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; MS Center Amsterdam (B.M., F.B.), Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; andQueen Square Institute of Neurology and Centre for Medical Image Computing (F.B.), University College London, United Kingdom
| | - Charlotte Teunissen
- From the MS Center Amsterdam (F.C.L., L.R.J.R., E.M.M.S., B.M.J.U., J.K.), Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; Neurochemistry Laboratory (M.J.A.K.-S., C.T.), Clinical Chemistry, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; MS Center Amsterdam (B.M., F.B.), Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; andQueen Square Institute of Neurology and Centre for Medical Image Computing (F.B.), University College London, United Kingdom
| | - Joep Killestein
- From the MS Center Amsterdam (F.C.L., L.R.J.R., E.M.M.S., B.M.J.U., J.K.), Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; Neurochemistry Laboratory (M.J.A.K.-S., C.T.), Clinical Chemistry, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; MS Center Amsterdam (M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; MS Center Amsterdam (B.M., F.B.), Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, The Netherlands; andQueen Square Institute of Neurology and Centre for Medical Image Computing (F.B.), University College London, United Kingdom
| |
Collapse
|
33
|
Williams T, Tur C, Eshaghi A, Doshi A, Chan D, Binks S, Wellington H, Heslegrave A, Zetterberg H, Chataway J. Serum neurofilament light and MRI predictors of cognitive decline in patients with secondary progressive multiple sclerosis: Analysis from the MS-STAT randomised controlled trial. Mult Scler 2022; 28:1913-1926. [PMID: 35946107 PMCID: PMC9493411 DOI: 10.1177/13524585221114441] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Cognitive impairment affects 50%-75% of people with secondary progressive multiple sclerosis (PwSPMS). Improving our ability to predict cognitive decline may facilitate earlier intervention. OBJECTIVE The main aim of this study was to assess the relationship between longitudinal changes in cognition and baseline serum neurofilament light chain (sNfL) in PwSPMS. In a multi-modal analysis, MRI variables were additionally included to determine if sNfL has predictive utility beyond that already established through MRI. METHODS Participants from the MS-STAT trial underwent a detailed neuropsychological test battery at baseline, 12 and 24 months. Linear mixed models were used to assess the relationships between cognition, sNfL, T2 lesion volume (T2LV) and normalised regional brain volumes. RESULTS Median age and Expanded Disability Status Score (EDSS) were 51 and 6.0. Each doubling of baseline sNfL was associated with a 0.010 [0.003-0.017] point per month faster decline in WASI Full Scale IQ Z-score (p = 0.008), independent of T2LV and normalised regional volumes. In contrast, lower baseline volume of the transverse temporal gyrus was associated with poorer current cognitive performance (0.362 [0.026-0.698] point reduction per mL, p = 0.035), but not change in cognition. The results were supported by secondary analyses on individual cognitive components. CONCLUSION Elevated sNfL is associated with faster cognitive decline, independent of T2LV and regional normalised volumes.
Collapse
Affiliation(s)
- Thomas Williams
- Queen Square Multiple Sclerosis Centre,
Department of Neuroinflammation, UCL Queen Square Institute of Neurology,
University College London, Russell Square House, 10-12 Russell Square,
London WC1B 5EH, UK
- Queen Square Multiple Sclerosis Centre,
Department of Neuroinflammation, UCL Queen Square Institute of Neurology,
University College London, London, UK
| | - Carmen Tur
- Queen Square Multiple Sclerosis Centre,
Department of Neuroinflammation, UCL Queen Square Institute of Neurology,
University College London, London, UK/Multiple Sclerosis Centre of Catalonia
(Cemcat), Vall d’Hebron Institute of Research, Vall d’Hebron Barcelona
Hospital Campus, Barcelona, Spain
| | - Arman Eshaghi
- Queen Square Multiple Sclerosis Centre,
Department of Neuroinflammation, UCL Queen Square Institute of Neurology,
University College London, London, UK
| | - Anisha Doshi
- Queen Square Multiple Sclerosis Centre,
Department of Neuroinflammation, UCL Queen Square Institute of Neurology,
University College London, London, UK
| | - Dennis Chan
- UCL Institute of Cognitive Neuroscience,
University College London, London, UK
| | - Sophie Binks
- Department of Neurology, Nuffield Department of
Clinical Neurosciences, Oxford, UK
| | - Henny Wellington
- UK Dementia Research Institute, University
College London, London, UK
| | - Amanda Heslegrave
- UK Dementia Research Institute, University
College London, London, UK
| | - Henrik Zetterberg
- UK Dementia Research Institute, University
College London, London, UK/ Department of Psychiatry and Neurochemistry,
Institute of Neuroscience and Physiology, The Sahlgrenska Academy,
University of Gothenburg, Mölndal, Sweden/Clinical Neurochemistry
Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden/Department of
Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London,
UK/Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong
Kong, China
| | - Jeremy Chataway
- Queen Square Multiple Sclerosis Centre,
Department of Neuroinflammation, UCL Queen Square Institute of Neurology,
University College London, London, UK/National Institute for Health
Research, University College London Hospitals, Biomedical Research Centre,
London, UK/Medical Research Council Clinical Trials Unit, Institute of
Clinical Trials and Methodology, University College London, London, UK
| |
Collapse
|
34
|
Sotirchos ES, Vasileiou ES, Filippatou AG, Fitzgerald KC, Smith MD, Lord HN, Kalaitzidis G, Lambe J, Duval A, Prince JL, Mowry EM, Saidha S, Calabresi PA. Association of Serum Neurofilament Light Chain With Inner Retinal Layer Thinning in Multiple Sclerosis. Neurology 2022; 99:e688-e697. [PMID: 35618438 PMCID: PMC9484608 DOI: 10.1212/wnl.0000000000200778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/11/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Serum neurofilament light chain (sNfL) and optical coherence tomography (OCT)-derived retinal measures (including peripapillary retinal nerve fiber layer [pRNFL] and macular ganglion cell layer/inner plexiform layer [GCIPL] thickness) have been proposed as biomarkers of neurodegeneration in multiple sclerosis (MS). However, studies evaluating the associations between sNfL and OCT-derived retinal measures in MS are limited. METHODS In this retrospective analysis of a longitudinal, observational, single-center cohort study, sNfL levels were measured in people with MS and healthy controls (HCs) using single molecule array. Participants with MS were followed with serial OCT for a median follow-up of 4.5 years. Eyes with optic neuritis (ON) within 6 months of baseline OCT or ON during follow-up were excluded. Age-normative cutoffs of sNfL were derived using the HC data, and MS participants with sNfL greater than the 97.5th percentile for age were classified as having elevated sNfL (sNfL-E). Analyses were performed with mixed-effects linear regression models and adjusted for age, sex, race, and history of ON. RESULTS A total of 130 HCs (age: 42.4 ± 14.2 years; 62% female) and 403 people with MS (age: 43.1 ± 12.0 years; 78% female) were included. Elevated sNfL levels were present at baseline in 80 participants with MS (19.9%). At baseline, sNfL-E participants had modestly lower pRNFL (-3.03 ± 1.50 μm; p = 0.044) and GCIPL thickness (-2.74 ± 1.02 μm; p = 0.007). As compared with those with sNfL within the reference range, eyes from NfL-E participants exhibited faster longitudinal thinning of the pRNFL (45% faster; -0.74 vs -0.51 μm/y; p = 0.015) and GCIPL (25% faster; -0.35 vs -0.28 μm/y; p = 0.021). Significant differences in rates of pRNFL and GCIPL thinning between sNfL groups were found only in those with relapsing-remitting MS but not progressive MS. DISCUSSION Elevated baseline sNfL is associated with accelerated rates of retinal neuroaxonal loss in relapsing-remitting MS, independent of overt ON, but may be less reflective of retinal neurodegeneration in progressive MS.
