1
|
Rácz A, Galvis-Montes DS, Borger V, Becker AJ, Pitsch J. Focused review: Clinico-neuropathological aspects of late onset epilepsies: Pathogenesis. Seizure 2025; 128:48-53. [PMID: 38918105 DOI: 10.1016/j.seizure.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/21/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024] Open
Abstract
The aim of the present study was to review the current knowledge on the neuropathological spectrum of late onset epilepsies. Several terms including 'neuropathology*' AND 'late onset epilepsy' (LOE) combined with distinct neuropathological diagnostic terms were used to search PubMed until November 15, 2023. We report on the relevance of definitional aspects of LOE with implications for the diagnostic spectrum of epilepsies. The neuropathological spectrum in patients with LOE is described and includes vascular lesions, low-grade neuroepithelial neoplasms and focal cortical dysplasias (FCD). Among the latter, the frequency of the FCD subtypes appears to differ between LOE patients and those with seizure onset at a younger age. Neurodegenerative neuropathological changes in the seizure foci of LOE patients require careful interdisciplinary interpretation with respect to the differential diagnosis of primary neurodegenerative changes or epilepsy-related changes. Innate and adaptive neuroinflammation represents an important cause of LOE with intriguing therapeutic options.
Collapse
Affiliation(s)
- Attila Rácz
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | | | - Valeri Borger
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Albert J Becker
- Section for Translational Epilepsy Research, Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Julika Pitsch
- Department of Epileptology, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
2
|
Räuber S, Schulte-Mecklenbeck A, Sarink K, Müller C, Mannil M, Langenbruch L, Dik A, Barman S, Strippel C, Gallus M, Golombeck KS, Schroeter CB, Willison A, Nelke C, Ismail FS, Schwindt W, Goebels N, Kovac S, Wiendl H, Meyer zu Hörste G, Duning T, Hanke M, Ruck T, Heindel W, Dannlowski U, Hahn T, Gross CC, Meuth SG, Melzer N. Lymphocyte signatures correspond to clinical phenotypes in autoimmune limbic encephalitis. Brain Commun 2025; 7:fcaf156. [PMID: 40303600 PMCID: PMC12038345 DOI: 10.1093/braincomms/fcaf156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 03/12/2025] [Accepted: 04/17/2025] [Indexed: 05/02/2025] Open
Abstract
Autoimmune limbic encephalitis is an inflammatory condition confined to the limbic system of the brain that is deemed to be due to a dysregulated immune response. However, the exact pathophysiological mechanisms remain elusive. Diagnosis of autoimmune limbic encephalitis currently relies on clinical consensus criteria. However, diagnostic workup can be challenging, potentially delaying treatment initiation associated with poor clinical outcomes. We retrospectively identified 640 patients (81 autoimmune limbic encephalitis, 148 relapsing-remitting multiple sclerosis, 197 Alzheimer's disease, 67 frontotemporal dementia, 37 temporal lobe epilepsy with hippocampal sclerosis and 110 somatic symptom disorder patients). Applying multidimensional flow-cytometry together with novel computational approaches, we analysed the peripheral blood and cerebrospinal fluid immune cell profiles at different disease stages and performed correlations with clinical parameters (i.e. neuropsychological performance, EEG and MRI). We were able to identify a shared immune signature of autoimmune limbic encephalitis showing similarities in adaptive B and T cell response with other inflammatory central nervous system diseases and in T cell patterns with neurodegenerative disorders. Antibody-negative autoimmune limbic encephalitis showed a pronounced T cell response in peripheral blood similar to temporal lobe epilepsy and hippocampal sclerosis and neurodegenerative disorders differentiating from antibody-positive autoimmune limbic encephalitis and classical inflammatory central nervous system diseases with regard to B and plasma cell response. Longitudinal immune cell phenotyping in autoimmune limbic encephalitis revealed dynamic changes over time mainly affecting the innate, B and plasma cell compartment. Correlation analysis indicated associations between the baseline immune cell profile, especially lymphocytes, and neuropsychological performance, as well as EEG and MRI abnormalities. Applying novel computational approaches, we found that multidimensional flow cytometry together with routine CSF parameters could reliably distinguish autoimmune limbic encephalitis from controls and clinical differential diagnoses. Incorporation of multidimensional flow cytometry parameters showed superior discriminatory ability compared with CSF routine parameters alone. Taken together, autoimmune limbic encephalitis is characterized by a B and T cell dominated intrathecal immune-cell signature corresponding to changes reported in the brain parenchyma and showing similarities with classical inflammatory central nervous system diseases and neurodegenerative disorders. Incorporating clinical parameters and applying novel computational approaches, we could show that multidimensional flow cytometry might be a beneficial complement to the established diagnostic workup of autoimmune limbic encephalitis promoting early diagnosis and facilitating outcome prediction to enhance individualized treatment regimes.
Collapse
Affiliation(s)
- Saskia Räuber
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster 48149, Germany
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University of Düsseldorf, Düsseldorf 40225, Germany
| | - Andreas Schulte-Mecklenbeck
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster 48149, Germany
| | - Kelvin Sarink
- Institute for Translational Psychiatry, University of Münster, Münster 48149, Germany
| | - Christoph Müller
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster 48149, Germany
| | - Manoj Mannil
- Department of Clinical Radiology, University of Münster, Münster 48149, Germany
| | - Lisa Langenbruch
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster 48149, Germany
| | - Andre Dik
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster 48149, Germany
| | - Sumanta Barman
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University of Düsseldorf, Düsseldorf 40225, Germany
| | - Christine Strippel
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster 48149, Germany
| | - Marco Gallus
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster 48149, Germany
| | - Kristin S Golombeck
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster 48149, Germany
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University of Düsseldorf, Düsseldorf 40225, Germany
| | - Christina B Schroeter
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster 48149, Germany
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University of Düsseldorf, Düsseldorf 40225, Germany
| | - Alice Willison
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University of Düsseldorf, Düsseldorf 40225, Germany
| | - Christopher Nelke
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster 48149, Germany
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University of Düsseldorf, Düsseldorf 40225, Germany
| | - Fatme Seval Ismail
- Department of Neurology, Klinikum Vest, Academic Teaching Hospital of the Ruhr University Bochum, Recklinghausen 45657, Germany
| | - Wolfram Schwindt
- Department of Clinical Radiology, University of Münster, Münster 48149, Germany
| | - Norbert Goebels
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University of Düsseldorf, Düsseldorf 40225, Germany
| | - Stjepana Kovac
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster 48149, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster 48149, Germany
| | - Gerd Meyer zu Hörste
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster 48149, Germany
| | - Thomas Duning
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster 48149, Germany
| | - Michael Hanke
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich 52425, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University of Düsseldorf, Düsseldorf 40225, Germany
| | - Tobias Ruck
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster 48149, Germany
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University of Düsseldorf, Düsseldorf 40225, Germany
| | - Walter Heindel
- Department of Clinical Radiology, University of Münster, Münster 48149, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster 48149, Germany
| | - Tim Hahn
- Institute for Translational Psychiatry, University of Münster, Münster 48149, Germany
| | - Catharina C Gross
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster 48149, Germany
| | - Sven G Meuth
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster 48149, Germany
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University of Düsseldorf, Düsseldorf 40225, Germany
| | - Nico Melzer
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster 48149, Germany
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University of Düsseldorf, Düsseldorf 40225, Germany
| |
Collapse
|
3
|
Hong Y, Wang Y, Shu W. Immunocyte phenotypes and childhood disease susceptibility: insights from bidirectional Mendelian randomization and implications for immunomodulatory therapies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04091-1. [PMID: 40178601 DOI: 10.1007/s00210-025-04091-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 03/21/2025] [Indexed: 04/05/2025]
Abstract
Immune cells are essential for maintaining immune homeostasis during childhood and influence both growth and disease susceptibility. However, the causal relationships between immunocyte phenotypes and childhood diseases remain unclear. This study employed a two-sample Mendelian Randomization (MR) analysis to assess causal associations between 731 immunocyte phenotypes and four major childhood diseases: childhood obesity, childhood absence epilepsy, childhood asthma, and childhood allergies. Genome-wide association study (GWAS) data were used, and stringent instrumental variable (IV) selection and multiple sensitivity analyses, including MR-Egger, weighted median, and leave-one-out tests, were applied to validate the robustness of the results. Significant associations were identified between specific T cell, monocyte, and B cell phenotypes and childhood diseases. Notably, CD8bright T cells and CD19 + B cells were positively correlated with childhood obesity, while monocyte subtypes were strongly associated with asthma pathophysiology. Reverse MR analysis indicated no significant causal effects of childhood diseases on immune phenotypes, except for negative associations between childhood asthma and TCRgd AC, and childhood allergy and CD28 + CD45RA + CD4 + cells. These findings highlight the critical role of immune dysregulation in childhood disease etiology and suggest potential targets for immunomodulatory therapies. Understanding these immune-disease interactions may inform novel pharmacological interventions, particularly in immune-mediated disorders such as asthma and obesity. Further research into immune-targeted therapies could enhance treatment strategies for pediatric conditions associated with chronic inflammation and immune dysfunction.
