1
|
Kim C, Moon JY, Kim SH, Kim SH, Chang Y, Cho WH, Kim WY, Kwon SJ, Kim HC, Yoo KH, Lee YS. Prevalences and Interrelationships of Post COVID-19 Fatigue, Sleep Disturbances, and Depression in Healthy Young and Middle-Aged Adults. J Clin Med 2024; 13:2801. [PMID: 38792343 PMCID: PMC11122371 DOI: 10.3390/jcm13102801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/21/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Background: An evaluation of the persistence of symptoms following COVID-19 in economically active young and middle-aged adults is crucial due to its significant socioeconomic impact resulting from compromised work performance. Methods: A prospective, multicenter study at 12 South Korean hospitals from January to December 2022 involved telephone interviews along with validated questionnaires. Results: Among 696 participants with a median age of 32 and no prior diagnoses, 30% of participants experienced persistent fatigue, while 21.4% suffered from sleep disturbance at 6 months following infection. Additionally, approximately 25% of the participants exhibited depression that endured for up to 6 months. Symptomatic individuals at 3 months exhibited a significantly higher prevalence of persistent fatigue, sleep disturbances, and depression at 6 months compared to those who remained asymptomatic. Notably, sleep disturbance and persistent fatigue at 3 months emerged as significant independent predictors of the presence of depression at 6 months. Conclusions: Even among young and middle-aged healthy adults, prolonged fatigue, sleep disturbance, and depression exhibit a significant prevalence and persisted for up to 6 months. Therefore, implementing a workplace management protocol for these symptoms is essential to mitigate the socioeconomic burden caused by the impairment of work efficiency.
Collapse
Affiliation(s)
- Changhwan Kim
- Department of Internal Medicine, Hallym University Dongtan Sacred Heart Hospital, Hwaseong-si 18450, Republic of Korea;
| | - Jae Young Moon
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Chungnam National University College of Medicine, Chungnam National University Sejong Hospital, Sejong 30099, Republic of Korea;
| | - Sung Hyun Kim
- Division of Pulmonary, Allergy, and Critical Care, Department of Internal Medicine, Inje University Busan Paik Hospital, College of Medicine, Busan 47392, Republic of Korea;
| | - Sun-Hyung Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju 28644, Republic of Korea;
| | - Youjin Chang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Sanggye Paik Hospital, Inje University College of Medicine, Seoul 01757, Republic of Korea;
| | - Woo Hyun Cho
- Division of Allergy, Pulmonary and Critical Care Medicine, Transplant Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea;
- Department of Internal Medicine, School of Medicine, Pusan National University, Yangsan 46241, Republic of Korea
| | - Won-Young Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea;
| | - Sun Jung Kwon
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Konyang University College of Medicine, Daejeon 35365, Republic of Korea;
| | - Ho Cheol Kim
- Department of Internal Medicine, Gyeongsang National University Changwon Hospital, Gyeongsang National University School of Medicine, Changwon 51472, Republic of Korea;
| | - Kwang Ha Yoo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Konkuk University School of Medicine, Seoul 05030, Republic of Korea;
| | - Young Seok Lee
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| |
Collapse
|
2
|
Potokar M, Zorec R, Jorgačevski J. Astrocytes Are a Key Target for Neurotropic Viral Infection. Cells 2023; 12:2307. [PMID: 37759529 PMCID: PMC10528686 DOI: 10.3390/cells12182307] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/28/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Astrocytes are increasingly recognized as important viral host cells in the central nervous system. These cells can produce relatively high quantities of new virions. In part, this can be attributed to the characteristics of astrocyte metabolism and its abundant and dynamic cytoskeleton network. Astrocytes are anatomically localized adjacent to interfaces between blood capillaries and brain parenchyma and between blood capillaries and brain ventricles. Moreover, astrocytes exhibit a larger membrane interface with the extracellular space than neurons. These properties, together with the expression of various and numerous viral entry receptors, a relatively high rate of endocytosis, and morphological plasticity of intracellular organelles, render astrocytes important target cells in neurotropic infections. In this review, we describe factors that mediate the high susceptibility of astrocytes to viral infection and replication, including the anatomic localization of astrocytes, morphology, expression of viral entry receptors, and various forms of autophagy.
