1
|
Silva-Rudberg JA, Salardini E, O'Dell RS, Chen MK, Ra J, Georgelos JK, Morehouse MR, Melino KP, Varma P, Toyonaga T, Nabulsi NB, Huang Y, Carson RE, van Dyck CH, Mecca AP. Assessment of Gray Matter Microstructure and Synaptic Density in Alzheimer's Disease: A Multimodal Imaging Study With DTI and SV2A PET. Am J Geriatr Psychiatry 2024; 32:17-28. [PMID: 37673749 PMCID: PMC10840732 DOI: 10.1016/j.jagp.2023.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/19/2023] [Accepted: 08/05/2023] [Indexed: 09/08/2023]
Abstract
OBJECTIVE Multimodal imaging techniques have furthered our understanding of how different aspects of Alzheimer's disease (AD) pathology relate to one another. Diffusion tensor imaging (DTI) measures such as mean diffusivity (MD) may be a surrogate measure of the changes in gray matter structure associated with AD. Positron emission tomography (PET) imaging of synaptic vesicle glycoprotein 2A (SV2A) has been used to quantify synaptic loss, which is the major pathological correlate of cognitive impairment in AD. In this study, we investigated the relationship between gray matter microstructure and synaptic density. METHODS DTI was used to measure MD and [11C]UCB-J PET to measure synaptic density in 33 amyloid-positive participants with AD and 17 amyloid-negative cognitively normal (CN) participants aged 50-83. Univariate regression analyses were used to assess the association between synaptic density and MD in both the AD and CN groups. RESULTS Hippocampal MD was inversely associated with hippocampal synaptic density in participants with AD (r = -0.55, p <0.001, df = 31) but not CN (r = 0.13, p = 0.62, df = 15). Exploratory analyses across other regions known to be affected in AD suggested widespread inverse associations between synaptic density and MD in the AD group. CONCLUSION In the setting of AD, an increase in gray matter MD is inversely associated with synaptic density. These co-occurring changes may suggest a link between synaptic loss and gray matter microstructural changes in AD. Imaging studies of gray matter microstructure and synaptic density may allow important insights into AD-related neuropathology.
Collapse
Affiliation(s)
- Jason A Silva-Rudberg
- Alzheimer's Disease Research Unit (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT; Department of Psychiatry (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT.
| | - Elaheh Salardini
- Alzheimer's Disease Research Unit (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT; Department of Psychiatry (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT
| | - Ryan S O'Dell
- Alzheimer's Disease Research Unit (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT; Department of Psychiatry (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT
| | - Ming-Kai Chen
- Department of Radiology and Biomedical Imaging (M-KC, PV, TT, NBN, YH, REC), Yale University School of Medicine, New Haven, CT
| | - Jocelyn Ra
- Alzheimer's Disease Research Unit (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT; Department of Psychiatry (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT
| | - Jamie K Georgelos
- Alzheimer's Disease Research Unit (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT; Department of Psychiatry (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT
| | - Mackenzie R Morehouse
- Alzheimer's Disease Research Unit (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT; Department of Psychiatry (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT
| | - Kaitlyn P Melino
- Alzheimer's Disease Research Unit (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT; Department of Psychiatry (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT
| | - Pradeep Varma
- Department of Radiology and Biomedical Imaging (M-KC, PV, TT, NBN, YH, REC), Yale University School of Medicine, New Haven, CT
| | - Takuya Toyonaga
- Department of Radiology and Biomedical Imaging (M-KC, PV, TT, NBN, YH, REC), Yale University School of Medicine, New Haven, CT
| | - Nabeel B Nabulsi
- Department of Radiology and Biomedical Imaging (M-KC, PV, TT, NBN, YH, REC), Yale University School of Medicine, New Haven, CT
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging (M-KC, PV, TT, NBN, YH, REC), Yale University School of Medicine, New Haven, CT
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging (M-KC, PV, TT, NBN, YH, REC), Yale University School of Medicine, New Haven, CT
| | - Christopher H van Dyck
- Alzheimer's Disease Research Unit (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT; Department of Psychiatry (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT; Department of Neuroscience (CHvD), Yale University School of Medicine, New Haven, CT; Department of Neurology (CHvD), Yale University School of Medicine, New Haven, CT
| | - Adam P Mecca
- Alzheimer's Disease Research Unit (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT; Department of Psychiatry (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT.