Collapse
Affiliation(s)
- Yanggang Hong
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China.
| | - Yi Wang
- The First School of Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
| | - Wanyi Shu
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
| |
Collapse
|
4
|
Zhang C, Zhou T, Qiao S, Lu L, Zhu M, Wang A, Zhang S. Taurine Attenuates Neuronal Ferroptosis by CSF-Derived Exosomes of GABABR Encephalitis Through GABABR/NF2/P-YAP Pathway. Mol Neurobiol 2025:10.1007/s12035-025-04819-3. [PMID: 40085353 DOI: 10.1007/s12035-025-04819-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
GABAB receptor (GABABR) encephalitis represents a rare subtype of paraneoplastic limbic encephalitis (LE), characterized by persistent seizures and cognitive impairments. Nevertheless, the precise phenotype and underlying mechanisms of neuronal dysfunction associated with intrathecal lymphocytes in GABABR encephalitis remain inadequately understood. In the present study, we demonstrate that exosomes derived from the cerebrospinal fluid (CSF) of patients with GABABR encephalitis can induce neuronal ferroptosis, oxidative stress, iron accumulation, and lipid hyperoxidation in an in vitro model of anti-GABABR encephalitis. MicroRNA (miRNA) sequencing revealed that miR-92a-3p is a differentially expressed miRNA in CSF exosomes, and its expression was positively correlated with unfavorable clinical outcomes in GABABR encephalitis patients during a 6-month follow-up period. The NF2/P-YAP signaling pathway was identified as a downstream effector of miR-92a-3p, influencing the expression of ACSL4/GPX4 and IL-6, with the expression of these genes being enhanced following taurine supplementation. Clinically, taurine levels in CSF exhibited a negative correlation with IL-6 levels, CSF cell counts, blood-CSF barrier integrity, and clinical prognosis in GABABR encephalitis. Mechanistically, taurine effectively reduced reactive oxygen species (ROS) and iron accumulation, as well as IL-6 production, while modulating the levels of NF2, P-YAP, ACSL4, and GPX4 in neurons treated with CSF-derived exosomes from GABABR encephalitis through GABABR activation. Proliferation assays indicated that extracellular taurine intake activated CD4 + T cells, CD8 + T cells, and CD19 + B cells in the CSF of patients with GABABR encephalitis. In summary, our findings reveal for the first time that intrathecal lymphocytes in GABABR encephalitis maintain an activated state by absorbing extracellular taurine and that decreased taurine levels in CSF promote neuronal ferroptosis via the miR-92a-3p-mediated NF2/P-YAP/ACSL4 pathway.
Collapse
Affiliation(s)
- Chong Zhang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Shandong Institute of Neuroimmunology, Jinan, China
- Shandong First Medical University, Jinan, China
| | - Tianyu Zhou
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Shandong Institute of Neuroimmunology, Jinan, China
- Shandong First Medical University, Jinan, China
| | - Shan Qiao
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Shandong Institute of Neuroimmunology, Jinan, China
| | - Lu Lu
- Department of Neurology, Linyi People's Hospital, Linyi, China
| | - Meirong Zhu
- Department of Critical Care Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Aihua Wang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Shandong Institute of Neuroimmunology, Jinan, China
| | - Shanchao Zhang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Shandong Institute of Neuroimmunology, Jinan, China.
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
5
|
Räuber S, Schulte-Mecklenbeck A, Willison A, Hagler R, Jonas M, Pul D, Masanneck L, Schroeter CB, Golombeck KS, Lichtenberg S, Strippel C, Gallus M, Dik A, Kerkhoff R, Barman S, Weber KJ, Kovac S, Korsen M, Pawlitzki M, Goebels N, Ruck T, Gross CC, Paulus W, Reifenberger G, Hanke M, Grauer O, Rapp M, Sabel M, Wiendl H, Meuth SG, Melzer N. Flow cytometry identifies changes in peripheral and intrathecal lymphocyte patterns in CNS autoimmune disorders and primary CNS malignancies. J Neuroinflammation 2024; 21:286. [PMID: 39497174 PMCID: PMC11536547 DOI: 10.1186/s12974-024-03269-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 10/20/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Immune dysregulation is a hallmark of autoimmune diseases of the central nervous system (CNS), characterized by an excessive immune response, and primary CNS tumors (pCNS-tumors) showing a highly immunosuppressive parenchymal microenvironment. METHODS Aiming to provide novel insights into the pathogenesis of CNS autoimmunity and cerebral tumor immunity, we analyzed the peripheral blood (PB) and cerebrospinal fluid (CSF) of 81 autoimmune limbic encephalitis (ALE), 148 relapsing-remitting multiple sclerosis (RRMS), 33 IDH-wildtype glioma, 9 primary diffuse large B cell lymphoma of the CNS (CNS-DLBCL), and 110 controls by flow cytometry (FC). Additionally, an in-depth immunophenotyping of the PB from an independent cohort of 20 RRMS and 18 IDH-wildtype glioblastoma patients compared to 19 controls was performed by FC combined with unsupervised computational approaches. RESULTS We identified alterations in peripheral and intrathecal adaptive immunity, mainly affecting the T cell (Tc) but also the B cell (Bc) compartment in ALE, RRMS, and pCNS-tumors compared to controls. ALE, RRMS, and pCNS-tumors featured higher expression of the T cell activation marker HLA-DR, which was even more pronounced in pCNS-tumors than in ALE or RRMS. Glioblastoma patients showed signs of T cell exhaustion that were not visible in RRMS patients. In-depth characterization of the PB revealed differences mainly in the T effector and memory compartment between RRMS and glioblastoma patients and similar alterations in the Bc compartment, including atypical Bc, CD19+CD20- double negative Bc, and plasma cells. PB and CSF mFC together with CSF routine parameters could reliably differentiate ALE and RRMS from pCNS-tumors facilitating early diagnosis and treatment. CONCLUSIONS ALE, RRMS, and pCNS-tumors show distinct but partially overlapping changes mainly in HLA-DR+ Tc, memory Tc, exhausted Tc, and Bc subsets providing insights into disease pathogenesis. Moreover, mFC shows diagnostic potential facilitating early diagnosis and treatment.
Collapse
Affiliation(s)
- Saskia Räuber
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | | | - Alice Willison
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Ramona Hagler
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Marius Jonas
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Duygu Pul
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Lars Masanneck
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Christina B Schroeter
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Kristin S Golombeck
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Stefanie Lichtenberg
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Christine Strippel
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Marco Gallus
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Andre Dik
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Ruth Kerkhoff
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Sumanta Barman
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Katharina J Weber
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Neurological Institute (Edinger Institute), University Hospital, Goethe University, Frankfurt/Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt/Main, Germany
| | - Stjepana Kovac
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Melanie Korsen
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Marc Pawlitzki
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Norbert Goebels
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Catharina C Gross
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Werner Paulus
- Institute of Neuropathology, University of Münster, Münster, Germany
| | - Guido Reifenberger
- Institute of Neuropathology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Hanke
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Oliver Grauer
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Marion Rapp
- Department of Neurosurgery, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Sabel
- Department of Neurosurgery, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Nico Melzer
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany.
| |
Collapse
|
6
|
Schulte F, Reiter JT, Bauer T, Taube J, Bitzer F, Witt J, Piper R, Thanabalasingam A, von Wrede R, Racz A, Baumgartner T, Borger V, Specht‐Riemenschneider L, Vatter H, Hattingen E, Deichmann R, Helmstaedter C, Radbruch A, Friedman A, Surges R, Rüber T. Interictal blood-brain barrier dysfunction in piriform cortex of people with epilepsy. Ann Clin Transl Neurol 2024; 11:2623-2632. [PMID: 39190772 PMCID: PMC11514923 DOI: 10.1002/acn3.52176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024] Open
Abstract
OBJECTIVE The piriform cortex is considered to be highly epileptogenic. Its resection during epilepsy surgery is a predictor for postoperative seizure freedom in temporal lobe epilepsy. Epilepsy is associated with a dysfunction of the blood-brain barrier. We investigated blood-brain barrier dysfunction in the piriform cortex of people with temporal lobe epilepsy using quantitative T1-relaxometry. METHODS Gadolinium-based contrast agent was administered ictally and interictally in 37 individuals before undergoing quantitative T1-relaxometry. Postictal and interictal images were co-registered, and subtraction maps were created as biomarkers for peri-ictal (∆qT1interictal-postictal) and interictal (∆qT1noncontrast-interictal) blood-brain barrier dysfunction. Values were extracted for the piriform cortex, hippocampus, amygdala, and the whole cortex. RESULTS In temporal lobe epilepsy (n = 14), ∆qT1noncontrast-interictal was significantly higher in the piriform cortex than in the whole cortex (p = 0.02). In extratemporal lobe epilepsy (n = 23), ∆qT1noncontrast-interictal was higher in the hippocampus than in the whole cortex (p = 0.05). Across all individuals (n = 37), duration of epilepsy was correlated with ∆qT1noncontrast-interictal (ß = 0.001, p < 0.001) in all regions, while the association was strongest in the piriform cortex. Impaired verbal memory was associated with ∆qT1noncontrast-interictal only in the piriform cortex (p = 0.04). ∆qT1interictal-postictal did not show differences in any region. INTERPRETATION Interictal blood-brain barrier dysfunction occurs in the piriform cortex in temporal lobe epilepsy. This dysfunction is linked to longer disease duration and worse cognitive deficits, emphasizing the central role of the piriform cortex in the epileptogenic network of temporal lobe epilepsy.