Collapse
Affiliation(s)
- Elias S Sotirchos
- From the Departments of Neurology (E.S.S., E.S.V., A.G.F., K.C.F., M.D.S., H.-N.L., G.K., J.L., A.D., E.M.M., S.S., P.A.C.), and Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD.
| | - Eleni S Vasileiou
- From the Departments of Neurology (E.S.S., E.S.V., A.G.F., K.C.F., M.D.S., H.-N.L., G.K., J.L., A.D., E.M.M., S.S., P.A.C.), and Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Angeliki G Filippatou
- From the Departments of Neurology (E.S.S., E.S.V., A.G.F., K.C.F., M.D.S., H.-N.L., G.K., J.L., A.D., E.M.M., S.S., P.A.C.), and Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Kathryn C Fitzgerald
- From the Departments of Neurology (E.S.S., E.S.V., A.G.F., K.C.F., M.D.S., H.-N.L., G.K., J.L., A.D., E.M.M., S.S., P.A.C.), and Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Matthew D Smith
- From the Departments of Neurology (E.S.S., E.S.V., A.G.F., K.C.F., M.D.S., H.-N.L., G.K., J.L., A.D., E.M.M., S.S., P.A.C.), and Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Hannah-Noelle Lord
- From the Departments of Neurology (E.S.S., E.S.V., A.G.F., K.C.F., M.D.S., H.-N.L., G.K., J.L., A.D., E.M.M., S.S., P.A.C.), and Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Grigorios Kalaitzidis
- From the Departments of Neurology (E.S.S., E.S.V., A.G.F., K.C.F., M.D.S., H.-N.L., G.K., J.L., A.D., E.M.M., S.S., P.A.C.), and Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Jeffrey Lambe
- From the Departments of Neurology (E.S.S., E.S.V., A.G.F., K.C.F., M.D.S., H.-N.L., G.K., J.L., A.D., E.M.M., S.S., P.A.C.), and Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Anna Duval
- From the Departments of Neurology (E.S.S., E.S.V., A.G.F., K.C.F., M.D.S., H.-N.L., G.K., J.L., A.D., E.M.M., S.S., P.A.C.), and Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Jerry L Prince
- From the Departments of Neurology (E.S.S., E.S.V., A.G.F., K.C.F., M.D.S., H.-N.L., G.K., J.L., A.D., E.M.M., S.S., P.A.C.), and Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Ellen M Mowry
- From the Departments of Neurology (E.S.S., E.S.V., A.G.F., K.C.F., M.D.S., H.-N.L., G.K., J.L., A.D., E.M.M., S.S., P.A.C.), and Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Shiv Saidha
- From the Departments of Neurology (E.S.S., E.S.V., A.G.F., K.C.F., M.D.S., H.-N.L., G.K., J.L., A.D., E.M.M., S.S., P.A.C.), and Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Peter A Calabresi
- From the Departments of Neurology (E.S.S., E.S.V., A.G.F., K.C.F., M.D.S., H.-N.L., G.K., J.L., A.D., E.M.M., S.S., P.A.C.), and Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| |
Collapse
|
35
|
Mak G, Menon S, Lu JQ. Neurofilaments in neurologic disorders and beyond. J Neurol Sci 2022; 441:120380. [PMID: 36027641 DOI: 10.1016/j.jns.2022.120380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022]
Abstract
Many neurologic diseases can initially present as a diagnostic challenge and even when a diagnosis is made, monitoring of disease activity, progression and response to therapy may be limited with existing clinical and paraclinical assessments. As such, the identification of disease specific biomarkers provides a promising avenue by which diseases can be effectively diagnosed, monitored and used as a prognostic indicator for long-term outcomes. Neurofilaments are an integral component of the neuronal cytoskeleton, where assessment of neurofilaments in the blood, cerebrospinal fluid (CSF) and diseased tissue has been shown to have value in providing diagnostic clarity, monitoring disease activity, tracking progression and treatment efficacy, as well as lending prognostic insight into long-term outcomes. As such, this review attempts to provide a glimpse into the structure and function of neurofilaments, their role in various neurologic and non-neurologic disorders, including uncommon conditions with recent knowledge of neurofilament-related pathology, as well as their applicability in future clinical practice.
Collapse
Affiliation(s)
- Gloria Mak
- McMaster University, Department of Medicine, Hamilton, Ontario, Canada
| | - Suresh Menon
- McMaster University, Department of Medicine, Hamilton, Ontario, Canada
| | - Jian-Qiang Lu
- McMaster University, Department of Pathology and Molecular Medicine, Hamilton, Ontario, Canada.
| |
Collapse
|
36
|
Li V, Leurent B, Barkhof F, Braisher M, Cafferty F, Ciccarelli O, Eshaghi A, Gray E, Nicholas JM, Parmar M, Peryer G, Robertson J, Stallard N, Wason J, Chataway J. Designing Multi-arm Multistage Adaptive Trials for Neuroprotection in Progressive Multiple Sclerosis. Neurology 2022; 98:754-764. [PMID: 35321926 PMCID: PMC9109150 DOI: 10.1212/wnl.0000000000200604] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/10/2022] [Indexed: 11/24/2022] Open
Abstract
There are few treatments shown to slow disability progression in progressive multiple sclerosis (PMS). One challenge has been efficiently testing the pipeline of candidate therapies from preclinical studies in clinical trials. Multi-arm multistage (MAMS) platform trials may accelerate evaluation of new therapies compared to traditional sequential clinical trials. We describe a MAMS design in PMS focusing on selection of interim and final outcome measures, sample size, and statistical considerations. The UK MS Society Expert Consortium for Progression in MS Clinical Trials reviewed recent phase II and III PMS trials to inform interim and final outcome selection and design measures. Simulations were performed to evaluate trial operating characteristics under different treatment effect, recruitment rate, and sample size assumptions. People with MS formed a patient and public involvement group and contributed to the trial design, ensuring it would meet the needs of the MS community. The proposed design evaluates 3 experimental arms compared to a common standard of care arm in 2 stages. Stage 1 (interim) outcome will be whole brain atrophy on MRI at 18 months, assessed for 123 participants per arm. Treatments with sufficient evidence for slowing brain atrophy will continue to the second stage. The stage 2 (final) outcome will be time to 6-month confirmed disability progression, based on a composite clinical score comprising the Expanded Disability Status Scale, Timed 25-Foot Walk test, and 9-Hole Peg Test. To detect a hazard ratio of 0.75 for this primary final outcome with 90% power, 600 participants per arm are required. Assuming one treatment progresses to stage 2, the trial will recruit ≈1,900 participants and last ≈6 years. This is approximately two-thirds the size and half the time of separate 2-arm phase II and III trials. The proposed MAMS trial design will substantially reduce duration and sample size compared to traditional clinical trials, accelerating discovery of effective treatments for PMS. The design was well-received by people with multiple sclerosis. The practical and statistical principles of MAMS trial design may be applicable to other neurodegenerative conditions to facilitate efficient testing of new therapies.
Collapse
Affiliation(s)
- Vivien Li
- From the Florey Institute of Neuroscience and Mental Health (V.L.), University of Melbourne; Department of Neurology (V.L.), Royal Melbourne Hospital, Australia; Department of Medical Statistics (B.L., J.M.N.) and International Statistics and Epidemiology Group (B.L.), London School of Hygiene and Tropical Medicine, UK; Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam (F.B.), VU University Medical Center, Amsterdam, the Netherlands; Queen Square Institute of Neurology and Centre for Medical Image Computing (F.B.), Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre (M.B., O.C.), and NMR Unit, Department of Neuroinflammation (A.E.), Faculty of Brain Sciences, UCL Queen Square Institute of Neurology; MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology (F.C., M.P., J.C.), and Department of Computer Science, Centre for Medical Image Computing (A.E.), University College London; National Institute for Health Research (F.B., O.C., J.C.), University College London Hospitals Biomedical Research Centre; UK Multiple Sclerosis Society (E.G., G.P., J.R.), London; Faculty of Medicine and Health Sciences (G.P.), University of East Anglia, Norwich; Statistics and Epidemiology, Division of Health Sciences (N.S.), Warwick Medical School, University of Warwick, Coventry; and Population Health Sciences Institute (J.W.), Newcastle University, UK
| | - Baptiste Leurent
- From the Florey Institute of Neuroscience and Mental Health (V.L.), University of Melbourne; Department of Neurology (V.L.), Royal Melbourne Hospital, Australia; Department of Medical Statistics (B.L., J.M.N.) and International Statistics and Epidemiology Group (B.L.), London School of Hygiene and Tropical Medicine, UK; Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam (F.B.), VU University Medical Center, Amsterdam, the Netherlands; Queen Square Institute of Neurology and Centre for Medical Image Computing (F.B.), Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre (M.B., O.C.), and NMR Unit, Department of Neuroinflammation (A.E.), Faculty of Brain Sciences, UCL Queen Square Institute of Neurology; MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology (F.C., M.P., J.C.), and Department of Computer Science, Centre for Medical Image Computing (A.E.), University College London; National Institute for Health Research (F.B., O.C., J.C.), University College London Hospitals Biomedical Research Centre; UK Multiple Sclerosis Society (E.G., G.P., J.R.), London; Faculty of Medicine and Health Sciences (G.P.), University of East Anglia, Norwich; Statistics and Epidemiology, Division of Health Sciences (N.S.), Warwick Medical School, University of Warwick, Coventry; and Population Health Sciences Institute (J.W.), Newcastle University, UK