Collapse
Affiliation(s)
- Maja Potokar
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
- Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
- Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia
| | - Jernej Jorgačevski
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
- Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
Chen Y, Liu Z, Gong Y. Neuron-immunity communication: mechanism of neuroprotective effects in EGCG. Crit Rev Food Sci Nutr 2023; 64:9333-9352. [PMID: 37216484 DOI: 10.1080/10408398.2023.2212069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Epigallocatechin gallate (EGCG), a naturally occurring active ingredient unique to tea, has been shown to have neuroprotective potential. There is growing evidence of its potential advantages in the prevention and treatment of neuroinflammation, neurodegenerative diseases, and neurological damage. Neuroimmune communication is an important physiological mechanism in neurological diseases, including immune cell activation and response, cytokine delivery. EGCG shows great neuroprotective potential by modulating signals related to autoimmune response and improving communication between the nervous system and the immune system, effectively reducing the inflammatory state and neurological function. During neuroimmune communication, EGCG promotes the secretion of neurotrophic factors into the repair of damaged neurons, improves intestinal microenvironmental homeostasis, and ameliorates pathological phenotypes through molecular and cellular mechanisms related to the brain-gut axis. Here, we discuss the molecular and cellular mechanisms of inflammatory signaling exchange involving neuroimmune communication. We further emphasize that the neuroprotective role of EGCG is dependent on the modulatory role between immunity and neurology in neurologically related diseases.
Collapse
Affiliation(s)
- Ying Chen
- Key Laboratory of Tea Science of Ministry of Educatioxn, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Educatioxn, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, China
| | - Yushun Gong
- Key Laboratory of Tea Science of Ministry of Educatioxn, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha, China
| |
Collapse
|
4
|
Aghajani A, Khakpourian Z, Bakhthiarzadeh S, Adibipour F, Sadr M, Coleman-Fuller N, Jamaati H, Motaghinejad M. Trimetazidine May Potentially Confer Neuroprotective Effects against COVID-19-Induced Neurological Sequelae via Inhibition of Death-Associated Protein Kinase 1 (DAPK1) Signaling Pathways: An Evidenced-Based Hypothesis. TANAFFOS 2023; 22:182-186. [PMID: 38628884 PMCID: PMC11016919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Affiliation(s)
- Ali Aghajani
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Khakpourian
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soodeh Bakhthiarzadeh
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Adibipour
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Makan Sadr
- Virology Research Center, NRITLD, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Natalie Coleman-Fuller
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108.
| | - Hamidreza Jamaati
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Motaghinejad
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Zhang J. Investigating neurological symptoms of infectious diseases like COVID-19 leading to a deeper understanding of neurodegenerative disorders such as Parkinson's disease. Front Neurol 2022; 13:968193. [PMID: 36570463 PMCID: PMC9768197 DOI: 10.3389/fneur.2022.968193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/08/2022] [Indexed: 12/12/2022] Open
Abstract
Apart from common respiratory symptoms, neurological symptoms are prevalent among patients with COVID-19. Research has shown that infection with SARS-CoV-2 accelerated alpha-synuclein aggregation, induced Lewy-body-like pathology, caused dopaminergic neuron senescence, and worsened symptoms in patients with Parkinson's disease (PD). In addition, SARS-CoV-2 infection can induce neuroinflammation and facilitate subsequent neurodegeneration in long COVID, and increase individual vulnerability to PD or parkinsonism. These findings suggest that a post-COVID-19 parkinsonism might follow the COVID-19 pandemic. In order to prevent a possible post-COVID-19 parkinsonism, this paper reviewed neurological symptoms and related findings of COVID-19 and related infectious diseases (influenza and prion disease) and neurodegenerative disorders (Alzheimer's disease, PD and amyotrophic lateral sclerosis), and discussed potential mechanisms underlying the neurological symptoms and the relationship between the infectious diseases and the neurodegenerative disorders, as well as the therapeutic and preventive implications in the neurodegenerative disorders. Infections with a relay of microbes (SARS-CoV-2, influenza A viruses, gut bacteria, etc.) and prion-like alpha-synuclein proteins over time may synergize to induce PD. Therefore, a systematic approach that targets these pathogens and the pathogen-induced neuroinflammation and neurodegeneration may provide cures for neurodegenerative disorders. Further, antiviral/antimicrobial drugs, vaccines, immunotherapies and new therapies (e.g., stem cell therapy) need to work together to treat, manage or prevent these disorders. As medical science and technology advances, it is anticipated that better vaccines for SARS-CoV-2 variants, new antiviral/antimicrobial drugs, effective immunotherapies (alpha-synuclein antibodies, vaccines for PD or parkinsonism, etc.), as well as new therapies will be developed and made available in the near future, which will help prevent a possible post-COVID-19 parkinsonism in the 21st century.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Neurology, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
6
|
Townsend AK, Sewall KB, Leonard AS, Hawley DM. Infectious disease and cognition in wild populations. Trends Ecol Evol 2022; 37:899-910. [PMID: 35872026 DOI: 10.1016/j.tree.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/19/2022]
Abstract
Infectious disease is linked to impaired cognition across a breadth of host taxa and cognitive abilities, potentially contributing to variation in cognitive performance within and among populations. Impaired cognitive performance can stem from direct damage by the parasite, the host immune response, or lost opportunities for learning. Moreover, cognitive impairment could be compounded by factors that simultaneously increase infection risk and impair cognition directly, such as stress and malnutrition. As highlighted in this review, however, answers to fundamental questions remain unresolved, including the frequency, duration, and fitness consequences of infection-linked cognitive impairment in wild animal populations, the cognitive abilities most likely to be affected, and the potential for adaptive evolution of cognition in response to accelerating emergence of infectious disease.