Collapse
Affiliation(s)
- Freya Schulte
- Department of NeuroradiologyUniversity Hospital BonnBonnGermany
- Department of EpileptologyUniversity Hospital BonnBonnGermany
| | - Johannes T. Reiter
- Department of NeuroradiologyUniversity Hospital BonnBonnGermany
- Department of EpileptologyUniversity Hospital BonnBonnGermany
| | - Tobias Bauer
- Department of NeuroradiologyUniversity Hospital BonnBonnGermany
- Department of EpileptologyUniversity Hospital BonnBonnGermany
| | - Julia Taube
- Department of EpileptologyUniversity Hospital BonnBonnGermany
| | - Felix Bitzer
- Department of NeuroradiologyUniversity Hospital BonnBonnGermany
- Department of EpileptologyUniversity Hospital BonnBonnGermany
| | | | - Rory Piper
- Developmental NeurosciencesUCL Great Ormond Street Institute of Child HealthLondonUK
| | | | - Randi von Wrede
- Department of EpileptologyUniversity Hospital BonnBonnGermany
| | - Attila Racz
- Department of EpileptologyUniversity Hospital BonnBonnGermany
| | | | - Valeri Borger
- Department of NeurosurgeryUniversity Hospital BonnBonnGermany
| | | | - Hartmut Vatter
- Department of NeurosurgeryUniversity Hospital BonnBonnGermany
| | - Elke Hattingen
- Department of NeuroradiologyClinics of Johann Wolfgang‐Goethe UniversityFrankfurt am MainGermany
- Brain Imaging CenterGoethe‐Universität FrankfurtFrankfurt am MainGermany
| | - Ralf Deichmann
- Brain Imaging CenterGoethe‐Universität FrankfurtFrankfurt am MainGermany
| | | | - Alexander Radbruch
- Department of NeuroradiologyUniversity Hospital BonnBonnGermany
- Center for Medical Data Usability and TranslationBonnGermany
- German Center for Neurodegenerative DiseasesBonnGermany
| | - Alon Friedman
- Department of Brain and Cognitive SciencesBen‐Gurion University of the NegevBeer‐ShevaIsrael
- Department of Medical NeuroscienceDalhousie UniversityHalifaxCanada
| | - Rainer Surges
- Department of EpileptologyUniversity Hospital BonnBonnGermany
| | - Theodor Rüber
- Department of NeuroradiologyUniversity Hospital BonnBonnGermany
- Department of EpileptologyUniversity Hospital BonnBonnGermany
- Center for Medical Data Usability and TranslationBonnGermany
| |
Collapse
|
7
|
Lai Q, Wang N, Wang B, Chen Y. The correlation of GluR3B antibody with T lymphocyte subsets and inflammatory factors and their role in the progression of epilepsy. J Transl Med 2024; 22:877. [PMID: 39350251 PMCID: PMC11440680 DOI: 10.1186/s12967-024-05699-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
OBJECTIVE To investigate changes in proportions of peripheral blood lymphocyte subsets, the correlation between the lymphocyte subsets and cytokine levels in patients with GluR3B antibody-positive epilepsy, analyze the role of GluR3B antibodies and cytokines in the progression of epilepsy. In addition, the immunotherapeutic effect in patients with GluR3B antibody-positive epilepsy will be evaluated. METHODS Patients with epilepsy hospitalized in the Department of Neurology of the affiliated Hospital of Xuzhou Medical University from December 2016 to May 2023 were recruited. GluR3B antibody levels were measured by enzyme-linked immunosorbent assay (ELISA). Lymphocyte subset proportions were determined using flow cytometry, and serum concentrations of 12 cytokines were measured using cytometric beads array. Differences in T lymphocyte subsets and inflammatory factors were analysed between GluR3B antibody positive and negative patients. Structural equation modeling (SEM) was used to analyse the role of GluR3B antibodies and inflammatory factors in drug-resistant epilepsy (DRE). Finally, the therapeutic effect of immunotherapy on epilepsy patients with GluR3B antibodies was assessed. RESULTS In this study, sixty-four cases of DRE, sixty-six cases of drug-naïve epilepsy (DNE), and forty-one cases of drug-responsive epilepsy were recruited. (1) DRE patients with positive GluR3B antibody were characterized by a significant increase in the proportion of cluster of differentiation (CD)4+ T lymphocytes, a decrease in CD8+ T lymphocytes, and an increase of CD4+/CD8+ ratio. Similar alterations in T lymphocyte subsets were observed in GluR3B antibody-positive patients with DNE. GluR3B antibody levels correlated positively with CD4+ T lymphocytes (r = 0.23) and negatively with CD8+ T lymphocytes (r=-0.18). (2) In patients with DRE, the serum concentrations of interleukin-1β (IL-1β), IL-8, and interferon-gamma (IFN-γ) were significantly higher in those with positive GluR3B antibody compared to those with negative GluR3B antibody. Serum IL-1β levels were also higher in GluR3B antibody-positive DNE patients compared to antibody-negative DNE patients. In drug-responsive epilepsy patients with GluR3B antibody-positive, both serum IL-1β and IFN-γ levels were higher than those with GluR3B antibody-negative. Moreover, the concentrations of serum GluR3B antibody were positively correlated with the levels of IL-1β, IL-8, and IFN-γ. (3) SEM analysis indicated that GluR3B antibody may be a direct risk factor for DRE (direct effect = 4.479, 95%CI 0.409-8.503), or may be involved in DRE progression through affecting IFN-γ and IL-8 levels (total indirect effect = 5.101, 95%CI 1.756-8.818). (4) Immunotherapy significantly decreased seizure frequency and serum GluR3B antibody levels, and the seizure frequency was positively correlated with the levels of GluR3B antibody levels in patients receiving immunotherapy. CONCLUSIONS This study demonstrates that GluR3B antibody may influence the progression of epilepsy through altering the proportion of CD4+ and CD8+ lymphocyte subsets and increasing proinflammatory cytokines. The seizure suppression of immunotherapy is associated with the decrease of GluR3B antibody levels. Thus, the present study contributes to a better understanding of the immunoregulatory mechanisms of autoimmune-associated epilepsy and provides a potential target for DRE.
Collapse
Affiliation(s)
- Qingwei Lai
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu, 221002, China.
| | - Nuan Wang
- China University of Mining and Technology, Xuzhou, China
- Department of Neurology, First People's Hospital of Xuzhou, Xuzhou, China
| | - Binbin Wang
- Department of Neurology, People's Hospital of Suining, Xuzhou, China
| | - Yue Chen
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu, 221002, China
| |
Collapse
|
8
|
Lee ST, Abboud H, Irani SR, Nakajima H, Piquet AL, Pittock SJ, Yeh EA, Wang J, Rajan S, Overell J, Smith J, St Lambert J, El-Khairi M, Gafarova M, Gelfand JM. Innovation and optimization in autoimmune encephalitis trials: the design and rationale for the Phase 3, randomized study of satralizumab in patients with NMDAR-IgG-antibody-positive or LGI1-IgG-antibody-positive autoimmune encephalitis (CIELO). Front Neurol 2024; 15:1437913. [PMID: 39193150 PMCID: PMC11348855 DOI: 10.3389/fneur.2024.1437913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/15/2024] [Indexed: 08/29/2024] Open
Abstract
Background Autoimmune encephalitis (AIE) encompasses a spectrum of rare autoimmune-mediated neurological disorders, which are characterized by brain inflammation and dysfunction. Autoantibodies targeting the N-methyl-d-aspartic acid receptor (NMDAR) and leucine-rich glioma-inactivated 1 (LGI1) are the most common subtypes of antibody-positive AIE. Currently, there are no approved therapies for AIE. Interleukin-6 (IL-6) signaling plays a role in the pathophysiology of AIE. Satralizumab, a humanized, monoclonal recycling antibody that specifically targets the IL-6 receptor and inhibits IL-6 signaling, has demonstrated efficacy and safety in another autoantibody-mediated neuroinflammatory disease, aquaporin-4 immunoglobulin G antibody-positive neuromyelitis optica spectrum disorder, and has the potential to be an evidence-based disease modifying treatment in AIE. Objectives CIELO will evaluate the efficacy, safety, pharmacodynamics, and pharmacokinetics of satralizumab compared with placebo in patients with NMDAR-immunoglobulin G antibody-positive (IgG+) or LGI1-IgG+ AIE. Study design CIELO (NCT05503264) is a prospective, Phase 3, randomized, double-blind, multicenter, basket study that will enroll approximately 152 participants with NMDAR-IgG+ or LGI1-IgG+ AIE. Prior to enrollment, participants will have received acute first-line therapy. Part 1 of the study will consist of a 52-week primary treatment period, where participants will receive subcutaneous placebo or satralizumab at Weeks 0, 2, 4, and every 4 weeks thereafter. Participants may continue to receive background immunosuppressive therapy, symptomatic treatment, and rescue therapy throughout the study. Following Part 1, participants can enter an optional extension period (Part 2) to continue the randomized, double-blind study drug, start open-label satralizumab, or stop study treatment and continue with follow-up assessments. Endpoints The primary efficacy endpoint is the proportion of participants with a ≥1-point improvement in the modified Rankin Scale (mRS) score from study baseline and no use of rescue therapy at Week 24. Secondary efficacy assessments include mRS, Clinical Assessment Scale of Autoimmune Encephalitis (CASE), time to rescue therapy, sustained seizure cessation and no rescue therapy, Montreal Cognitive Assessment, and Rey Auditory Verbal Learning Test (RAVLT) measures. Safety, pharmacokinetics, pharmacodynamics, exploratory efficacy, and biomarker endpoints will be captured. Conclusion The innovative basket study design of CIELO offers the opportunity to yield prospective, robust evidence, which may contribute to the development of evidence-based treatment recommendations for satralizumab in AIE.