| | - Frederik Barkhof
- From the Florey Institute of Neuroscience and Mental Health (V.L.), University of Melbourne; Department of Neurology (V.L.), Royal Melbourne Hospital, Australia; Department of Medical Statistics (B.L., J.M.N.) and International Statistics and Epidemiology Group (B.L.), London School of Hygiene and Tropical Medicine, UK; Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam (F.B.), VU University Medical Center, Amsterdam, the Netherlands; Queen Square Institute of Neurology and Centre for Medical Image Computing (F.B.), Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre (M.B., O.C.), and NMR Unit, Department of Neuroinflammation (A.E.), Faculty of Brain Sciences, UCL Queen Square Institute of Neurology; MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology (F.C., M.P., J.C.), and Department of Computer Science, Centre for Medical Image Computing (A.E.), University College London; National Institute for Health Research (F.B., O.C., J.C.), University College London Hospitals Biomedical Research Centre; UK Multiple Sclerosis Society (E.G., G.P., J.R.), London; Faculty of Medicine and Health Sciences (G.P.), University of East Anglia, Norwich; Statistics and Epidemiology, Division of Health Sciences (N.S.), Warwick Medical School, University of Warwick, Coventry; and Population Health Sciences Institute (J.W.), Newcastle University, UK
| | - Marie Braisher
- From the Florey Institute of Neuroscience and Mental Health (V.L.), University of Melbourne; Department of Neurology (V.L.), Royal Melbourne Hospital, Australia; Department of Medical Statistics (B.L., J.M.N.) and International Statistics and Epidemiology Group (B.L.), London School of Hygiene and Tropical Medicine, UK; Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam (F.B.), VU University Medical Center, Amsterdam, the Netherlands; Queen Square Institute of Neurology and Centre for Medical Image Computing (F.B.), Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre (M.B., O.C.), and NMR Unit, Department of Neuroinflammation (A.E.), Faculty of Brain Sciences, UCL Queen Square Institute of Neurology; MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology (F.C., M.P., J.C.), and Department of Computer Science, Centre for Medical Image Computing (A.E.), University College London; National Institute for Health Research (F.B., O.C., J.C.), University College London Hospitals Biomedical Research Centre; UK Multiple Sclerosis Society (E.G., G.P., J.R.), London; Faculty of Medicine and Health Sciences (G.P.), University of East Anglia, Norwich; Statistics and Epidemiology, Division of Health Sciences (N.S.), Warwick Medical School, University of Warwick, Coventry; and Population Health Sciences Institute (J.W.), Newcastle University, UK
| | - Fay Cafferty
- From the Florey Institute of Neuroscience and Mental Health (V.L.), University of Melbourne; Department of Neurology (V.L.), Royal Melbourne Hospital, Australia; Department of Medical Statistics (B.L., J.M.N.) and International Statistics and Epidemiology Group (B.L.), London School of Hygiene and Tropical Medicine, UK; Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam (F.B.), VU University Medical Center, Amsterdam, the Netherlands; Queen Square Institute of Neurology and Centre for Medical Image Computing (F.B.), Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre (M.B., O.C.), and NMR Unit, Department of Neuroinflammation (A.E.), Faculty of Brain Sciences, UCL Queen Square Institute of Neurology; MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology (F.C., M.P., J.C.), and Department of Computer Science, Centre for Medical Image Computing (A.E.), University College London; National Institute for Health Research (F.B., O.C., J.C.), University College London Hospitals Biomedical Research Centre; UK Multiple Sclerosis Society (E.G., G.P., J.R.), London; Faculty of Medicine and Health Sciences (G.P.), University of East Anglia, Norwich; Statistics and Epidemiology, Division of Health Sciences (N.S.), Warwick Medical School, University of Warwick, Coventry; and Population Health Sciences Institute (J.W.), Newcastle University, UK
| | - Olga Ciccarelli
- From the Florey Institute of Neuroscience and Mental Health (V.L.), University of Melbourne; Department of Neurology (V.L.), Royal Melbourne Hospital, Australia; Department of Medical Statistics (B.L., J.M.N.) and International Statistics and Epidemiology Group (B.L.), London School of Hygiene and Tropical Medicine, UK; Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam (F.B.), VU University Medical Center, Amsterdam, the Netherlands; Queen Square Institute of Neurology and Centre for Medical Image Computing (F.B.), Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre (M.B., O.C.), and NMR Unit, Department of Neuroinflammation (A.E.), Faculty of Brain Sciences, UCL Queen Square Institute of Neurology; MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology (F.C., M.P., J.C.), and Department of Computer Science, Centre for Medical Image Computing (A.E.), University College London; National Institute for Health Research (F.B., O.C., J.C.), University College London Hospitals Biomedical Research Centre; UK Multiple Sclerosis Society (E.G., G.P., J.R.), London; Faculty of Medicine and Health Sciences (G.P.), University of East Anglia, Norwich; Statistics and Epidemiology, Division of Health Sciences (N.S.), Warwick Medical School, University of Warwick, Coventry; and Population Health Sciences Institute (J.W.), Newcastle University, UK
| | - Arman Eshaghi
- From the Florey Institute of Neuroscience and Mental Health (V.L.), University of Melbourne; Department of Neurology (V.L.), Royal Melbourne Hospital, Australia; Department of Medical Statistics (B.L., J.M.N.) and International Statistics and Epidemiology Group (B.L.), London School of Hygiene and Tropical Medicine, UK; Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam (F.B.), VU University Medical Center, Amsterdam, the Netherlands; Queen Square Institute of Neurology and Centre for Medical Image Computing (F.B.), Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre (M.B., O.C.), and NMR Unit, Department of Neuroinflammation (A.E.), Faculty of Brain Sciences, UCL Queen Square Institute of Neurology; MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology (F.C., M.P., J.C.), and Department of Computer Science, Centre for Medical Image Computing (A.E.), University College London; National Institute for Health Research (F.B., O.C., J.C.), University College London Hospitals Biomedical Research Centre; UK Multiple Sclerosis Society (E.G., G.P., J.R.), London; Faculty of Medicine and Health Sciences (G.P.), University of East Anglia, Norwich; Statistics and Epidemiology, Division of Health Sciences (N.S.), Warwick Medical School, University of Warwick, Coventry; and Population Health Sciences Institute (J.W.), Newcastle University, UK
| | - Emma Gray
- From the Florey Institute of Neuroscience and Mental Health (V.L.), University of Melbourne; Department of Neurology (V.L.), Royal Melbourne Hospital, Australia; Department of Medical Statistics (B.L., J.M.N.) and International Statistics and Epidemiology Group (B.L.), London School of Hygiene and Tropical Medicine, UK; Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam (F.B.), VU University Medical Center, Amsterdam, the Netherlands; Queen Square Institute of Neurology and Centre for Medical Image Computing (F.B.), Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre (M.B., O.C.), and NMR Unit, Department of Neuroinflammation (A.E.), Faculty of Brain Sciences, UCL Queen Square Institute of Neurology; MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology (F.C., M.P., J.C.), and Department of Computer Science, Centre for Medical Image Computing (A.E.), University College London; National Institute for Health Research (F.B., O.C., J.C.), University College London Hospitals Biomedical Research Centre; UK Multiple Sclerosis Society (E.G., G.P., J.R.), London; Faculty of Medicine and Health Sciences (G.P.), University of East Anglia, Norwich; Statistics and Epidemiology, Division of Health Sciences (N.S.), Warwick Medical School, University of Warwick, Coventry; and Population Health Sciences Institute (J.W.), Newcastle University, UK
| | - Jennifer M Nicholas
- From the Florey Institute of Neuroscience and Mental Health (V.L.), University of Melbourne; Department of Neurology (V.L.), Royal Melbourne Hospital, Australia; Department of Medical Statistics (B.L., J.M.N.) and International Statistics and Epidemiology Group (B.L.), London School of Hygiene and Tropical Medicine, UK; Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam (F.B.), VU University Medical Center, Amsterdam, the Netherlands; Queen Square Institute of Neurology and Centre for Medical Image Computing (F.B.), Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre (M.B., O.C.), and NMR Unit, Department of Neuroinflammation (A.E.), Faculty of Brain Sciences, UCL Queen Square Institute of Neurology; MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology (F.C., M.P., J.C.), and Department of Computer Science, Centre for Medical Image Computing (A.E.), University College London; National Institute for Health Research (F.B., O.C., J.C.), University College London Hospitals Biomedical Research Centre; UK Multiple Sclerosis Society (E.G., G.P., J.R.), London; Faculty of Medicine and Health Sciences (G.P.), University of East Anglia, Norwich; Statistics and Epidemiology, Division of Health Sciences (N.S.), Warwick Medical School, University of Warwick, Coventry; and Population Health Sciences Institute (J.W.), Newcastle University, UK