| |
Collapse
|
2
|
Torso M, Ridgway GR, Valotti M, Hardingham I, Chance SA. In vivo cortical diffusion imaging relates to Alzheimer's disease neuropathology. Alzheimers Res Ther 2023; 15:165. [PMID: 37794477 PMCID: PMC10548768 DOI: 10.1186/s13195-023-01309-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/17/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND There has been increasing interest in cortical microstructure as a complementary and earlier measure of neurodegeneration than macrostructural atrophy, but few papers have related cortical diffusion imaging to post-mortem neuropathology. This study aimed to characterise the associations between the main Alzheimer's disease (AD) neuropathological hallmarks and multiple cortical microstructural measures from in vivo diffusion MRI. Comorbidities and co-pathologies were also investigated. METHODS Forty-three autopsy cases (8 cognitively normal, 9 mild cognitive impairment, 26 AD) from the National Alzheimer's Coordinating Center and Alzheimer's Disease Neuroimaging Initiative databases were included. Structural and diffusion MRI scans were analysed to calculate cortical minicolumn-related measures (AngleR, PerpPD+, and ParlPD) and mean diffusivity (MD). Neuropathological hallmarks comprised Thal phase, Braak stage, neuritic plaques, and combined AD neuropathological changes (ADNC-the "ABC score" from NIA-AA recommendations). Regarding comorbidities, relationships between cortical microstructure and severity of white matter rarefaction (WMr), cerebral amyloid angiopathy (CAA), atherosclerosis of the circle of Willis (ACW), and locus coeruleus hypopigmentation (LCh) were investigated. Finally, the effect of coexistent pathologies-Lewy body disease and TAR DNA-binding protein 43 (TDP-43)-on cortical microstructure was assessed. RESULTS Cortical diffusivity measures were significantly associated with Thal phase, Braak stage, ADNC, and LCh. Thal phase was associated with AngleR in temporal areas, while Braak stage was associated with PerpPD+ in a wide cortical pattern, involving mainly temporal and limbic areas. A similar association was found between ADNC (ABC score) and PerpPD+. LCh was associated with PerpPD+, ParlPD, and MD. Co-existent neuropathologies of Lewy body disease and TDP-43 exhibited significantly reduced AngleR and MD compared to ADNC cases without co-pathology. CONCLUSIONS Cortical microstructural diffusion MRI is sensitive to AD neuropathology. The associations with the LCh suggest that cortical diffusion measures may indirectly reflect the severity of locus coeruleus neuron loss, perhaps mediated by the severity of microglial activation and tau spreading across the brain. Recognizing the impact of co-pathologies is important for diagnostic and therapeutic decision-making. Microstructural markers of neurodegeneration, sensitive to the range of histopathological features of amyloid, tau, and monoamine pathology, offer a more complete picture of cortical changes across AD than conventional structural atrophy.
Collapse
|
3
|
Chouliaras L, O'Brien JT. The use of neuroimaging techniques in the early and differential diagnosis of dementia. Mol Psychiatry 2023; 28:4084-4097. [PMID: 37608222 PMCID: PMC10827668 DOI: 10.1038/s41380-023-02215-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/24/2023]
Abstract
Dementia is a leading cause of disability and death worldwide. At present there is no disease modifying treatment for any of the most common types of dementia such as Alzheimer's disease (AD), Vascular dementia, Lewy Body Dementia (LBD) and Frontotemporal dementia (FTD). Early and accurate diagnosis of dementia subtype is critical to improving clinical care and developing better treatments. Structural and molecular imaging has contributed to a better understanding of the pathophysiology of neurodegenerative dementias and is increasingly being adopted into clinical practice for early and accurate diagnosis. In this review we summarise the contribution imaging has made with particular focus on multimodal magnetic resonance imaging (MRI) and positron emission tomography imaging (PET). Structural MRI is widely used in clinical practice and can help exclude reversible causes of memory problems but has relatively low sensitivity for the early and differential diagnosis of dementia subtypes. 18F-fluorodeoxyglucose PET has high sensitivity and specificity for AD and FTD, while PET with ligands for amyloid and tau can improve the differential diagnosis of AD and non-AD dementias, including recognition at prodromal stages. Dopaminergic imaging can assist with the diagnosis of LBD. The lack of a validated tracer for α-synuclein or TAR DNA-binding protein 43 (TDP-43) imaging remain notable gaps, though work is ongoing. Emerging PET tracers such as 11C-UCB-J for synaptic imaging may be sensitive early markers but overall larger longitudinal multi-centre cross diagnostic imaging studies are needed.