Collapse
Affiliation(s)
- Soon-Tae Lee
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hesham Abboud
- Department of Neurology, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Sarosh R. Irani
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Departments of Neurology and Neurosciences, Mayo Clinic, Jacksonville, FL, United States
| | - Hideto Nakajima
- Division of Neurology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Amanda L. Piquet
- Department of Neurology, University of Colorado, Aurora, CO, United States
| | - Sean J. Pittock
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - E. Ann Yeh
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Jiawei Wang
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Sharmila Rajan
- Product Development Neuroscience, Genentech, Inc., South San Francisco, CA, United States
| | - James Overell
- Product Development Neuroscience, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Jillian Smith
- Roche Products Ltd., Welwyn Garden City, United Kingdom
| | | | | | - Marina Gafarova
- Product Development Neuroscience, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Jeffrey M. Gelfand
- Department of Neurology, UCSF Weill Institute for Neurosciences, San Francisco, CA, United States
| |
Collapse
|
9
|
Ma Y, Liu N, Wang Y, Zhang A, Zhu Z, Zhang Z, Li Y, Jian G, Fu G, Dong M, Zheng G, Zhu P, Zhong G, Bai S, Chen S, Wei X, Tan J, Wang X. Cognitive adverse events in patients with lung cancer treated with checkpoint inhibitor monotherapy: a propensity score-matched analysis. EClinicalMedicine 2023; 59:101987. [PMID: 37152366 PMCID: PMC10154980 DOI: 10.1016/j.eclinm.2023.101987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 05/09/2023] Open
Abstract
BACKGROUND Cancer-related cognitive decline is a serious problem in long-term survival but no pivotal study has investigated whether checkpoint inhibitors (ICI) may be associated with cognitive adverse events. METHODS This propensity score-matched analysis recruited non-small cell lung cancer (NSCLC) patients prescribed with or without ICI monotherapy from three Chinese tertiary hospitals. Patients were excluded from study who developed brain metastasis or had disorders severely affecting cognitive abilities. Primary outcomes were changes in neuropsychological battery test (NBT) at baseline, 6- and 12-month sessions, and any NBT score changes that exceeded 3∗SD of baseline scores would be marked as objective cognitive adverse events (CoAE). Secondary endpoint was the 20-item Perceived Cognitive Impairment (PCI) sub-scale score change in Functional Assessment of Cancer Therapy-Cognitive Function questionnaire, administered at baseline, 3-, 6-, 9-, 12-, and 15-month follow-up session. Per-protocol ICI and control arms were matched with propensity scores that incorporated baseline variables to compare both NBT and PCI assessment results. Patients participating in PCI assessments were analysed in intention-to-treat analysis. Kaplan-Meier survival curves with log-rank tests were adopted to analyse incidence of perceived cognitive decline events (PCDE). FINDINGS Between March 12, 2020, and March 28, 2021, 908 participants were enrolled. Compared to control, 3 of 4 subtest of NBT scores in ICI arm showed significant cognitive decline in 6- and 12-month sessions, in which Trail Making Test score change (13.56 ± 11.73) reached threshold of cognitive deficit diagnosis in the 12-month session. In 1:1 matched 292 pairs from 908 patients, PCI score changes in ICI arms were -4.26 ± 8.54 (3rd month), -4.72 ± 11.83 (6th month), -6.16 ± 15.41 (9th month), -6.07 ± 15.71 (12th month), and -7.96 ± 13.97 (15th month). The scores were significantly lower than control arm in 3-, 6-, and 12-session follow-up. The result was validated after adjusting quality of life scores and in intention-to-treat analysis. Mean PCI change exceeded 1/2 SD of baseline PCI score (5.81) in 9-, 12-, and 15-month sessions in ICI arm, but not in control arm. PCDE incidence/prevalence was significantly higher in ICI arm (incidence 26.4% vs. 5.1%, and prevalence 16.2% vs. 1.7%). Immune-related adverse events related to incidence of PCDE after adjusting for baseline variables. INTERPRETATION ICI monotherapy seemed to relate to higher cognitive decline represented by score changes and incidence/prevalence rates. The decline deteriorated as treatment progressed, and immune-related adverse events seemed to be associated with higher cognitive adverse events incidence in the ICI treatment. FUNDING The Fellowship of China Postdoctoral Science Foundation and National Natural Science Foundation of China Youth Science Fund Project.
Collapse
Affiliation(s)
- Yifei Ma
- Department of Orthopedics and Spine Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
- Department of Bone and Soft Tissue Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Nianqi Liu
- Faculty of Psychology, Institute of Educational Science, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yanqi Wang
- Department of Bone and Soft Tissue Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
- School of Public Health, Shantou University, Shantou, Guangdong Province, China
| | - Ao Zhang
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, China
| | - Zirui Zhu
- Department of Thoracic Surgery, Hainan Hospital of People's Liberation Army General Hospital, Sanya, Hainan Province, China
| | - Zhiying Zhang
- Department of Bone and Soft Tissue Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
- School of Public Health, Shantou University, Shantou, Guangdong Province, China
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Yiming Li
- Department of Neurosurgery, Beijing Tiantan Hospital Capital Medical University, Beijing, China
| | - Guangmin Jian
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Key Clinical Laboratory of Henan Province, Zhengzhou, Henan Province, China
| | - Guangzhen Fu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Key Clinical Laboratory of Henan Province, Zhengzhou, Henan Province, China
| | - Mingming Dong
- Department of Bone and Soft Tissue Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Guoxing Zheng
- Department of Orthopedics and Spine Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Pengfei Zhu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Key Clinical Laboratory of Henan Province, Zhengzhou, Henan Province, China
| | - Guanqing Zhong
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, China
| | - Shenrui Bai
- Department of Hematological Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, China
| | - Shuqin Chen
- Department of Pathology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Xiaolong Wei
- Department of Pathology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Jifan Tan
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xinjia Wang
- Department of Orthopedics and Spine Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
- Department of Bone and Soft Tissue Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| |
Collapse
|
10
|
Reimers A, Helmstaedter C, Elger CE, Pitsch J, Hamed M, Becker AJ, Witt JA. Neuropathological Insights into Unexpected Cognitive Decline in Epilepsy. Ann Neurol 2023; 93:536-550. [PMID: 36411525 DOI: 10.1002/ana.26557] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 10/10/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Some patients unexpectedly display an unfavorable cognitive course after epilepsy surgery subsequent to any direct cognitive sequelae of the surgical treatment. Therefore, we conducted in-depth neuropathological examinations of resective specimens from corresponding patients to provide insights as to the underlying disease processes. METHODS In this study, cases with significant cognitive deterioration following a previous postoperative assessment were extracted from the neuropsychological database of a longstanding epilepsy surgical program. An extensive reanalysis of available specimens was performed using current, state-of-the-art neuropathological examinations. Patients without cognitive deterioration but matched in regard to basic pathologies served as controls. RESULTS Among the 355 operated patients who had undergone more than one postoperative neuropsychological examination, 30 (8%) showed significant cognitive decline in the period after surgery. Of the 24 patients with available specimens, 71% displayed further neuropathological changes in addition to the typical spectrum (ie, hippocampal sclerosis, focal cortical dysplasias, vascular lesions, and low-grade tumors), indicating (1) a secondary, putatively epilepsy-independent neurodegenerative disease process; (2) limbic inflammation; or (3) the enigmatic pathology pattern of "hippocampal gliosis" without segmental neurodegeneration. In the controls, the matched individual principal epilepsy-associated pathologies were not found in combination with the secondary pathology patterns of the study group. INTERPRETATION Our findings indicate that patients who unexpectedly displayed unfavorable cognitive development beyond any direct surgical effects show rare and very particular pathogenetic causes or parallel, presumably independent, neurodegenerative alterations. A multicenter collection of such cases would be appreciated to discern presurgical biomarkers that help with surgical decision-making. ANN NEUROL 2023;93:536-550.