| | - Mahesh Parmar
- From the Florey Institute of Neuroscience and Mental Health (V.L.), University of Melbourne; Department of Neurology (V.L.), Royal Melbourne Hospital, Australia; Department of Medical Statistics (B.L., J.M.N.) and International Statistics and Epidemiology Group (B.L.), London School of Hygiene and Tropical Medicine, UK; Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam (F.B.), VU University Medical Center, Amsterdam, the Netherlands; Queen Square Institute of Neurology and Centre for Medical Image Computing (F.B.), Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre (M.B., O.C.), and NMR Unit, Department of Neuroinflammation (A.E.), Faculty of Brain Sciences, UCL Queen Square Institute of Neurology; MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology (F.C., M.P., J.C.), and Department of Computer Science, Centre for Medical Image Computing (A.E.), University College London; National Institute for Health Research (F.B., O.C., J.C.), University College London Hospitals Biomedical Research Centre; UK Multiple Sclerosis Society (E.G., G.P., J.R.), London; Faculty of Medicine and Health Sciences (G.P.), University of East Anglia, Norwich; Statistics and Epidemiology, Division of Health Sciences (N.S.), Warwick Medical School, University of Warwick, Coventry; and Population Health Sciences Institute (J.W.), Newcastle University, UK
| | - Guy Peryer
- From the Florey Institute of Neuroscience and Mental Health (V.L.), University of Melbourne; Department of Neurology (V.L.), Royal Melbourne Hospital, Australia; Department of Medical Statistics (B.L., J.M.N.) and International Statistics and Epidemiology Group (B.L.), London School of Hygiene and Tropical Medicine, UK; Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam (F.B.), VU University Medical Center, Amsterdam, the Netherlands; Queen Square Institute of Neurology and Centre for Medical Image Computing (F.B.), Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre (M.B., O.C.), and NMR Unit, Department of Neuroinflammation (A.E.), Faculty of Brain Sciences, UCL Queen Square Institute of Neurology; MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology (F.C., M.P., J.C.), and Department of Computer Science, Centre for Medical Image Computing (A.E.), University College London; National Institute for Health Research (F.B., O.C., J.C.), University College London Hospitals Biomedical Research Centre; UK Multiple Sclerosis Society (E.G., G.P., J.R.), London; Faculty of Medicine and Health Sciences (G.P.), University of East Anglia, Norwich; Statistics and Epidemiology, Division of Health Sciences (N.S.), Warwick Medical School, University of Warwick, Coventry; and Population Health Sciences Institute (J.W.), Newcastle University, UK
| | - Jenny Robertson
- From the Florey Institute of Neuroscience and Mental Health (V.L.), University of Melbourne; Department of Neurology (V.L.), Royal Melbourne Hospital, Australia; Department of Medical Statistics (B.L., J.M.N.) and International Statistics and Epidemiology Group (B.L.), London School of Hygiene and Tropical Medicine, UK; Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam (F.B.), VU University Medical Center, Amsterdam, the Netherlands; Queen Square Institute of Neurology and Centre for Medical Image Computing (F.B.), Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre (M.B., O.C.), and NMR Unit, Department of Neuroinflammation (A.E.), Faculty of Brain Sciences, UCL Queen Square Institute of Neurology; MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology (F.C., M.P., J.C.), and Department of Computer Science, Centre for Medical Image Computing (A.E.), University College London; National Institute for Health Research (F.B., O.C., J.C.), University College London Hospitals Biomedical Research Centre; UK Multiple Sclerosis Society (E.G., G.P., J.R.), London; Faculty of Medicine and Health Sciences (G.P.), University of East Anglia, Norwich; Statistics and Epidemiology, Division of Health Sciences (N.S.), Warwick Medical School, University of Warwick, Coventry; and Population Health Sciences Institute (J.W.), Newcastle University, UK
| | - Nigel Stallard
- From the Florey Institute of Neuroscience and Mental Health (V.L.), University of Melbourne; Department of Neurology (V.L.), Royal Melbourne Hospital, Australia; Department of Medical Statistics (B.L., J.M.N.) and International Statistics and Epidemiology Group (B.L.), London School of Hygiene and Tropical Medicine, UK; Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam (F.B.), VU University Medical Center, Amsterdam, the Netherlands; Queen Square Institute of Neurology and Centre for Medical Image Computing (F.B.), Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre (M.B., O.C.), and NMR Unit, Department of Neuroinflammation (A.E.), Faculty of Brain Sciences, UCL Queen Square Institute of Neurology; MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology (F.C., M.P., J.C.), and Department of Computer Science, Centre for Medical Image Computing (A.E.), University College London; National Institute for Health Research (F.B., O.C., J.C.), University College London Hospitals Biomedical Research Centre; UK Multiple Sclerosis Society (E.G., G.P., J.R.), London; Faculty of Medicine and Health Sciences (G.P.), University of East Anglia, Norwich; Statistics and Epidemiology, Division of Health Sciences (N.S.), Warwick Medical School, University of Warwick, Coventry; and Population Health Sciences Institute (J.W.), Newcastle University, UK
| | - James Wason
- From the Florey Institute of Neuroscience and Mental Health (V.L.), University of Melbourne; Department of Neurology (V.L.), Royal Melbourne Hospital, Australia; Department of Medical Statistics (B.L., J.M.N.) and International Statistics and Epidemiology Group (B.L.), London School of Hygiene and Tropical Medicine, UK; Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam (F.B.), VU University Medical Center, Amsterdam, the Netherlands; Queen Square Institute of Neurology and Centre for Medical Image Computing (F.B.), Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre (M.B., O.C.), and NMR Unit, Department of Neuroinflammation (A.E.), Faculty of Brain Sciences, UCL Queen Square Institute of Neurology; MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology (F.C., M.P., J.C.), and Department of Computer Science, Centre for Medical Image Computing (A.E.), University College London; National Institute for Health Research (F.B., O.C., J.C.), University College London Hospitals Biomedical Research Centre; UK Multiple Sclerosis Society (E.G., G.P., J.R.), London; Faculty of Medicine and Health Sciences (G.P.), University of East Anglia, Norwich; Statistics and Epidemiology, Division of Health Sciences (N.S.), Warwick Medical School, University of Warwick, Coventry; and Population Health Sciences Institute (J.W.), Newcastle University, UK
| | - Jeremy Chataway
- From the Florey Institute of Neuroscience and Mental Health (V.L.), University of Melbourne; Department of Neurology (V.L.), Royal Melbourne Hospital, Australia; Department of Medical Statistics (B.L., J.M.N.) and International Statistics and Epidemiology Group (B.L.), London School of Hygiene and Tropical Medicine, UK; Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam (F.B.), VU University Medical Center, Amsterdam, the Netherlands; Queen Square Institute of Neurology and Centre for Medical Image Computing (F.B.), Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre (M.B., O.C.), and NMR Unit, Department of Neuroinflammation (A.E.), Faculty of Brain Sciences, UCL Queen Square Institute of Neurology; MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology (F.C., M.P., J.C.), and Department of Computer Science, Centre for Medical Image Computing (A.E.), University College London; National Institute for Health Research (F.B., O.C., J.C.), University College London Hospitals Biomedical Research Centre; UK Multiple Sclerosis Society (E.G., G.P., J.R.), London; Faculty of Medicine and Health Sciences (G.P.), University of East Anglia, Norwich; Statistics and Epidemiology, Division of Health Sciences (N.S.), Warwick Medical School, University of Warwick, Coventry; and Population Health Sciences Institute (J.W.), Newcastle University, UK
| |
Collapse
|
37
|
Rosenstein I, Andersen O, Victor D, Englund E, Granberg T, Hedberg‐Oldfors C, Jood K, Fitrah YA, Ikeuchi T, Danylaité Karrenbauer V. Four Swedish cases of CSF1R-related leukoencephalopathy: Visualization of clinical phenotypes. Acta Neurol Scand 2022; 145:599-609. [PMID: 35119108 PMCID: PMC9304267 DOI: 10.1111/ane.13589] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/04/2022] [Accepted: 01/18/2022] [Indexed: 11/28/2022]
Abstract
Colony stimulating factor 1 receptor (CSF1R)‐related leukoencephalopathy is a rare, genetic disease caused by heterozygous mutations in the CSF1R gene with rapidly progressive neurodegeneration, behavioral, cognitive, motor disturbances.