Collapse
Affiliation(s)
- Andrea K Townsend
- Department of Biology, Hamilton College, 198 College Hill Road, Clinton, NY 13323, USA.
| | - Kendra B Sewall
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Anne S Leonard
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | - Dana M Hawley
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
7
|
Reis J, Buguet A, Román GC, Spencer PS. The COVID-19 pandemic, an environmental neurology perspective. Rev Neurol (Paris) 2022; 178:499-511. [PMID: 35568518 PMCID: PMC8938187 DOI: 10.1016/j.neurol.2022.02.455] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 11/20/2022]
Abstract
Neurologists have a particular interest in SARS-CoV-2 because the nervous system is a major participant in COVID-19, both in its acute phase and in its persistent post-COVID phase. The global spread of SARS-CoV-2 infection has revealed most of the challenges and risk factors that humanity will face in the future. We review from an environmental neurology perspective some characteristics that have underpinned the pandemic. We consider the agent, SARS-CoV-2, the spread of SARS-CoV-2 as influenced by environmental factors, its impact on the brain and some containment measures on brain health. Several questions remain, including the differential clinical impact of variants, the impact of SARS-CoV-2 on sleep and wakefulness, and the neurological components of Long-COVID syndrome. We touch on the role of national leaders and public health policies that have underpinned management of the COVID-19 pandemic. Increased awareness, anticipation and preparedness are needed to address comparable future challenges.
Collapse
Affiliation(s)
- J Reis
- Université de Strasbourg, 67000 Strasbourg, France; Association RISE, 67205 Oberhausbergen, France.
| | - A Buguet
- General (r) French Army Health Services, Malaria Research Unit, UMR 5246 CNRS, Claude-Bernard Lyon-1 University, 69622 Villeurbanne, France.
| | - G C Román
- Department of Neurology, Neurological Institute, Houston Methodist Hospital, Houston, TX, USA.
| | - P S Spencer
- Department of Neurology, School of Medicine, Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
8
|
Smeyne RJ, Eells JB, Chatterjee D, Byrne M, Akula SM, Sriramula S, O'Rourke DP, Schmidt P. COVID-19 infection enhances susceptibility to oxidative-stress induced parkinsonism. Mov Disord 2022; 37:1394-1404. [PMID: 35579496 PMCID: PMC9347874 DOI: 10.1002/mds.29116] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/07/2022] Open
Abstract
Background Viral induction of neurological syndromes has been a concern since parkinsonian‐like features were observed in patients diagnosed with encephalitis lethargica subsequent to the 1918 influenza pandemic. Given the similarities in the systemic responses after severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) infection with those observed after pandemic influenza, there is a question whether a similar syndrome of postencephalic parkinsonism could follow coronavirus disease 2019 infection. Objective The goal of this study was to determine whether prior infection with SARS‐CoV‐2 increased sensitivity to a mitochondrial toxin known to induce parkinsonism. Methods K18‐hACE2 mice were infected with SARS‐CoV‐2 to induce mild‐to‐moderate disease. After 38 days of recovery, mice were administered a non‐lesion‐inducing dose of the parkinsonian toxin 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP) and euthanized 7 days later. Subsequent neuroinflammation and substantia nigra pars compacta (SNpc) dopaminergic (DA) neuron loss were determined and compared with SARS‐CoV‐2 or MPTP alone. Results K18‐hACE2 mice infected with SARS‐CoV‐2 or MPTP showed no SNpc DA neuron loss after MPTP. In mice infected and recovered from SARS‐CoV‐2 infection, MPTP induced a 23% or 19% greater loss of SNpc DA neurons than SARS‐CoV‐2 or MPTP, respectively (P < 0.05). Examination of microglial activation showed a significant increase in the number of activated microglia in both the SNpc and striatum of the SARS‐CoV‐2 + MPTP group compared with SARS‐CoV‐2 or MPTP alone. Conclusions Our observations have important implications for long‐term public health, given the number of people who have survived SARS‐CoV‐2 infection, as well as for future public policy regarding infection mitigation. However, it will be critical to determine whether other agents known to increase risk for PD also have synergistic effects with SARS‐CoV‐2 and are abrogated by vaccination. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Collapse