Collapse
Affiliation(s)
- Annika Reimers
- Section for Translational Epilepsy Research, Institute of Neuropathology, Medical Faculty, University of Bonn, Bonn, Germany
| | | | | | - Julika Pitsch
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Motaz Hamed
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Albert J Becker
- Section for Translational Epilepsy Research, Institute of Neuropathology, Medical Faculty, University of Bonn, Bonn, Germany
| | | |
Collapse
|
11
|
Hansen N, Widman G, Önder D, Schwing K, Leelaarporn P, Prusseit I, von Wrede R, Surges R, Becker AJ, Witt JA, Elger CE, Helmstaedter C. Increased T- and B-cells associated with the phenotype of autoimmune limbic encephalitis with mainly memory dysfunction. J Transl Autoimmun 2022; 5:100167. [PMID: 36247087 PMCID: PMC9563330 DOI: 10.1016/j.jtauto.2022.100167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/24/2022] [Accepted: 09/25/2022] [Indexed: 11/24/2022] Open
Abstract
Background Our goal is to investigate the autoantibodies’ presence and immune cells in the bioprobes of autoimmune encephalitis (AE) patients with distinct phenotypes as a promising target in AE. Methods We retrospectively analyzed immune cells via flow cytometry, serum and cerebrospinal fluid (CSF) autoantibodies, electroencephalography, magnetic resonance imaging in 94 AE patients with suspected temporal lobe epilepsy and classified neuropsychological phenotypes according to their occurrence. Results We detected different phenotypes in 94 AE patients [10.6% with isolated memory dysfunction (MEM), 11.7% with mood-dysfunction, 12.7% with mood and memory dysfunction, 13.8% with memory and attention dysfunction, 18.1% with memory, mood and attention disturbances and 20.2% with no mood, memory or attention dysfunction]. We did discern a relevant association of phenotypes and CSF antibody-positivity on CSF CD4+ T-cells, CD8+T-cells and HLADR + CD8+T-cells in our patients with MEM presenting elevated CD8+T-cells and HLADR + CD8+T-cells. Furthermore, CSF CD19+B-cells differed significantly between phenotypes in patients with MEM. Discussion Taken together, the phenotypes in combination with CSF antibody-positivity are biomarkers for stratifying patients. Furthermore, our results confirm the role of CD4+ T-cells, CD8+T-cells and CD19+B-cells in AE patients with a memory dysfunction, providing insights into AE pathogenesis. Our preliminary results should be confirmed by larger-scale investigations.
Collapse
Affiliation(s)
- Niels Hansen
- Department of Epileptology, University Hospital Bonn, Venusberg - Campus 1, 53127, Bonn, Germany
- Department of Psychiatry and Psychotherapy, Von-Siebold- Str. 5, University of Göttingen, 37075, Göttingen, Germany
- Corresponding author.Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Von-Siebold-Str. 5, 37075 Göttingen, Germany.
| | - Guido Widman
- Department of Epileptology, University Hospital Bonn, Venusberg - Campus 1, 53127, Bonn, Germany
| | - Demet Önder
- Department of Epileptology, University Hospital Bonn, Venusberg - Campus 1, 53127, Bonn, Germany
| | - Kerstin Schwing
- Department of Epileptology, University Hospital Bonn, Venusberg - Campus 1, 53127, Bonn, Germany
| | - Pitshaporn Leelaarporn
- Department of Epileptology, University Hospital Bonn, Venusberg - Campus 1, 53127, Bonn, Germany
| | - Indra Prusseit
- Department of Neuropathology, University of Bonn Medical Center, Venusberg - Campus 1, 53127, Bonn, Germany
| | - Randi von Wrede
- Department of Epileptology, University Hospital Bonn, Venusberg - Campus 1, 53127, Bonn, Germany
| | - Rainer Surges
- Department of Epileptology, University Hospital Bonn, Venusberg - Campus 1, 53127, Bonn, Germany
- Center for Rare Diseases Bonn (ZSEB), University of Bonn, Germany
| | - Albert J. Becker
- Department of Neuropathology, University of Bonn Medical Center, Venusberg - Campus 1, 53127, Bonn, Germany
| | - Juri-Alexander Witt
- Department of Epileptology, University Hospital Bonn, Venusberg - Campus 1, 53127, Bonn, Germany
| | - Christian E. Elger
- Department of Epileptology, University Hospital Bonn, Venusberg - Campus 1, 53127, Bonn, Germany
| | - Christoph Helmstaedter
- Department of Epileptology, University Hospital Bonn, Venusberg - Campus 1, 53127, Bonn, Germany
| |
Collapse
|
12
|
Identification of Adipocytokine Pathway-Related Genes in Epilepsy and Its Effect on the Peripheral Immune Landscape. Brain Sci 2022; 12:brainsci12091156. [PMID: 36138892 PMCID: PMC9497159 DOI: 10.3390/brainsci12091156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 11/16/2022] Open
Abstract
Epilepsy is a multifactorial neurological disorder with recurrent epileptic seizures. Current research stresses both inflammatory and autoimmune conditions as enablers in the pathophysiological process of epilepsy. In view of the growing concern about the role of adipocytokines in antiepileptic and modulating immune responses, we aimed to investigate the relevance of the adipocytokine signaling pathway in the pathological process of epilepsy and its impacts on peripheral immune characteristics. In this study, expression profiles of 142 peripheral blood samples were downloaded from the Gene Expression Omnibus (GEO) database. Adipocytokine pathway-related genes were screened out by feature selection using machine-learning algorithms. A nomogram was then constructed and estimated for the efficacy of diagnosis. Cluster analysis was employed for the recognization of two distinct epilepsy subtypes, followed by an estimation of the immune cell infiltration levels using single-sample gene-set enrichment analysis (ssGSEA). The biological characteristics were analyzed by functional enrichment analysis. The aberrant regulation of adipocytokine signaling pathway was found in the peripheral blood of patients with epilepsy. Twenty-one differently expressed adipocytokine pathway-related genes were identified and five (RELA, PRKAB1, TNFRSF1A, CAMKK2, and CPT1B) were selected to construct a nomogram. Subsequent validations of its forecasting ability revealed that this model has satisfactory predictive value. The immune cell infiltration degrees, such as those of innate immune cells and lymphocytes, were found to significantly correlate to the levels of adipocytokine pathway-related genes. Additionally, 239 differentially expressed genes (DEGs) were identified and their biological functions were mainly enriched in the regulation of the immune response. In conclusion, our results confirmed the predictive value of adipocytokine pathway-related genes for epilepsy and explored their effects on immune infiltration, thereby improving our understanding of the pathogenesis of epilepsy and providing assistance in the diagnosis and treatment of epilepsy.
Collapse
|
13
|
Zhang S, Mao C, Li X, Miao W, Teng J. Advances in Potential Cerebrospinal Fluid Biomarkers for Autoimmune Encephalitis: A Review. Front Neurol 2022; 13:746653. [PMID: 35937071 PMCID: PMC9355282 DOI: 10.3389/fneur.2022.746653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 06/20/2022] [Indexed: 12/24/2022] Open
Abstract
Autoimmune encephalitis (AE) is a severe inflammatory disease of the brain. Patients with AE demonstrate amnesia, seizures, and psychosis. Recent studies have identified numerous associated autoantibodies (e.g., against NMDA receptors (NMDARs), LGI1, etc.) involved in the pathogenesis of AE, and the levels of diagnosis and treatment are thus improved dramatically. However, there are drawbacks of clinical diagnosis and treatment based solely on antibody levels, and thus the application of additional biomarkers is urgently needed. Considering the important role of immune mechanisms in AE development, we summarize the relevant research progress in identifying cerebrospinal fluid (CSF) biomarkers with a focus on cytokines/chemokines, demyelination, and nerve damage.
Collapse
|
14
|
Hansen N. Immunopsychiatry – Innovative Technology to Characterize Disease Activity in Autoantibody-Associated Psychiatric Diseases. Front Immunol 2022; 13:867229. [PMID: 35711412 PMCID: PMC9197207 DOI: 10.3389/fimmu.2022.867229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/19/2022] [Indexed: 01/04/2023] Open
Abstract
Background Anti-neural autoantibody-associated psychiatric disease is a novel field in immunopsychiatry that has been attracting attention thanks to its potentially positive therapeutic outcome and distinct prognosis compared with non-organic psychiatric disease. This review aims to describe recent novel technological developments for improving diagnostics in the field of autoantibody-related psychiatric disease.MethodsWe screened for relevant articles in PubMed for this narrative article. We focused on research methods such as neuroimaging, immune cells and inflammation markers, and molecular biomarkers in human biofluids like serum and cerebrospinal fluid and plasma proteomics.ResultsWe introduce several novel methods for investigating autoinflammation with the aim of optimizing therapies for autoantibody-associated psychiatric disease. We describe measuring the translocator protein 18kDa in activated microglia via positron emission tomography imaging, brain volumetric assessment, flow cell cytometry of cerebrospinal fluid and blood, and blood biological probes as well as psychopathological cues to help us gain insights into diagnosing inflammation and brain damage better in psychiatric patients presenting a suspected autoimmune etiology.ConclusionOur short methodological review provides an overview of recent developments in the field of autoantibody-related immunopsychiatry. More research is needed to prove their usefulness in diagnosing and treating autoantibody-associated psychiatric disease and its subtypes.
Collapse
Affiliation(s)
- Niels Hansen
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
- Translational Psychoneuroscience, University Medical Center Göttingen, Göttingen, Germany
- *Correspondence: Niels Hansen,
| |
Collapse
|
15
|
Griffith S, Wesslingh R, Broadley J, O'Shea M, Kyndt C, Meade C, Long B, Seneviratne U, Reidy N, Bourke R, Buzzard K, D'Souza W, Macdonell R, Brodtmann A, Butzkueven H, O'Brien TJ, Alpitsis R, Malpas CB, Monif M. Psychometric Deficits in Autoimmune Encephalitis: A retrospective study from the Australian Autoimmune Encephalitis Consortium. Eur J Neurol 2022; 29:2355-2366. [PMID: 35460305 DOI: 10.1111/ene.15367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/13/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Despite the rapid increase in research examining outcomes in Autoimmune Encephalitis (AE) patients, there are few cohort studies examining cognitive outcomes in this population. METHODS This retrospective observational study collected psychometric data from 59 patients across six secondary and tertiary referral centres in metropolitan hospitals in Victoria, Australia between January 2008 and July 2019. Frequency and pattern analysis were employed to define and characterise psychometric outcomes. Univariable logistic regression was performed to examine predictors of intact and pathological psychometric outcomes. RESULTS Deficits in psychometric markers of executive dysfunction were the most commonly observed in this cohort, followed by deficits on tasks sensitive to memory. 54.2% were classified as having psychometric impairments across at least two cognitive domains. 29 patterns were observed, suggesting outcomes in AE are complex. None of the demographic data, clinical features, and auxiliary examination variables were predictors of psychometric outcome. CONCLUSIONS Cognitive outcomes in AE are complex. Further detailed and standardised cognitive testing in combination with MRI volumetrics and serum/CSF biomarkers is required to provide rigorous assessments of disease outcomes.