Collapse
Affiliation(s)
- Igal Rosenstein
- Department of Clinical Neuroscience Institute of Neuroscience and Physiology Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
- Department of neurology Region Västra Götaland Södra Älvsborgs Hospital Borås Sweden
- Department of Neurology Region Västra Götaland Sahlgrenska University Hospital Gothenburg Sweden
| | - Oluf Andersen
- Department of Clinical Neuroscience Institute of Neuroscience and Physiology Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
- Department of Neurology Region Västra Götaland Sahlgrenska University Hospital Gothenburg Sweden
| | - Daniel Victor
- Department of Neurology Halmstad Hospital Halmstad Sweden
| | - Elisabet Englund
- Neuropathology, Department of Genetics and Pathology Laboratory Medicine Lund Sweden
| | - Tobias Granberg
- Department of Neuroradiology Karolinska University Hospital Stockholm Sweden
- Department of Clinical Neuroscience Karolinska Institute Stockholm Sweden
| | - Carola Hedberg‐Oldfors
- Department of Laboratory Medicine Institute of Biomedicine University of Gothenburg Gothenburg Sweden
| | - Katarina Jood
- Department of Clinical Neuroscience Institute of Neuroscience and Physiology Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
- Department of Neurology Region Västra Götaland Sahlgrenska University Hospital Gothenburg Sweden
| | | | | | - Virginija Danylaité Karrenbauer
- Department of Clinical Neuroscience Karolinska Institute Stockholm Sweden
- Medical Unit Neuro R52 Karolinska University Hospital Stockholm Sweden
| |
Collapse
|
38
|
Comabella M, Sastre-Garriga J, Carbonell-Mirabent P, Fissolo N, Tur C, Malhotra S, Pareto D, Aymerich FX, Río J, Rovira A, Tintoré M, Montalban X. Serum neurofilament light chain levels predict long-term disability progression in patients with progressive multiple sclerosis. J Neurol Neurosurg Psychiatry 2022; 93:jnnp-2022-329020. [PMID: 35487685 DOI: 10.1136/jnnp-2022-329020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/15/2022] [Indexed: 12/22/2022]
Abstract
ObjectiveThere is a lack of sensitive and specific biomarkers for use in progressive multiple sclerosis (MS). The study aimed to assess the potential of serum neurofilament light chain (sNfL) levels as biomarker of disability progression in patients with progressive MS. METHODS We performed a prospective observational cohort study in 51 patients with progressive MS who participated in a 2-year phase II single-centre, randomised, double-blind, placebo-controlled trial of interferon-beta. Mean (SD) follow-up duration was 13.9 (6.2) years. Levels of sNfL were measured using a single molecule array immunoassay at baseline, 1, 2 and 6 years. Univariable and multivariable analyses were carried out to evaluate associations between sNfL levels and disability progression at short term (2 years), medium term (6 years) and long term (at the time of the last follow-up). RESULTS A sNfL cut-off value of 10.2 pg/mL at baseline discriminated between long-term progressors and non-progressors with a 75% sensitivity and 67% specificity (adjusted OR 7.8; 95% CI 1.8 to 46.4; p=0.01). Similar performance to discriminate between long-term progressors and non-progressors was observed using age/body mass index-adjusted sNfL Z-scores derived from a normative database of healthy controls. A cut-off increase of 5.1 pg/mL in sNfL levels between baseline and 6 years also discriminated between long-term progressors and non-progressors with a 71% sensitivity and 86% specificity (adjusted OR 49.4; 95% CI 4.4 to 2×103; p=0.008). CONCLUSIONS sNfL can be considered a prognostic biomarker of future long-term disability progression in patients with progressive MS. These data expand the little knowledge existing on the role of sNfL as long-term prognostic biomarker in patients with progressive MS.
Collapse
Affiliation(s)
- Manuel Comabella
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jaume Sastre-Garriga
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Pere Carbonell-Mirabent
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Nicolás Fissolo
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carmen Tur
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sunny Malhotra
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Deborah Pareto
- Section of Neuroradiology, Department of Radiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francesc X Aymerich
- Section of Neuroradiology, Department of Radiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Automatic Control (ESAII), Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Jordi Río
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alex Rovira
- Section of Neuroradiology, Department of Radiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mar Tintoré
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Xavier Montalban
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
39
|
Biernacki T, Kokas Z, Sandi D, Füvesi J, Fricska-Nagy Z, Faragó P, Kincses TZ, Klivényi P, Bencsik K, Vécsei L. Emerging Biomarkers of Multiple Sclerosis in the Blood and the CSF: A Focus on Neurofilaments and Therapeutic Considerations. Int J Mol Sci 2022; 23:ijms23063383. [PMID: 35328802 PMCID: PMC8951485 DOI: 10.3390/ijms23063383] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/12/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Multiple Sclerosis (MS) is the most common immune-mediated chronic neurodegenerative disease of the central nervous system (CNS) affecting young people. This is due to the permanent disability, cognitive impairment, and the enormous detrimental impact MS can exert on a patient's health-related quality of life. It is of great importance to recognise it in time and commence adequate treatment at an early stage. The currently used disease-modifying therapies (DMT) aim to reduce disease activity and thus halt disability development, which in current clinical practice are monitored by clinical and imaging parameters but not by biomarkers found in blood and/or the cerebrospinal fluid (CSF). Both clinical and radiological measures routinely used to monitor disease activity lack information on the fundamental pathophysiological features and mechanisms of MS. Furthermore, they lag behind the disease process itself. By the time a clinical relapse becomes evident or a new lesion appears on the MRI scan, potentially irreversible damage has already occurred in the CNS. In recent years, several biomarkers that previously have been linked to other neurological and immunological diseases have received increased attention in MS. Additionally, other novel, potential biomarkers with prognostic and diagnostic properties have been detected in the CSF and blood of MS patients. AREAS COVERED In this review, we summarise the most up-to-date knowledge and research conducted on the already known and most promising new biomarker candidates found in the CSF and blood of MS patients. DISCUSSION the current diagnostic criteria of MS relies on three pillars: MRI imaging, clinical events, and the presence of oligoclonal bands in the CSF (which was reinstated into the diagnostic criteria by the most recent revision). Even though the most recent McDonald criteria made the diagnosis of MS faster than the prior iteration, it is still not an infallible diagnostic toolset, especially at the very early stage of the clinically isolated syndrome. Together with the gold standard MRI and clinical measures, ancillary blood and CSF biomarkers may not just improve diagnostic accuracy and speed but very well may become agents to monitor therapeutic efficacy and make even more personalised treatment in MS a reality in the near future. The major disadvantage of these biomarkers in the past has been the need to obtain CSF to measure them. However, the recent advances in extremely sensitive immunoassays made their measurement possible from peripheral blood even when present only in minuscule concentrations. This should mark the beginning of a new biomarker research and utilisation era in MS.
Collapse
Affiliation(s)
- Tamás Biernacki
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Zsófia Kokas
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Dániel Sandi
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Judit Füvesi
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Zsanett Fricska-Nagy
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Péter Faragó
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Tamás Zsigmond Kincses
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
- Albert Szent-Györgyi Clinical Centre, Department of Radiology, Albert Szent-Györgyi Faculty of Medicine, University of Szeged, 6725 Szeged, Hungary
| | - Péter Klivényi
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Krisztina Bencsik
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - László Vécsei
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
- MTA-SZTE Neuroscience Research Group, University of Szeged, 6725 Szeged, Hungary
- Correspondence: ; Tel.: +36-62-545-356; Fax: +36-62-545-597
| |
Collapse
|
40
|
Petrou P, Kassis I, Ginzberg A, Hallimi M, Karussis D. Effects of Mesenchymal Stem Cell Transplantation on Cerebrospinal Fluid Biomarkers in Progressive Multiple Sclerosis. Stem Cells Transl Med 2022. [PMID: 35641166 DOI: 10.1093/stcltm/szab017.pmid:35641166;pmcid:pmc8895488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Neurofilament light chains (NF-L) were shown to serve as a reliable biomarker of neurodegeneration in multiple sclerosis (MS). The chemokine receptor CXCL13 was shown to correlate with CNS inflammatory activity and to predict the future progression of MS. OBJECTIVE To evaluate the levels of NF-L and CXCL13 in the cerebrospinal fluid (CSF) following treatment with mesenchymal stem cells (MSC) in patients with progressive MS. METHODS The CSF samples were obtained from 48 patients with progressive MS who participated in a double-blind randomized phase II clinical trial that tested the effects of intrathecal (IT) or intravenous (IV) transplantation of mesenchymal stem cells (MSC), at baseline (before the first injection of the MSC) and at 6 months following treatment with MSC, or sham treatment. The CSF specimens were tested in a blinded way, using a single-molecule array (SIMOA) technique. FINDINGS The CSF levels of NF-L were significantly lower at 6 months following treatment with MSC-IT when compared with the baseline, pre-treatment measurements (P = .026, Wilcoxon paired test). Nine out of 15 tested patients in the MSC-IT group had a reduction in NF-L levels of more than 50% (median decrease: -4449 pg/mL) when compared with 5/15 in the MSC-IV group (median decrease: -151 pg/mL) and 1/15 in the placebo group (median increase: +2450 pg/mL) (P = .001 for MSC-IT vs. placebo, chi-square test). CXCL13 levels were also reduced at 6 months following MSC-IT treatment but not to a statistically significant level. CONCLUSIONS Our findings indicate possible neuroprotective effects of MSC transplantation in patients with MS. CLINICAL TRIAL REGISTRATION NCT02166021.