Affiliation(s)
- Richard J Smeyne
- Department of Neurosciences, Thomas Jefferson University, Vickie and Jack Farber Institute for Neuroscience, JHN 451, 900 Walnut Street, Philadelphia, PA, 19027
| | - Jeffrey B Eells
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, 600 Moye Blvd, Greenville, NC, 27834
| | - Debotri Chatterjee
- Department of Neurosciences, Thomas Jefferson University, Vickie and Jack Farber Institute for Neuroscience, JHN 451, 900 Walnut Street, Philadelphia, PA, 19027
| | - Matthew Byrne
- Department of Neurosciences, Thomas Jefferson University, Vickie and Jack Farber Institute for Neuroscience, JHN 451, 900 Walnut Street, Philadelphia, PA, 19027
| | - Shaw M Akula
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, 600 Moye Blvd, Greenville, NC, 27834
| | - Srinivas Sriramula
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, 600 Moye Blvd, Greenville, NC, 27834
| | - Dorcas P O'Rourke
- Department of Comparative Medicine, Brody School of Medicine, East Carolina University, 600 Moye Blvd, Greenville, NC, 27834
| | - Peter Schmidt
- Department of Neurology, Grossman School of Medicine, New York University, 222 East 41st St, 9th Floor, New York, NY, 10017
| |
Collapse
|
9
|
Ndondo AP, Eley B, Wilmshurst JM, Kakooza-Mwesige A, Giannoccaro MP, Willison HJ, Cruz PMR, Heckmann JM, Bateman K, Vincent A. Post-Infectious Autoimmunity in the Central (CNS) and Peripheral (PNS) Nervous Systems: An African Perspective. Front Immunol 2022; 13:833548. [PMID: 35356001 PMCID: PMC8959857 DOI: 10.3389/fimmu.2022.833548] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
The direct impact and sequelae of infections in children and adults result in significant morbidity and mortality especially when they involve the central (CNS) or peripheral nervous system (PNS). The historical understanding of the pathophysiology has been mostly focused on the direct impact of the various pathogens through neural tissue invasion. However, with the better understanding of neuroimmunology, there is a rapidly growing realization of the contribution of the innate and adaptive host immune responses in the pathogenesis of many CNS and PNS diseases. The balance between the protective and pathologic sequelae of immunity is fragile and can easily be tipped towards harm for the host. The matter of immune privilege and surveillance of the CNS/PNS compartments and the role of the blood-brain barrier (BBB) and blood nerve barrier (BNB) makes this even more complex. Our understanding of the pathogenesis of many post-infectious manifestations of various microbial agents remains elusive, especially in the diverse African setting. Our exploration and better understanding of the neuroimmunology of some of the infectious diseases that we encounter in the continent will go a long way into helping us to improve their management and therefore lessen the burden. Africa is diverse and uniquely poised because of the mix of the classic, well described, autoimmune disease entities and the specifically "tropical" conditions. This review explores the current understanding of some of the para- and post-infectious autoimmune manifestations of CNS and PNS diseases in the African context. We highlight the clinical presentations, diagnosis and treatment of these neurological disorders and underscore the knowledge gaps and perspectives for future research using disease models of conditions that we see in the continent, some of which are not uniquely African and, where relevant, include discussion of the proposed mechanisms underlying pathogen-induced autoimmunity. This review covers the following conditions as models and highlight those in which a relationship with COVID-19 infection has been reported: a) Acute Necrotizing Encephalopathy; b) Measles-associated encephalopathies; c) Human Immunodeficiency Virus (HIV) neuroimmune disorders, and particularly the difficulties associated with classical post-infectious autoimmune disorders such as the Guillain-Barré syndrome in the context of HIV and other infections. Finally, we describe NMDA-R encephalitis, which can be post-HSV encephalitis, summarise other antibody-mediated CNS diseases and describe myasthenia gravis as the classic antibody-mediated disease but with special features in Africa.