Collapse
Affiliation(s)
- Leonidas Chouliaras
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Specialist Dementia and Frailty Service, Essex Partnership University NHS Foundation Trust, St Margaret's Hospital, Epping, UK
| | - John T O'Brien
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, UK.
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| |
Collapse
|
4
|
Regulatory role of melatonin in Notch1 signaling pathway in cerebral cortex of Aβ 1-42-induced Alzheimer's disease rat model. Mol Biol Rep 2023; 50:2463-2469. [PMID: 36602704 DOI: 10.1007/s11033-022-08213-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Soluble Amyloid-beta (Aβ) oligomers are thought to play a key role in the pathogenesis of Alzheimer's disease (AD), which is the most common age-associated neurodegenerative diseases with obvious neuropathological changes and functional decline in both cortical and subcortical regions. Melatonin is ubiquitously distributed and multifunctioning indoleamine. Accumulating studies support that melatonin is potential therapeutic molecule for AD through modulating a broad variety of signaling pathways. In recent years, Notch1 signaling pathway is been known involved in dynamic changes in the cellular architecture and function of adult brain, as well as associated with the pathophysiology of AD and other neurodegenerative disorders. METHODS AND RESULTS In this study, we performed real-time polymerase chain reaction, immunohistochemistry and western blotting analyses using the cerebral cortical tissues of Aβ1-42 oligomers-induced AD rats with or without melatonin treatment. Our results showed that soluble Aβ1-42 oligomers decreased the expression of the main components of Notch1 signaling pathway, Notch1, NICD and Hes1 in the cerebral cortex, and melatonin could restore the level of Notch1, NICD and Hes1. CONCLUSION This observation suggests that targeting of Notch1 signaling might be a promising therapeutic approach for AD and other age-associated neurodegenerative diseases, and melatonin might serve as a potential therapeutic agent for AD and other age-associated neurodegenerative diseases.
Collapse
|
5
|
Sharma HS, Muresanu DF, Nozari A, Lafuente JV, Buzoianu AD, Tian ZR, Huang H, Feng L, Bryukhovetskiy I, Manzhulo I, Wiklund L, Sharma A. Neuroprotective Effects of Nanowired Delivery of Cerebrolysin with Mesenchymal Stem Cells and Monoclonal Antibodies to Neuronal Nitric Oxide Synthase in Brain Pathology Following Alzheimer's Disease Exacerbated by Concussive Head Injury. ADVANCES IN NEUROBIOLOGY 2023; 32:139-192. [PMID: 37480461 DOI: 10.1007/978-3-031-32997-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Concussive head injury (CHI) is one of the major risk factors in developing Alzheimer's disease (AD) in military personnel at later stages of life. Breakdown of the blood-brain barrier (BBB) in CHI leads to extravasation of plasma amyloid beta protein (ΑβP) into the brain fluid compartments precipitating AD brain pathology. Oxidative stress in CHI or AD is likely to enhance production of nitric oxide indicating a role of its synthesizing enzyme neuronal nitric oxide synthase (NOS) in brain pathology. Thus, exploration of the novel roles of nanomedicine in AD or CHI reducing NOS upregulation for neuroprotection are emerging. Recent research shows that stem cells and neurotrophic factors play key roles in CHI-induced aggravation of AD brain pathologies. Previous studies in our laboratory demonstrated that CHI exacerbates AD brain pathology in model experiments. Accordingly, it is quite likely that nanodelivery of NOS antibodies together with cerebrolysin and mesenchymal stem cells (MSCs) will induce superior neuroprotection in AD associated with CHI. In this review, co-administration of TiO2 nanowired cerebrolysin - a balanced composition of several neurotrophic factors and active peptide fragments, together with MSCs and monoclonal antibodies (mAb) to neuronal NOS is investigated for superior neuroprotection following exacerbation of brain pathology in AD exacerbated by CHI based on our own investigations. Our observations show that nanowired delivery of cerebrolysin, MSCs and neuronal NOS in combination induces superior neuroprotective in brain pathology in AD exacerbated by CHI, not reported earlier.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Ala Nozari
- Anesthesiology & Intensive Care, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Hongyun Huang
- Beijing Hongtianji Neuroscience Academy, Beijing, China
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Shijiazhuang, Hebei Province, China
| | - Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Igor Manzhulo
- Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Nabizadeh F, Kankam SB, Balabandian M, Hashemi SM, Sharifkazemi H, Rostami MR. Metformin use and brain atrophy in nondemented elderly individuals with diabetes. Exp Gerontol 2022; 166:111890. [PMID: 35843348 DOI: 10.1016/j.exger.2022.111890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVE There is a shred of growing evidence demonstrating that diabetic patients are at higher risk of developing Alzheimer's disease compared to the general population. The previous investigation showed the protective effect of metformin for delaying dementia in diabetic patients. However, there are limited data on the effect of metformin on structural changes. This study aims to investigate the effect of metformin on hippocampal and cortical volumes in non-demented diabetic individuals. METHOD We entered 157 non-demented diabetic subjects including 89 mild cognitive impairment (MCI), and 68 cognitively healthy individuals from Alzheimer's disease Neuroimaging Initiative (ADNI) which were then categorized as metformin users and non-users. We used the ANCOVA model for measuring the association between metformin use and hippocampal and cortical volumes. RESULTS Among 157 subjects with a mean age of 71.8 (±7.7) included in this study, 76 individuals were stratified as metformin users. Results of the univariate model indicate that metformin users had a higher right (p = 0.003) and left parietal lobe volume (p = 0.004). Moreover, the volume of left cingulate was higher in those who used metformin compared to those not used it (p = 0.027). Our results were also significant for the right frontal lobe and indicated that metformin users had higher volume (p = 0.035). There were no significant differences in the hippocampus, occipital, and temporal regions. CONCLUSION Our findings showed the protective effects of metformin on brain volumes in non-demented elderly individuals with diabetes. Comparing the groups show strong enough results regarding the lower atrophy in metformin users.
Collapse
Affiliation(s)
- Fardin Nabizadeh
- Neuroscience Research Group (NRG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | | | - Mohammad Balabandian
- Neuroscience Research Group (NRG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | | | - Mohammad Reza Rostami
- Neuroscience Research Group (NRG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
7
|
Veale T, Malone IB, Poole T, Parker TD, Slattery CF, Paterson RW, Foulkes AJM, Thomas DL, Schott JM, Zhang H, Fox NC, Cash DM. Loss and dispersion of superficial white matter in Alzheimer's disease: a diffusion MRI study. Brain Commun 2021; 3:fcab272. [PMID: 34859218 PMCID: PMC8633427 DOI: 10.1093/braincomms/fcab272] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/24/2021] [Accepted: 10/18/2021] [Indexed: 11/22/2022] Open
Abstract
Pathological cerebral white matter changes in Alzheimer's disease have been shown using diffusion tensor imaging. Superficial white matter changes are relatively understudied despite their importance in cortico-cortical connections. Measuring superficial white matter degeneration using diffusion tensor imaging is challenging due to its complex organizational structure and proximity to the cortex. To overcome this, we investigated diffusion MRI changes in young-onset Alzheimer's disease using standard diffusion tensor imaging and Neurite Orientation Dispersion and Density Imaging to distinguish between disease-related changes that are degenerative (e.g. loss of myelinated fibres) and organizational (e.g. increased fibre dispersion). Twenty-nine young-onset Alzheimer's disease patients and 22 healthy controls had both single-shell and multi-shell diffusion MRI. We calculated fractional anisotropy, mean diffusivity, neurite density index, orientation dispersion index and tissue fraction (1-free water fraction). Diffusion metrics were sampled in 15 a priori regions of interest at four points along the cortical profile: cortical grey matter, grey/white boundary, superficial white matter (1 mm below grey/white boundary) and superficial/deeper white matter (2 mm below grey/white boundary). To estimate cross-sectional group differences, we used average marginal effects from linear mixed effect models of participants' diffusion metrics along the cortical profile. The superficial white matter of young-onset Alzheimer's disease individuals had lower neurite density index compared to controls in five regions (superior and inferior parietal, precuneus, entorhinal and parahippocampus) (all P < 0.05), and higher orientation dispersion index in three regions (fusiform, entorhinal and parahippocampus) (all P < 0.05). Young-onset Alzheimer's disease individuals had lower fractional anisotropy in the entorhinal and parahippocampus regions (both P < 0.05) and higher fractional anisotropy within the postcentral region (P < 0.05). Mean diffusivity was higher in the young-onset Alzheimer's disease group in the parahippocampal region (P < 0.05) and lower in the postcentral, precentral and superior temporal regions (all P < 0.05). In the overlying grey matter, disease-related changes were largely consistent with superficial white matter findings when using neurite density index and fractional anisotropy, but appeared at odds with orientation dispersion and mean diffusivity. Tissue fraction was significantly lower across all grey matter regions in young-onset Alzheimer's disease individuals (all P < 0.001) but group differences reduced in magnitude and coverage when moving towards the superficial white matter. These results show that microstructural changes occur within superficial white matter and along the cortical profile in individuals with young-onset Alzheimer's disease. Lower neurite density and higher orientation dispersion suggests underlying fibres undergo neurodegeneration and organizational changes, two effects previously indiscernible using standard diffusion tensor metrics in superficial white matter.