Collapse
Affiliation(s)
- Panayiota Petrou
- Multiple Sclerosis Center/Neuroimmunology Unit, Department of Neurology, The Agnes-Ginges Center for Neurogenetics, Hadassah University Hospital, Jerusalem, Israel
| | - Ibrahim Kassis
- Multiple Sclerosis Center/Neuroimmunology Unit, Department of Neurology, The Agnes-Ginges Center for Neurogenetics, Hadassah University Hospital, Jerusalem, Israel
| | - Ariel Ginzberg
- Multiple Sclerosis Center/Neuroimmunology Unit, Department of Neurology, The Agnes-Ginges Center for Neurogenetics, Hadassah University Hospital, Jerusalem, Israel
| | - Michelle Hallimi
- Multiple Sclerosis Center/Neuroimmunology Unit, Department of Neurology, The Agnes-Ginges Center for Neurogenetics, Hadassah University Hospital, Jerusalem, Israel
| | - Dimitrios Karussis
- Multiple Sclerosis Center/Neuroimmunology Unit, Department of Neurology, The Agnes-Ginges Center for Neurogenetics, Hadassah University Hospital, Jerusalem, Israel
| |
Collapse
|
41
|
Williams TE, Holdsworth KP, Nicholas JM, Eshaghi A, Katsanouli T, Wellington H, Heslegrave A, Zetterberg H, Frost C, Chataway J. Assessing Neurofilaments as Biomarkers of Neuroprotection in Progressive Multiple Sclerosis: From the MS-STAT Randomized Controlled Trial. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 9:9/2/e1130. [PMID: 35031587 PMCID: PMC8759719 DOI: 10.1212/nxi.0000000000001130] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/23/2021] [Indexed: 01/10/2023]
Abstract
Background and Objectives Improved biomarkers of neuroprotective treatment are needed in progressive multiple sclerosis (PMS) to facilitate more efficient phase 2 trial design. The MS-STAT randomized controlled trial supported the neuroprotective potential of high-dose simvastatin in secondary progressive MS (SPMS). Here, we analyze serum from the MS-STAT trial to assess the extent to which neurofilament light (NfL) and neurofilament heavy (NfH), both promising biomarkers of neuroaxonal injury, may act as biomarkers of simvastatin treatment in SPMS. Methods The MS-STAT trial randomized patients to 80 mg simvastatin or placebo. Serum was analyzed for NfL and NfH using Simoa technology. We used linear mixed models to investigate the treatment effects of simvastatin compared with placebo on NfL and NfH. Additional models examined the relationships between neurofilaments and MRI and clinical measures of disease severity. Results A total of 140 patients with SPMS were included. There was no evidence for a simvastatin treatment effect on NfL or NfH: compared with placebo, NfL was 1.2% lower (95% CI 10.6% lower to 9.2% higher; p = 0.820) and NfH was 0.4% lower (95% CI 18.4% lower to 21.6% higher; p = 0.969) in the simvastatin treatment group. Secondary analyses suggested that higher NfL was associated with greater subsequent whole brain atrophy, higher T2 lesion volume, and more new/enlarging T2 lesions in the previous 12 months, as well as greater physical disability. There were no significant associations between NfH and MRI or clinical variables. Discussion We found no evidence of a simvastatin treatment effect on serum neurofilaments. While confirmation of the neuroprotective benefits of simvastatin is awaited from the ongoing phase 3 study (NCT03387670), our results suggest that treatments capable of slowing the rate of whole brain atrophy in SPMS, such as simvastatin, may act via mechanisms largely independent of neuroaxonal injury, as quantified by NfL. This has important implications for the design of future phase 2 clinical trials in PMS. Trial Registration Information MS-STAT: NCT00647348. Classification of Evidence This study provides class I evidence that simvastatin treatment does not have a large impact on either serum NfL or NfH, as quantified in this study, in SPMS.
Collapse
Affiliation(s)
- Thomas E Williams
- From the Queen Square Multiple Sclerosis Centre (T.E.W., A.E., J.C.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Hospital of Neurology and Neurosurgery (T.E.W., J.C.), London; London School of Hygiene and Tropical Medicine (K.P.H., J.M.N., T.K., C.F.); and UK Dementia Research Institute at UCL (H.W., A.H., H.Z.), United Kingdom.
| | - Katherine P Holdsworth
- From the Queen Square Multiple Sclerosis Centre (T.E.W., A.E., J.C.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Hospital of Neurology and Neurosurgery (T.E.W., J.C.), London; London School of Hygiene and Tropical Medicine (K.P.H., J.M.N., T.K., C.F.); and UK Dementia Research Institute at UCL (H.W., A.H., H.Z.), United Kingdom
| | - Jennifer M Nicholas
- From the Queen Square Multiple Sclerosis Centre (T.E.W., A.E., J.C.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Hospital of Neurology and Neurosurgery (T.E.W., J.C.), London; London School of Hygiene and Tropical Medicine (K.P.H., J.M.N., T.K., C.F.); and UK Dementia Research Institute at UCL (H.W., A.H., H.Z.), United Kingdom
| | - Arman Eshaghi
- From the Queen Square Multiple Sclerosis Centre (T.E.W., A.E., J.C.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Hospital of Neurology and Neurosurgery (T.E.W., J.C.), London; London School of Hygiene and Tropical Medicine (K.P.H., J.M.N., T.K., C.F.); and UK Dementia Research Institute at UCL (H.W., A.H., H.Z.), United Kingdom
| | - Theodora Katsanouli
- From the Queen Square Multiple Sclerosis Centre (T.E.W., A.E., J.C.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Hospital of Neurology and Neurosurgery (T.E.W., J.C.), London; London School of Hygiene and Tropical Medicine (K.P.H., J.M.N., T.K., C.F.); and UK Dementia Research Institute at UCL (H.W., A.H., H.Z.), United Kingdom
| | - Henrietta Wellington
- From the Queen Square Multiple Sclerosis Centre (T.E.W., A.E., J.C.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Hospital of Neurology and Neurosurgery (T.E.W., J.C.), London; London School of Hygiene and Tropical Medicine (K.P.H., J.M.N., T.K., C.F.); and UK Dementia Research Institute at UCL (H.W., A.H., H.Z.), United Kingdom
| | - Amanda Heslegrave
- From the Queen Square Multiple Sclerosis Centre (T.E.W., A.E., J.C.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Hospital of Neurology and Neurosurgery (T.E.W., J.C.), London; London School of Hygiene and Tropical Medicine (K.P.H., J.M.N., T.K., C.F.); and UK Dementia Research Institute at UCL (H.W., A.H., H.Z.), United Kingdom
| | - Henrik Zetterberg
- From the Queen Square Multiple Sclerosis Centre (T.E.W., A.E., J.C.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Hospital of Neurology and Neurosurgery (T.E.W., J.C.), London; London School of Hygiene and Tropical Medicine (K.P.H., J.M.N., T.K., C.F.); and UK Dementia Research Institute at UCL (H.W., A.H., H.Z.), United Kingdom
| | - Chris Frost
- From the Queen Square Multiple Sclerosis Centre (T.E.W., A.E., J.C.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Hospital of Neurology and Neurosurgery (T.E.W., J.C.), London; London School of Hygiene and Tropical Medicine (K.P.H., J.M.N., T.K., C.F.); and UK Dementia Research Institute at UCL (H.W., A.H., H.Z.), United Kingdom
| | - Jeremy Chataway
- From the Queen Square Multiple Sclerosis Centre (T.E.W., A.E., J.C.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Hospital of Neurology and Neurosurgery (T.E.W., J.C.), London; London School of Hygiene and Tropical Medicine (K.P.H., J.M.N., T.K., C.F.); and UK Dementia Research Institute at UCL (H.W., A.H., H.Z.), United Kingdom
| |
Collapse
|
42
|
Petrou P, Kassis I, Ginzberg A, Hallimi M, Karussis D. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:55-58. [PMID: 35641166 PMCID: PMC8895488 DOI: 10.1093/stcltm/szab017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/14/2021] [Indexed: 11/25/2022] Open
Abstract
Background Neurofilament light chains (NF-L) were shown to serve as a reliable biomarker of neurodegeneration in multiple sclerosis (MS). The chemokine receptor CXCL13 was shown to correlate with CNS inflammatory activity and to predict the future progression of MS. Objective To evaluate the levels of NF-L and CXCL13 in the cerebrospinal fluid (CSF) following treatment with mesenchymal stem cells (MSC) in patients with progressive MS. Methods The CSF samples were obtained from 48 patients with progressive MS who participated in a double-blind randomized phase II clinical trial that tested the effects of intrathecal (IT) or intravenous (IV) transplantation of mesenchymal stem cells (MSC), at baseline (before the first injection of the MSC) and at 6 months following treatment with MSC, or sham treatment. The CSF specimens were tested in a blinded way, using a single-molecule array (SIMOA) technique. Findings The CSF levels of NF-L were significantly lower at 6 months following treatment with MSC-IT when compared with the baseline, pre-treatment measurements (P = .026, Wilcoxon paired test). Nine out of 15 tested patients in the MSC-IT group had a reduction in NF-L levels of more than 50% (median decrease: −4449 pg/mL) when compared with 5/15 in the MSC-IV group (median decrease: −151 pg/mL) and 1/15 in the placebo group (median increase: +2450 pg/mL) (P = .001 for MSC-IT vs. placebo, chi-square test). CXCL13 levels were also reduced at 6 months following MSC-IT treatment but not to a statistically significant level. Conclusions Our findings indicate possible neuroprotective effects of MSC transplantation in patients with MS. Clinical trial registration NCT02166021
Collapse
Affiliation(s)
- Panayiota Petrou
- Multiple Sclerosis Center/Neuroimmunology Unit, Department of Neurology, The Agnes-Ginges Center for Neurogenetics, Hadassah University Hospital, Jerusalem, Israel
| | - Ibrahim Kassis
- Multiple Sclerosis Center/Neuroimmunology Unit, Department of Neurology, The Agnes-Ginges Center for Neurogenetics, Hadassah University Hospital, Jerusalem, Israel