Collapse
Affiliation(s)
- Sarah Griffith
- Department of Neurosciences, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Alfred Centre, Level 6, 99 Commercial Road, Melbourne, Victoria, Australia, 3004.,Department of Neurology, Alfred Health, Alfred Centre, Level 6, 99 Commercial Road, Melbourne, Victoria, Australia, 3004
| | - Robb Wesslingh
- Department of Neurosciences, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Alfred Centre, Level 6, 99 Commercial Road, Melbourne, Victoria, Australia, 3004.,Department of Neurology, Alfred Health, Alfred Centre, Level 6, 99 Commercial Road, Melbourne, Victoria, Australia, 3004
| | - James Broadley
- Department of Neurosciences, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Alfred Centre, Level 6, 99 Commercial Road, Melbourne, Victoria, Australia, 3004.,Department of Neurology, Alfred Health, Alfred Centre, Level 6, 99 Commercial Road, Melbourne, Victoria, Australia, 3004
| | - Marie O'Shea
- Department of Clinical Neuropsychology, Austin Health, Heidelberg, Victoria, Australia, 3084.,Melbourne School of Psychological Sciences, The University of Melbourne, Victoria, Australia
| | - Chris Kyndt
- Department of Neurology, Melbourne Health, 300 Grattan Street, Parkville, Victoria, Australia, 3050.,Department of Neurosciences, Eastern Health Clinical School, Monash University, Box Hill Hospital, Melbourne, VIC, Australia
| | - Catherine Meade
- Department of Neurosciences, Building D - Daly Wing, Level 5, St Vincent's Hospital, Fitzroy, Victoria, Australia, 3065
| | - Brian Long
- Neuropsychology Unit, Monash Medical Centre, Monash Health, 246 Clayton Road, Clayton, Victoria, Australia, 3168
| | - Udaya Seneviratne
- Department of Neurosciences, Monash Health, Clayton Road, Clayton, Victoria, Australia, 3168
| | - Natalie Reidy
- Department of Neurosciences, Eastern Health Clinical School, Monash University, Box Hill Hospital, Melbourne, VIC, Australia
| | - Robert Bourke
- Neuropsychology Unit, Monash Medical Centre, Monash Health, 246 Clayton Road, Clayton, Victoria, Australia, 3168
| | - Katherine Buzzard
- Department of Neurosciences, Eastern Health Clinical School, Monash University, Box Hill Hospital, Melbourne, VIC, Australia
| | - Wendyl D'Souza
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia, 3065
| | - Richard Macdonell
- Department of Neurology, Austin Health, Heidelberg, Victoria, Australia, 3084
| | - Amy Brodtmann
- Department of Neurology, Melbourne Health, 300 Grattan Street, Parkville, Victoria, Australia, 3050.,Department of Neurosciences, Eastern Health Clinical School, Monash University, Box Hill Hospital, Melbourne, VIC, Australia.,Department of Neurology, Austin Health, Heidelberg, Victoria, Australia, 3084
| | - Helmut Butzkueven
- Department of Neurosciences, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Alfred Centre, Level 6, 99 Commercial Road, Melbourne, Victoria, Australia, 3004.,Department of Neurology, Alfred Health, Alfred Centre, Level 6, 99 Commercial Road, Melbourne, Victoria, Australia, 3004
| | - Terence J O'Brien
- Department of Neurosciences, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Alfred Centre, Level 6, 99 Commercial Road, Melbourne, Victoria, Australia, 3004.,Department of Neurology, Alfred Health, Alfred Centre, Level 6, 99 Commercial Road, Melbourne, Victoria, Australia, 3004
| | - Rubina Alpitsis
- Department of Neurosciences, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Alfred Centre, Level 6, 99 Commercial Road, Melbourne, Victoria, Australia, 3004.,Department of Neurology, Alfred Health, Alfred Centre, Level 6, 99 Commercial Road, Melbourne, Victoria, Australia, 3004
| | - Charles B Malpas
- Department of Neurosciences, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Alfred Centre, Level 6, 99 Commercial Road, Melbourne, Victoria, Australia, 3004.,Department of Neurology, Alfred Health, Alfred Centre, Level 6, 99 Commercial Road, Melbourne, Victoria, Australia, 3004.,Department of Neurology, Melbourne Health, 300 Grattan Street, Parkville, Victoria, Australia, 3050.,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Victoria, Australia.,Melbourne School of Psychological Sciences, The University of Melbourne, Victoria, Australia
| | - Mastura Monif
- Department of Neurosciences, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Alfred Centre, Level 6, 99 Commercial Road, Melbourne, Victoria, Australia, 3004.,Department of Neurology, Alfred Health, Alfred Centre, Level 6, 99 Commercial Road, Melbourne, Victoria, Australia, 3004.,Department of Neurology, Melbourne Health, 300 Grattan Street, Parkville, Victoria, Australia, 3050
| | | |
Collapse
|
16
|
Witt JA, Helmstaedter C. Do executive deficits differentiate between autoimmune temporal lobe epilepsy and temporal lobe epilepsies with non-autoimmune etiologies? A critical view on recently published data. Epilepsy Behav 2022; 129:108562. [PMID: 35065890 DOI: 10.1016/j.yebeh.2022.108562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/04/2022] [Indexed: 11/25/2022]
|
17
|
Conradi N, Behrens M, Elben S, Melzer N, Merkel N, Schmitt S, Suess A, Siebenbrodt K, Strzelczyk A, Rosenow F. Reply to: "Do executive deficits differentiate between autoimmune temporal lobe epilepsy and temporal lobe epilepsies with non-autoimmune etiologies? A critical view on recently published data" by Juri-Alexander Witt and Christoph Helmstaedter (EB-D-21-01129). Epilepsy Behav 2022; 129:108566. [PMID: 35123897 DOI: 10.1016/j.yebeh.2022.108566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 01/08/2022] [Indexed: 11/17/2022]
Affiliation(s)
- Nadine Conradi
- Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, University Hospital Frankfurt and Goethe University, Frankfurt am Main, Germany; LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe University, Frankfurt am Main, Germany.
| | - Marion Behrens
- Department of Neurology, University Hospital Frankfurt and Goethe University, Frankfurt am Main, Germany
| | - Saskia Elben
- Department of Neurology, Medical Faculty, Heinrich Heine-University of Düsseldorf, Düsseldorf, Germany
| | - Nico Melzer
- Department of Neurology, Medical Faculty, Heinrich Heine-University of Düsseldorf, Düsseldorf, Germany
| | - Nina Merkel
- Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, University Hospital Frankfurt and Goethe University, Frankfurt am Main, Germany; LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe University, Frankfurt am Main, Germany
| | - Sophia Schmitt
- Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, University Hospital Frankfurt and Goethe University, Frankfurt am Main, Germany
| | - Annika Suess
- Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, University Hospital Frankfurt and Goethe University, Frankfurt am Main, Germany
| | - Kai Siebenbrodt
- Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, University Hospital Frankfurt and Goethe University, Frankfurt am Main, Germany; LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe University, Frankfurt am Main, Germany
| | - Adam Strzelczyk
- Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, University Hospital Frankfurt and Goethe University, Frankfurt am Main, Germany; LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe University, Frankfurt am Main, Germany
| | - Felix Rosenow
- Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, University Hospital Frankfurt and Goethe University, Frankfurt am Main, Germany; LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
18
|
Harms A, Bauer T, Fischbach L, David B, Ernst L, Witt JA, Diers K, Baumgartner T, Weber B, Radbruch A, Becker AJ, Helmstaedter C, Reuter M, Elger CE, Surges R, Rüber T. Shape description and volumetry of hippocampus and amygdala in temporal lobe epilepsy - A beneficial combination with a clinical perspective. Epilepsy Behav 2022; 128:108560. [PMID: 35066389 DOI: 10.1016/j.yebeh.2022.108560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 11/25/2022]
Abstract
Shape-based markers have entered the field of morphometric neuroimaging analysis as a second mainstay alongside conventional volumetric approaches. We aimed to assess the added value of shape description for the analysis of lesional and autoimmune temporal lobe epilepsy (TLE) focusing on hippocampus and amygdala. We retrospectively investigated MRI and clinical data from 65 patients with lesional TLE (hippocampal sclerosis (HS) and astrogliosis) and from 62 patients with limbic encephalitis (LE) with serologically proven autoantibodies. Surface reconstruction and volumetric segmentation were performed with FreeSurfer. For the shape analysis, we used BrainPrint, a tool that utilizes eigenvalues of the Laplace-Beltrami operator on triangular meshes to calculate intra-subject asymmetry. Psychometric tests of memory performance were ascertained, to evaluate clinical relevance of the shape descriptor. The potential benefit of shape in addition to volumetric information for classification was assessed by five-fold repeated cross validation and logistic regression. For the LE group, the best performing classification model consisted of a combination of volume and shape asymmetry (mean AUC = 0.728), the logistic regression model was significantly improved considering both modalities instead of just volume asymmetry. For lesional TLE, the best model only considered volumetric information (mean AUC = 0.867). Shape asymmetry of the hippocampus was largely associated with verbal memory performance only in LE patients (OR = 1.07, p = 0.02). For lesional TLE, shape description is robust, but redundant when compared to volumetric approaches. For LE, in contrast, shape asymmetry as a complementary modality significantly improves the detection of subtle morphometric changes and is further associated with memory performance, which underscores the clinical relevance of shape asymmetry as a novel imaging biomarker.