Collapse
Affiliation(s)
- Alvin Pumelele Ndondo
- Department of Paediatric Neurology, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
| | - Brian Eley
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa.,Paediatric Infectious Diseases Unit, Red Cross War Memorial Children's Hospital, Cape Town, South Africa
| | - Jo Madeleine Wilmshurst
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa.,Department of Paediatric Neurology, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Angelina Kakooza-Mwesige
- Department of Pediatrics and Child Health, School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Maria Pia Giannoccaro
- Laboratory of Neuromuscular Pathology and Neuroimmunology, Istituto di Ricovero e Cura a CarattereScientifico (IRCCS) Instiuto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica Bologna, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Hugh J Willison
- Institute of Infection, Immunity and Inflammation (3I), University of Glasgow, Glasgow, United Kingdom
| | - Pedro M Rodríguez Cruz
- Centro Nacional de Analisis Genomico - Centre for Genomic Regulation (CNAG-CRG ), Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Neuromuscular Disease, University College London (UCL) Queen Square Institute of Neurology, London, United Kingdom.,Faculté de Médecine, de Pharmacie et d'Odontologie, Université Cheikh Anta Diop, Dakar, Senegal
| | - Jeannine M Heckmann
- Neurology Division, Department of Medicine, Groote Schuur Hospital, Cape Town, South Africa.,The University of Cape Town (UCT) Neurosciences Institute, University of Cape Town, Cape Town, South Africa
| | - Kathleen Bateman
- Neurology Division, Department of Medicine, Groote Schuur Hospital, Cape Town, South Africa
| | - Angela Vincent
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
10
|
Hornick MG, Olson ME, Jadhav AL. SARS-CoV-2 Psychiatric Sequelae: A Review of Neuroendocrine Mechanisms and Therapeutic Strategies. Int J Neuropsychopharmacol 2022; 25:1-12. [PMID: 34648616 PMCID: PMC8524640 DOI: 10.1093/ijnp/pyab069] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/07/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
From the earliest days of the coronavirus disease 2019 (COVID-19) pandemic, there have been reports of significant neurological and psychological symptoms following Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. This narrative review is designed to examine the potential psychoneuroendocrine pathogenic mechanisms by which SARS-CoV-2 elicits psychiatric sequelae as well as to posit potential pharmacologic strategies to address and reverse these pathologies. Following a brief overview of neurological and psychological sequelae from previous viral pandemics, we address mechanisms by which SARS-CoV-2 could enter or otherwise elicit changes in the CNS. We then examine the hypothesis that COVID-19-induced psychiatric disorders result from challenges to the neuroendocrine system, in particular the hypothalamic-pituitary-adrenal stress axis and monoamine synthesis, physiological mechanisms that are only further enhanced by the pandemic-induced social environment of fear, isolation, and socioeconomic pressure. Finally, we evaluate several FDA-approved therapeutics in the context of COVID-19-induced psychoneuroendocrine disorders.
Collapse
Affiliation(s)
- Mary G Hornick
- Roosevelt University, College of Science, Health and Pharmacy, Schaumburg, Illinois, USA
| | - Margaret E Olson
- Roosevelt University, College of Science, Health and Pharmacy, Schaumburg, Illinois, USA
| | - Arun L Jadhav
- Roosevelt University, College of Science, Health and Pharmacy, Schaumburg, Illinois, USA
| |
Collapse
|
11
|
Kukkle PL. COVID-19: The cynosure of rise of Parkinson's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 165:251-262. [PMID: 36208903 PMCID: PMC9303069 DOI: 10.1016/bs.irn.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Parkinson's disease (PD) is one of the most common age-related disorders globally. The pathophysiological mechanisms and precipitating factors underlying PD manifestations, including genetic and environmental parameters, inflammation/stress and ageing, remain elusive. Speculations about whether the Coronavirus Disease 2019 (Covid-19) pandemic could be a pivotal factor in affecting the prevalence and severity of PD or triggering a wave of new-onset parkinsonism in both the near and distant future have recently become very popular, with researchers wondering if there is a changing trend in current parkinsonism cases. Could the current understanding of the Covid-19 pathophysiology provide clues for an impending rise of parkinsonism cases in the future? Are there any lessons to learn from previous pandemics? Our aim was to look into these questions and available current literature in order to investigate if Covid-19 could constitute a cardinal event affecting the parkinsonism landscape.
Collapse
Affiliation(s)
- Prashanth Lingappa Kukkle
- Parkinson's Disease and Movement Disorders Clinic, Bangalore, India; Center for Parkinson's Disease and Movement Disorders, Manipal Hospital, Miller's Road, Bangalore, India.
| |
Collapse
|