| | - Ariel Ginzberg
- Multiple Sclerosis Center/Neuroimmunology Unit, Department of Neurology, The Agnes-Ginges Center for Neurogenetics, Hadassah University Hospital, Jerusalem, Israel
| | - Michelle Hallimi
- Multiple Sclerosis Center/Neuroimmunology Unit, Department of Neurology, The Agnes-Ginges Center for Neurogenetics, Hadassah University Hospital, Jerusalem, Israel
| | - Dimitrios Karussis
- Multiple Sclerosis Center/Neuroimmunology Unit, Department of Neurology, The Agnes-Ginges Center for Neurogenetics, Hadassah University Hospital, Jerusalem, Israel
- Corresponding author: Dimitrios Karussis, MD, PhD, Unit of Neuroimmunology, Hadassah Medical Organization, Ein-Karem, Jerusalem, Israel, IL-91120. Tel: +972-2-6776639;
| |
Collapse
|
43
|
Cortese R, Giorgio A, Severa G, De Stefano N. MRI Prognostic Factors in Multiple Sclerosis, Neuromyelitis Optica Spectrum Disorder, and Myelin Oligodendrocyte Antibody Disease. Front Neurol 2021; 12:679881. [PMID: 34867701 PMCID: PMC8636325 DOI: 10.3389/fneur.2021.679881] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 10/08/2021] [Indexed: 11/25/2022] Open
Abstract
Several MRI measures have been developed in the last couple of decades, providing a number of imaging biomarkers that can capture the complexity of the pathological processes occurring in multiple sclerosis (MS) brains. Such measures have provided more specific information on the heterogeneous pathologic substrate of MS-related tissue damage, being able to detect, and quantify the evolution of structural changes both within and outside focal lesions. In clinical practise, MRI is increasingly used in the MS field to help to assess patients during follow-up, guide treatment decisions and, importantly, predict the disease course. Moreover, the process of identifying new effective therapies for MS patients has been supported by the use of serial MRI examinations in order to sensitively detect the sub-clinical effects of disease-modifying treatments at an earlier stage than is possible using measures based on clinical disease activity. However, despite this has been largely demonstrated in the relapsing forms of MS, a poor understanding of the underlying pathologic mechanisms leading to either progression or tissue repair in MS as well as the lack of sensitive outcome measures for the progressive phases of the disease and repair therapies makes the development of effective treatments a big challenge. Finally, the role of MRI biomarkers in the monitoring of disease activity and the assessment of treatment response in other inflammatory demyelinating diseases of the central nervous system, such as neuromyelitis optica spectrum disorder (NMOSD) and myelin oligodendrocyte antibody disease (MOGAD) is still marginal, and advanced MRI studies have shown conflicting results. Against this background, this review focused on recently developed MRI measures, which were sensitive to pathological changes, and that could best contribute in the future to provide prognostic information and monitor patients with MS and other inflammatory demyelinating diseases, in particular, NMOSD and MOGAD.
Collapse
Affiliation(s)
- Rosa Cortese
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Antonio Giorgio
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Gianmarco Severa
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
44
|
Williams T, Zetterberg H, Chataway J. Serum Neurofilament Light concentrations are not associated with renal function in secondary progressive multiple sclerosis. Biomark Neuropsychiatry 2021. [DOI: 10.1016/j.bionps.2021.100044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
45
|
Puentes F, Benkert P, Amor S, Kuhle J, Giovannoni G. Antibodies to neurofilament light as potential biomarkers in multiple sclerosis. BMJ Neurol Open 2021; 3:e000192. [PMID: 34786556 PMCID: PMC8587694 DOI: 10.1136/bmjno-2021-000192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/03/2021] [Indexed: 12/29/2022] Open
Abstract
Background and objective The concentration of neurofilament light (NfL) protein in cerebrospinal fluid (CSF) and blood is widely considered as a quantitative measure of neuro-axonal injury. Immune reactivity to NfL released into extracellular fluids induces specific autoantibody response. We investigated the levels and avidity of antibodies to NfL in patients with multiple sclerosis (MS) treated with disease-modifying therapies (DMTs) and their correlation with disease worsening and NfL protein concentration. Methods We conducted a prospective longitudinal study in 246 patients with MS (125 DMT-treated and 121 untreated at baseline). Serum levels of NfL antibodies, antibody avidity and immune complexes were determined by ELISA. NfL protein was measured using the Simoa platform. Clinical variables were tested for their association with the measured parameters in multivariate generalised estimating equation models. Results Multivariate analysis showed that levels of NfL antibodies were higher in progressive MS compared with clinically isolated syndrome (CIS)/relapsing remitting multiple sclerosis (RRMS) (p=0.010). Anti-NfL levels drop with increasing disability score (Expanded Disability Status Scale (EDSS)) (p=0.002), although conversely, were significantly elevated in CIS/RRMS after a recent EDSS increase (p=0.012). Patients receiving DMTs showed decreased levels of anti-NfL (p=0.008), high-avidity antibodies (p=0.017) and immune-complexes compared with untreated CIS/RRMS. Patients with MS switching to natalizumab showed lower levels of anti-NfL but higher immune complexes compared with healthy controls (p=0.0071). A weak association was observed between the levels of NfL protein and NfL antibodies. Conclusions These results support the potential usefulness of quantifying antibody response to NfL as potential markers of progression and treatment response in MS and need to be considered when interpreting peripheral blood NfL levels.
Collapse
Affiliation(s)
- Fabiola Puentes
- Neuroimmunology Unit, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Pascal Benkert
- Clinical Trial Unit, Department of Clinical Research, University Hospital Basel, Basel, Switzerland
| | - Sandra Amor
- Neuroimmunology Unit, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Pathology Department, Amsterdam UMC VUMC Site, Amsterdam, The Netherlands
| | - Jens Kuhle
- Neurology, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, Basel, Switzerland
| | - Gavin Giovannoni
- Neuroimmunology Unit, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
46
|
Barro C, Zetterberg H. The blood biomarkers puzzle - A review of protein biomarkers in neurodegenerative diseases. J Neurosci Methods 2021; 361:109281. [PMID: 34237384 DOI: 10.1016/j.jneumeth.2021.109281] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/07/2021] [Accepted: 07/04/2021] [Indexed: 02/04/2023]
Abstract
Neurodegenerative diseases are heterogeneous in their cause and clinical presentation making clinical assessment and disease monitoring challenging. Because of this, there is an urgent need for objective tools such as fluid biomarkers able to quantitate different aspects of the disease. In the last decade, technological improvements and awareness of the importance of biorepositories led to the discovery of an evolving number of fluid biomarkers covering the main characteristics of neurodegenerative diseases such as neurodegeneration, protein aggregates and inflammation. The ability to quantitate each aspect of the disease at a high definition enables a more precise stratification of the patients at inclusion in clinical trials, hence reducing the noise that may hamper the detection of therapeutical efficacy and allowing for smaller but likewise powered studies, which particularly improves the ability to start clinical trials for rare neurological diseases. Moreover, the use of fluid biomarkers has the potential to support a targeted therapeutical intervention, as it is now emerging for the treatment of amyloid-beta deposition in patients suffering from Alzheimer's disease. Here we review the knowledge that evolved from the measurement of fluid biomarker proteins in neurodegenerative conditions.
Collapse
Affiliation(s)
- Christian Barro
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA.
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK; Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| |
Collapse
|
47
|
Jafari A, Babajani A, Rezaei-Tavirani M. Multiple Sclerosis Biomarker Discoveries by Proteomics and Metabolomics Approaches. Biomark Insights 2021; 16:11772719211013352. [PMID: 34017167 PMCID: PMC8114757 DOI: 10.1177/11772719211013352] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 04/05/2021] [Indexed: 12/22/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune inflammatory disorder of the central nervous system (CNS) resulting in demyelination and axonal loss in the brain and spinal cord. The precise pathogenesis and etiology of this complex disease are still a mystery. Despite many studies that have been aimed to identify biomarkers, no protein marker has yet been approved for MS. There is urgently needed for biomarkers, which could clarify pathology, monitor disease progression, response to treatment, and prognosis in MS. Proteomics and metabolomics analysis are powerful tools to identify putative and novel candidate biomarkers. Different human compartments analysis using proteomics, metabolomics, and bioinformatics approaches has generated new information for further clarification of MS pathology, elucidating the mechanisms of the disease, finding new targets, and monitoring treatment response. Overall, omics approaches can develop different therapeutic and diagnostic aspects of complex disorders such as multiple sclerosis, from biomarker discovery to personalized medicine.