Collapse
Affiliation(s)
- Antonia Harms
- Department of Epileptology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
| | - Tobias Bauer
- Department of Epileptology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
| | - Laura Fischbach
- Department of Epileptology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
| | - Bastian David
- Department of Epileptology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
| | - Leon Ernst
- Department of Epileptology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
| | - Juri-Alexander Witt
- Department of Epileptology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
| | - Kersten Diers
- Deutsches Zentrum für neurodegenerative Erkrankungen (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany.
| | - Tobias Baumgartner
- Department of Epileptology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
| | - Bernd Weber
- Institute of Experimental Epileptology and Cognition Research, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
| | - Alexander Radbruch
- Department of Neuroradiology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
| | - Albert J Becker
- Department of Neuropathology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
| | - Christoph Helmstaedter
- Department of Epileptology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
| | - Martin Reuter
- Deutsches Zentrum für neurodegenerative Erkrankungen (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany; Martinos Center for Biomedical Imaging, MGH/Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA.
| | - Christian E Elger
- Department of Epileptology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
| | - Rainer Surges
- Department of Epileptology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
| | - Theodor Rüber
- Department of Epileptology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
| |
Collapse
|
19
|
Chen B, Tian DS, Bu BT. Immunological predictors for the outcome in patients with antibody-mediated autoimmune encephalitis. J Neuroimmunol 2022; 362:577779. [PMID: 34826734 DOI: 10.1016/j.jneuroim.2021.577779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/08/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022]
Abstract
We investigated the immunological outcome predictors in patients with antibody-mediated autoimmune encephalitis. A severe disability on admission, a low lymphocyte count, including T, B, and T + B + NK (TBNK) cells, an elevated neutrophil (%) and neutrophil to lymphocyte ratio (NLR) could predict poor prognoses. The increased neutrophils (%) and NLR with the decreased eosinophil percent and count were sensitive (>0.8) in predicting severe disabilities, while the declined total T cell count, lymphocyte percent and count were specific (>0.9). TBNK cell count had a balanced sensitivity and specificity (both>0.8). Patients with autoimmune encephalitis with poor outcomes are immunologically distinct from those with good recoveries.
Collapse
Affiliation(s)
- Bo Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Bi-Tao Bu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
20
|
Dysfunctional Learning and Verbal Memory in Patients with Elevated Tau Protein Levels and Serum Recoverin Autoantibodies—Case Series and Review. Brain Sci 2021; 12:brainsci12010015. [PMID: 35053759 PMCID: PMC8773655 DOI: 10.3390/brainsci12010015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 12/20/2022] Open
Abstract
Recoverin-antibody-related disease is currently restricted to late-onset ataxia and autoimmune retinopathy, which can be paraneoplastic or not. However, cognitive dysfunction associated with recoverin antibodies has not been reported so far in a homogeneous patient group. Our case series is dedicated to describing the novel phenotype of cognitive impairment associated with recoverin antibodies. We included five patients with cognitive impairment who presented serum recoverin autoantibodies detected by immunoblots in our case series investigation. We also analyzed their psychopathology, clinical data, cerebrospinal fluid (CSF), and neuroimaging data. Five patients with cognitive impairment associated with serum recoverin antibodies exhibited profound dysfunctional learning and verbal memory. In the CSF of 40% of them, we also diagnosed axonal neurodegeneration entailing elevated tau and phosphorylated tau protein levels. Psychopathologies such as affective symptoms (restlessness, depressive mood, anxiety, complaintiveness) and formal thought disorder, such as rumination, were detected in 25–75% of the patients. We hypothesized a role of recoverin autoimmunity in the pineal gland involving consecutive modulation of hippocampus-based memory caused by an altered release of melatonin. We describe a novel phenotype of possible recoverin autoimmunity in patients with cognitive impairment. However, no clear diagnostic clues can be extracted because of the low diagnostic validity of the testing strategies applied. The possibility of recoverin antibody autoimmunity in the pineal gland correlating with a modulation of hippocampus-based memory should be further investigated.
Collapse
|
21
|
Hansen N. Current Nosology of Neural Autoantibody-Associated Dementia. Front Aging Neurosci 2021; 13:711195. [PMID: 34393763 PMCID: PMC8355817 DOI: 10.3389/fnagi.2021.711195] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/02/2021] [Indexed: 01/02/2023] Open
Abstract
Background The detection of neural autoantibodies in patients with cognitive decline is an increasingly frequent phenomenon in memory clinics, and demanding as it does a specific diagnostic approach and therapeutic management, it deserves greater attention. It is this review’s aim to present the latest nosology of neural autoantibody-associated dementia. Methods A specific literature research via PubMed was conducted to describe the nosology of neural autoantibody-associated dementia. Results An autoimmune dementia comprises with an early onset, atypical clinical presentation and rapid progression in conjunction with neural antibodies, signs of inflammation in the cerebrospinal fluid, and a non-neurodegenerative pattern in neuroimaging. An autoimmune dementia is probably present if the patient responds to immunotherapy. Atypical dementia involving neural autoantibodies with mostly N-methyl-D-aspartate receptor antibodies might not fulfill all the autoimmune-dementia criteria, thus it may constitute an independent disease entity. Finally, a neurodegenerative dementia such as the frontotemporal type also coincides with neural autoantibodies such as the subunit ionotropic glutamate receptors 3 of amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor antibodies, dementia with Lewy bodies with myelin oligodendrocytic protein, myelin basic protein antibodies, or Creutzfeldt-Jakob disease with Zic4 or voltage gated potassium channel antibodies. These dementia entities may well overlap in their clinical features and biomarkers, i.e., their neural autoantibodies or neuroimaging patterns. Conclusion There are three main forms of neural autoantibody-associated dementia we can distinguish that might also share certain features in their clinical and laboratory presentation. More research is urgently necessary to improve the diagnosis and therapy of these patients, as the progression of their dementia might thus be improved or even reversed.
Collapse
Affiliation(s)
- Niels Hansen
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
22
|
Mueller C, Langenbruch LM, Rau JMH, Brix T, Strippel C, Dik A, Golombeck KS, Moenig C, Raeuber SJ, Kovac S, Wiendl H, Meuth SG, Bölte J, Johnen A, Melzer N. Determinants of cognition in autoimmune limbic encephalitis-A retrospective cohort study. Hippocampus 2021; 31:1092-1103. [PMID: 34270832 DOI: 10.1002/hipo.23375] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/29/2021] [Accepted: 07/03/2021] [Indexed: 12/24/2022]
Abstract
Autoimmune limbic encephalitis (ALE) is the most common type of autoimmune encephalitis (AIE). Subacute memory disturbance, temporal lobe seizures, and psychiatric symptoms are clinical hallmarks of the disease. However, little is known on the factors contributing to cognitive functioning in ALE. Hence, we here investigate major determinants of cognitive functioning in ALE. In a retrospective analysis of 102 patients with ALE, we first compared verbal learning capacity, nonverbal learning capacity, and attentional and executive functioning by absence or presence of different types of neural autoantibodies (AABs). Subsequently we established three linear regression models including 63, 38, and 61 patients, respectively to investigate how cognitive functioning in these domains may depend on common markers of ALE such as intrathecal inflammation, blood-cerebrospinal fluid (CSF)-barrier function, mesiotemporal epileptiform discharges and slowing, determined by electroencephalography (EEG) and structural mesiotemporal changes, measured with magnetic resonance imaging (MRI). We also accounted for possible effects of cancer- and immunotherapy and other centrally effective medication. There was no effect of AAB status on cognitive functioning. Although the regression models could not predict verbal and nonverbal learning capacity, structural mesiotemporal neural network alterations on T2-/fluid attenuated inversion recovery (FLAIR)-signal-weighted MRI and mesiotemporal epileptiform discharges or slowing on EEG exerted a significant impact on memory functions. In contrast, the regression model significantly predicted attentional and executive functioning with CSF white blood cell count and centrally effective medication being significant determinants. In this cohort, cognitive functioning in ALE does not depend on the AAB status. Common markers of ALE cannot predict memory functioning that only partially depends on structural and functional alterations of mesiotemporal neural networks. Common markers of ALE significantly predict attentional and executive functioning that is significantly related to centrally effective medication and CSF white blood cell count, which may point toward inflammation affecting brain regions beyond the limbic system.