Collapse
Affiliation(s)
- Thomas Veale
- The Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, University College London, London, UK
| | - Ian B Malone
- The Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Teresa Poole
- Department of Medical Statistics, London School of Hygiene & Tropical Medicine, London, UK
| | - Thomas D Parker
- The Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Catherine F Slattery
- The Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Ross W Paterson
- The Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, University College London, London, UK
| | - Alexander J M Foulkes
- The Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - David L Thomas
- The Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London, UK
| | - Jonathan M Schott
- The Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Hui Zhang
- Department of Computer Science and Centre for Medical Image Computing, UCL, London, UK
| | - Nick C Fox
- The Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, University College London, London, UK
| | - David M Cash
- The Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, University College London, London, UK
| |
Collapse
|
8
|
Torso M, Ridgway GR, Jenkinson M, Chance S. Intracortical diffusion tensor imaging signature of microstructural changes in frontotemporal lobar degeneration. Alzheimers Res Ther 2021; 13:180. [PMID: 34686217 PMCID: PMC8539736 DOI: 10.1186/s13195-021-00914-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 10/05/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Frontotemporal lobar degeneration (FTLD) is a neuropathological construct with multiple clinical presentations, including the behavioural variant of frontotemporal dementia (bvFTD), primary progressive aphasia-both non-fluent variant (nfvPPA) and semantic variant (svPPA)-progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS), characterised by the deposition of abnormal tau protein in the brain. A major challenge for treating FTLD is early diagnosis and accurate discrimination among different syndromes. The main goal here was to investigate the cortical architecture of FTLD syndromes using cortical diffusion tensor imaging (DTI) analysis and to test its power to discriminate between different clinical presentations. METHODS A total of 271 individuals were included in the study: 87 healthy subjects (HS), 31 semantic variant primary progressive aphasia (svPPA), 37 behavioural variant (bvFTD), 30 non-fluent/agrammatic variant primary progressive aphasia (nfvPPA), 47 PSP Richardson's syndrome (PSP-RS) and 39 CBS cases. 3T MRI T1-weighted images and DTI scans were analysed to extract three cortical DTI derived measures (AngleR, PerpPD and ParlPD) and mean diffusivity (MD), as well as standard volumetric measurements. Whole brain and regional data were extracted. Linear discriminant analysis was used to assess the group discrimination capability of volumetric and DTI measures to differentiate the FTLD syndromes. In addition, in order to further investigate differential diagnosis in CBS and PSP-RS, a subgroup of subjects with autopsy confirmation in the training cohort was used to select features which were then tested in the test cohort. Three different challenges were explored: a binary classification (controls vs all patients), a multiclass classification (HS vs bvFTD vs svPPA vs nfvPPA vs CBS vs PSP-RS) and an additional binary classification to differentiate CBS and PSP-RS using features selected in an autopsy confirmed subcohort. RESULTS Linear discriminant analysis revealed that PerpPD was the best feature to distinguish between controls and all patients (ACC 86%). PerpPD regional values were able to classify correctly the different FTLD syndromes with an accuracy of 85.6%. The PerpPD and volumetric values selected to differentiate CBS and PSP-RS patients showed a classification accuracy of 85.2%. CONCLUSIONS (I) PerpPD achieved the highest classification power for differentiating healthy controls and FTLD syndromes and FTLD syndromes among themselves. (II) PerpPD regional values could provide an additional marker to differentiate FTD, PSP-RS and CBS.
Collapse
Affiliation(s)
- Mario Torso
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK.
- Oxford Brain Diagnostics Limited, Oxford, UK.
| | | | - Mark Jenkinson
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Steven Chance
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
- Oxford Brain Diagnostics Limited, Oxford, UK
| |
Collapse
|