Collapse
Affiliation(s)
- Ameneh Jafari
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhesam Babajani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
48
|
Ferreira-Atuesta C, Reyes S, Giovanonni G, Gnanapavan S. The Evolution of Neurofilament Light Chain in Multiple Sclerosis. Front Neurosci 2021; 15:642384. [PMID: 33889068 PMCID: PMC8055958 DOI: 10.3389/fnins.2021.642384] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/17/2021] [Indexed: 12/18/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune, inflammatory neurodegenerative disease of the central nervous system characterized by demyelination and axonal damage. Diagnosis and prognosis are mainly assessed through clinical examination and neuroimaging. However, more sensitive biomarkers are needed to measure disease activity and guide treatment decisions in MS. Prompt and individualized management can reduce inflammatory activity and delay disease progression. Neurofilament Light chain (NfL), a neuron-specific cytoskeletal protein that is released into the extracellular fluid following axonal injury, has been identified as a biomarker of disease activity in MS. Measurement of NfL levels can capture the extent of neuroaxonal damage, especially in early stages of the disease. A growing body of evidence has shown that NfL in cerebrospinal fluid (CSF) and serum can be used as reliable indicators of prognosis and treatment response. More recently, NfL has been shown to facilitate individualized treatment decisions for individuals with MS. In this review, we discuss the characteristics that make NfL a highly informative biomarker and depict the available technologies used for its measurement. We further discuss the growing role of serum and CSF NfL in MS research and clinical settings. Finally, we address some of the current topics of debate regarding the use of NfL in clinical practice and examine the possible directions that this biomarker may take in the future.
Collapse
Affiliation(s)
- Carolina Ferreira-Atuesta
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Neurology, Hospital Universitario Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | - Saúl Reyes
- Department of Neurology, Hospital Universitario Fundación Santa Fe de Bogotá, Bogotá, Colombia.,The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Gavin Giovanonni
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Department of Neurology, The Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Sharmilee Gnanapavan
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Department of Neurology, The Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| |
Collapse
|
49
|
Uzunköprü C, Yüceyar N, Yilmaz SG, Afrashi F, Ekmekçi Ö, Taşkiran D. Retinal Nerve Fiber Layer Thickness Correlates with Serum and Cerebrospinal Fluid Neurofilament Levels and is Associated with Current Disability in Multiple Sclerosis. ACTA ACUST UNITED AC 2021; 58:34-40. [PMID: 33795950 DOI: 10.29399/npa.27355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/15/2020] [Indexed: 02/02/2023]
Abstract
Introduction The main purpose of the present study is to confirm Peripapillary Retinal Nerve Fiber Layer (pRNFL) thickness is a biomarker of axonal degeneration in patients with Multiple Sclerosis (MS) and to evaluate its relationship with Neurofilament heavy chain (NfH) and Nitrotyrosine (NT). Method We quantified serum (s) and/or cerebrospinal fluid (CSF) NfH and NT levels in 30 relapsing-remitting MS patients (RRMS), 16 secondary progressive MS (SPMS) patients and in 29 control subjects matched for age and gender. Optical coherence tomography (OCT) measurements of pRNFL were performed in all subjects. Clinical outcomes were tested by Multiple Sclerosis Functional Composite (MSFC) and Expanded Disability Status Scale (EDSS). Results RRMS patients exhibited significantly higher NfH/NT levels (99 pg/mL, 107.52 nM respectively) than controls (74 pg/mL, 48.72 nM) in CSF (p<0.0001), but not in sera. SPMS patients had significantly higher s NfH/NT values (111.25 pg/mL, 1251.77 nM respectively) and lower mean pRNFL thickness (79 µm) than patients with RRMS (98.50 µm) and controls (108 µm) (p<0.0001). pRNFL thickness was significantly correlated with all clinical disability measurements (EDSS, Trail Making test, 9-Hole Peg Test, and PASAT) in both RRMS and SPMS (p<0.001, p=0.02, p=0.03, p=0.02 respectively). A positive correlation was also found between serum and/or CSF NfH levels and EDSS scores in RRMS and SPMS (p<0.001, p=0.02 respectively). The pRNFL thickness was also correlated significantly with serum and/or CSF NfH levels but not with s/CSF NT levels in both clinical forms of MS (p<0.01, p<0.001 respectively). Conclusion The current study demonstrated that both pRNFL and s/CSF NfH are reliable and quantitative biomarkers that correlate with current disease course and cross-sectional measure of disability in patients with MS.
Collapse
Affiliation(s)
- Cihat Uzunköprü
- İzmir Katip Çelebi University, Department of Neurology, İzmir, Turkey
| | - Nur Yüceyar
- Ege University Faculty of Medicine, Department of Neurology, İzmir, Turkey
| | - Suzan Güven Yilmaz
- Ege University Faculty of Medicine, Department of Ophthalmology, İzmir, Turkey
| | - Filiz Afrashi
- Ege University Faculty of Medicine, Department of Ophthalmology, İzmir, Turkey
| | - Özgül Ekmekçi
- Ege University Faculty of Medicine, Department of Neurology, İzmir, Turkey
| | - Dilek Taşkiran
- Ege University Faculty of Medicine, Department of Physiology İzmir, Turkey
| |
Collapse
|
50
|
Sjöbom U, Hellström W, Löfqvist C, Nilsson AK, Holmström G, Pupp IH, Ley D, Blennow K, Zetterberg H, Sävman K, Hellström A. Analysis of Brain Injury Biomarker Neurofilament Light and Neurodevelopmental Outcomes and Retinopathy of Prematurity Among Preterm Infants. JAMA Netw Open 2021; 4:e214138. [PMID: 33797551 PMCID: PMC8019094 DOI: 10.1001/jamanetworkopen.2021.4138] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
IMPORTANCE Circulating levels of neurofilament light (NfL) and glial fibrillary acidic protein (GFAP) are important in the course of brain injury in adults, but longitudinal postnatal circulating levels in preterm infants have not been investigated. OBJECTIVES To examine postnatal longitudinal serum levels of NfL and GFAP in preterm infants during the first 15 weeks of life and to explore possible associations between these biomarkers, neonatal morbidities, and neurodevelopmental outcomes at 2 years. DESIGN, SETTING, AND PARTICIPANTS This cohort study used data from 3 clinical studies, including 221 infants born before 32 weeks gestational age (GA) from 1999 to 2015; neurodevelopmental outcomes were evaluated in 120 infants. Data were collected at tertiary-level neonatal intensive care units in Gothenburg, Lund, and Uppsala, Sweden. Data analysis was conducted from January to October 2020. EXPOSURE Preterm birth. MAIN OUTCOMES AND MEASURES Serum NfL and GFAP levels, retinopathy of prematurity (ROP), intraventricular hemorrhage, and Bayley Scales of Infant Development II and III at 2 years of age, analyzed by multivariate logistic regression measured by odds ratio (OR), and receiver operating characteristic curve (ROC) analysis. Area under the curve (AUC) was also measured. RESULTS The 221 included infants (108 [48.9%] girls) had a mean (SD) GA at birth of 26.5 (2.1) weeks and a mean (SD) birth weight of 896 (301) grams. NfL levels increased after birth, remaining high during the first 4 weeks of life before declining to continuously low levels by postnatal age 12 weeks (median [range] NfL level at birth: 58.8 [11.5-1371.3] ng/L; 1 wk: 83.5 [14.1-952.2] ng/L; 4 wk: 24.4 [7.0-306.0] ng/L; 12 wk: 9.1 [3.7-57.0] ng/L). In a binary logistic regression model adjusted for GA at birth, birth weight SD score, Apgar status at 5 minutes, and mode of delivery, the NfL AUC at weeks 2 to 4 was independently associated with any ROP (OR, 4.79; 95% CI, 2.17-10.56; P < .001). In an exploratory analysis adjusted for GA at birth and sex, NfL AUC at weeks 2 to 4 was independently associated with unfavorable neurodevelopmental outcomes at 2 years corrected age (OR per 10-unit NfL increase, 1.07; 95% CI, 1.02-1.13; P = .01). Longitudinal GFAP levels were not significantly associated with neonatal morbidity or neurodevelopmental outcome. CONCLUSIONS AND RELEVANCE In this study, high NfL levels during the first weeks of life were associated with ROP and poor neurodevelopmental outcomes at 2 years of age. Associations between NfL and later neurovascular development in infants born prematurely should be investigated further.
Collapse
Affiliation(s)
- Ulrika Sjöbom
- Institute of Health and Care Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Section for Ophthalmology, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - William Hellström
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Chatarina Löfqvist
- Institute of Health and Care Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Section for Ophthalmology, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders K. Nilsson
- Section for Ophthalmology, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Gerd Holmström
- Unit of Ophthalmology, Department of Neuroscience, University Hospital, Uppsala, Sweden
| | - Ingrid Hansen Pupp
- Pediatrics, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - David Ley
- Pediatrics, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, University College of London Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at University College of London, London, United Kingdom
| | - Karin Sävman
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Department of Neonatology, The Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ann Hellström
- Section for Ophthalmology, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|