Collapse
Affiliation(s)
- Christoph Mueller
- Department of Neurology with Institute of Translational Neurology, Westfälische Wilhelms-University of Münster, Münster, Germany
| | - Lisa M Langenbruch
- Department of Neurology with Institute of Translational Neurology, Westfälische Wilhelms-University of Münster, Münster, Germany
| | - Johanna M H Rau
- Department of Neurology with Institute of Translational Neurology, Westfälische Wilhelms-University of Münster, Münster, Germany
| | - Tobias Brix
- Institute of Medical Informatics, Westfälische Wilhelms-University of Münster, Münster, Germany
| | - Christine Strippel
- Department of Neurology with Institute of Translational Neurology, Westfälische Wilhelms-University of Münster, Münster, Germany
| | - Andre Dik
- Department of Neurology with Institute of Translational Neurology, Westfälische Wilhelms-University of Münster, Münster, Germany
| | - Kristin S Golombeck
- Department of Neurology with Institute of Translational Neurology, Westfälische Wilhelms-University of Münster, Münster, Germany
| | - Constanze Moenig
- Department of Neurology with Institute of Translational Neurology, Westfälische Wilhelms-University of Münster, Münster, Germany
| | - Saskia J Raeuber
- Department of Neurology with Institute of Translational Neurology, Westfälische Wilhelms-University of Münster, Münster, Germany.,Department of Neurology, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
| | - Stjepana Kovac
- Department of Neurology with Institute of Translational Neurology, Westfälische Wilhelms-University of Münster, Münster, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, Westfälische Wilhelms-University of Münster, Münster, Germany
| | - Sven G Meuth
- Department of Neurology with Institute of Translational Neurology, Westfälische Wilhelms-University of Münster, Münster, Germany.,Department of Neurology, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
| | - Jens Bölte
- Institute of Psychology, Westfälische Wilhelms-University of Münster, Münster, Germany
| | - Andreas Johnen
- Department of Neurology with Institute of Translational Neurology, Westfälische Wilhelms-University of Münster, Münster, Germany
| | - Nico Melzer
- Department of Neurology with Institute of Translational Neurology, Westfälische Wilhelms-University of Münster, Münster, Germany.,Department of Neurology, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
23
|
Byun JI, Bae J, Moon J, Lee ST, Jung KH, Park KI, Kim M, Lee SK, Chu K. Proportion of peripheral regulatory T cells in patients with autoimmune encephalitis. ENCEPHALITIS 2021; 1:68-72. [PMID: 37469844 PMCID: PMC10295879 DOI: 10.47936/encephalitis.2021.00052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 07/21/2023] Open
Abstract
PURPOSE Regulatory T cells (Tregs) play a crucial role in maintaining immune tolerance. Any deficiency or dysfunction of the Tregs can influence the pathogenesis of autoimmune disease. This study aimed to assess the role of Tregs among patients with autoimmune encephalitis (AE) with different autoantibody types and to evaluate their association with clinical features. METHODS This was a cross-sectional observational study involving 29 patients with AE. Peripheral blood was sampled from each patient for flow cytometric analysis. Proportions of CD4+CD25+ and CD4+CD25+Foxp3+ Tregs were calculated and compared between the antibody types (synaptic, paraneoplastic, and undetermined). Associations between the proportion of Tregs and clinical features were also evaluated. RESULTS Five patients had synaptic autoantibodies, five had paraneoplastic autoantibodies, and the others were of an undetermined type. The proportion of CD4+CD25+ Tregs tended to be higher in those with paraneoplastic antibodies than in those with synaptic antibodies (post-hoc p = 0.028) and undetermined antibody status (post-hoc p = 0.043). A significant negative correlation was found between the proportion of Tregs and the initial modified Rankin score (r = -0.391, p = 0.036). Those who received intravenous immunoglobulin had lower proportions of Tregs than those who did not. CONCLUSION The results of the present study suggest that Tregs may play different roles according to the type of AE and may be linked to disease severity.
Collapse
Affiliation(s)
- Jung-Ick Byun
- Department of Neurology, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul, Korea
| | - Ji‐Yeon Bae
- Department of Neurology, Seoul National University Hospital, Seoul, Korea
- Program in Neuroscience, Seoul National University College of Medicine, Seoul, Korea
| | - Jangsup Moon
- Department of Neurology, Seoul National University Hospital, Seoul, Korea
- Program in Neuroscience, Seoul National University College of Medicine, Seoul, Korea
- Rare Disease Center, Seoul National University Hospital, Seoul, Korea
| | - Soon-Tae Lee
- Department of Neurology, Seoul National University Hospital, Seoul, Korea
- Program in Neuroscience, Seoul National University College of Medicine, Seoul, Korea
| | - Keun-Hwa Jung
- Department of Neurology, Seoul National University Hospital, Seoul, Korea
- Program in Neuroscience, Seoul National University College of Medicine, Seoul, Korea
| | - Kyung-Il Park
- Department of Neurology, Seoul National University Hospital, Seoul, Korea
- Department of Neurology, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Korea
| | - Manho Kim
- Department of Neurology, Seoul National University Hospital, Seoul, Korea
- Program in Neuroscience, Seoul National University College of Medicine, Seoul, Korea
| | - Sang Kun Lee
- Department of Neurology, Seoul National University Hospital, Seoul, Korea
- Program in Neuroscience, Seoul National University College of Medicine, Seoul, Korea
| | - Kon Chu
- Department of Neurology, Seoul National University Hospital, Seoul, Korea
- Program in Neuroscience, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
24
|
Neuropsychological Evaluations in Limbic Encephalitis. Brain Sci 2021; 11:brainsci11050576. [PMID: 33947002 PMCID: PMC8145692 DOI: 10.3390/brainsci11050576] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/20/2022] Open
Abstract
Limbic encephalitis (LE) can cause dynamic and permanent impairment of cognition and behavior. In clinical practice, the question arises as to which cognitive and behavioral domains are affected by LE and which assessment is suited to monitor the disease progress and the success of treatment. Current findings on cognition and behavior in LE are reviewed and discussed based on current guidelines and consensus papers. In addition, we outline approaches for the neuropsychological monitoring of LE and its treatment. Dependent on disease acuity and severity, LE leads to episodic long-term memory dysfunction in different variants (e.g., anterograde memory impairment, accelerated long-term forgetting, and affection of autobiographical memory) and executive deficits. In addition, affective disorders are very common. More severe psychiatric symptoms may occur as well. In the course of the disease, dynamic phases with functional recovery must be differentiated from residual defect states. Evidence-based neuropsychological diagnostics should be conducted ideally before treatment initiation and reassessments are indicated when any progress is suggested, and when decisive anti-seizure or immunomodulatory treatment changes are made. Cognition and behavior may but must not run in synchrony with seizures, MRI pathology, or immune parameters. Cognitive and behavioral problems are integral aspects of LE and represent important biomarkers of disease acuity, progress, and therapy response beyond and in addition to parameters of immunology, neurological symptoms, and brain imaging. Thus, evidence-based neuropsychological assessments are essential for the diagnostic workup of patients with suspected or diagnosed limbic encephalitis, for treatment decisions, and disease and treatment monitoring.
Collapse
|
25
|
Averchenkov D, Volik A, Fominykh V, Nazarov V, Moshnikova A, Lapin S, Brylev L, Guekht A. Acute disseminated encephalomyelitis. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:119-128. [DOI: 10.17116/jnevro2021121111119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Hansen N, Timäus C. Autoimmune encephalitis with psychiatric features in adults: historical evolution and prospective challenge. J Neural Transm (Vienna) 2020; 128:1-14. [PMID: 33026492 PMCID: PMC7815593 DOI: 10.1007/s00702-020-02258-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/22/2020] [Indexed: 01/17/2023]
Abstract
Our review aims to delineate the psychiatric spectrum of autoantibody-associated autoimmune encephalitis over time through its discoveries of antibodies. We searched in PubMed for appropriate articles depicting the first appearance and spectrum of psychiatric symptomatology in autoantibody-positive encephalitis for this narrative review. Memory impairment was first associated with autoantibodies against intracellular antigens such as anti-HuD antibodies in 1993. 8 years later, autoantibodies against cell membrane surface antigens such as voltage-gated potassium channels were described in conjunction with memory dysfunction. The spectrum of psychiatric syndromes was amplified between 1990 and 2020 to include disorientation, behavior, cognitive dysfunction, obsessive compulsive behavior and suicidality in encephalitis patients occurring together mainly with antibodies against surface antigens, less so against intracellular antigens. In general, we found no specific psychiatric symptoms underlying specific autoantibody-associated encephalitis. As fundamental data on this issue have not been systemically assessed to date, we cannot know whether our specific findings would remain from systematic studies, i.e., on the association between cerebrospinal fluid N-methyl-D-aspartate receptor antibodies in catatonia. The psychiatric symptomatology overlaps between psychiatric domains and occurs frequently in antibody-positive encephalitis. No specific psychiatric symptoms imply an underlying, specifically autoantibody-associated encephalitis. The psychiatric phenotypology associated with antibody-positive encephalitis has evolved tremendously recently, and this new evidence reveals its relevance for future diagnostic and treatment aspects of autoimmune encephalitis patients.
Collapse
Affiliation(s)
- Niels Hansen
- Department of Psychiatry and Psychotherapy, University of Goettingen, Von-Siebold-Str. 5, 37075, Goettingen, Germany.
| | - Charles Timäus
- Department of Psychiatry and Psychotherapy, University of Goettingen, Von-Siebold-Str. 5, 37075, Goettingen, Germany
| |
Collapse
|