1
|
Zhuo Z, Zhang N, Ao F, Hua T, Duan Y, Xu X, Weng J, Cao G, Li K, Zhou F, Li H, Li Y, Han X, Haller S, Barkhof F, Hu G, Shi F, Zhang X, Tian D, Liu Y. Spatial structural abnormality maps associated with cognitive and physical performance in relapsing-remitting multiple sclerosis. Eur Radiol 2025; 35:1228-1241. [PMID: 39470796 DOI: 10.1007/s00330-024-11157-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/21/2024] [Accepted: 09/02/2024] [Indexed: 11/01/2024]
Abstract
OBJECTIVES We aimed to characterize the brain abnormalities that are associated with the cognitive and physical performance of patients with relapsing-remitting multiple sclerosis (RRMS) using a deep learning algorithm. MATERIALS AND METHODS Three-dimensional (3D) nnU-Net was employed to calculate a novel spatial abnormality map by T1-weighted images and 281 RRMS patients (Dataset-1, male/female = 101/180, median age [range] = 35.0 [17.0, 65.0] years) were categorized into subtypes. Comparison of clinical and MRI features between RRMS subtypes was conducted by Kruskal-Wallis test. Kaplan-Meier analysis was conducted to investigate disability progression in RRMS subtypes. Additional validation using two other RRMS datasets (Dataset-2, n = 33 and Dataset-3, n = 56) was conducted. RESULTS Five RRMS subtypes were identified: (1) a Frontal-I subtype showing preserved cognitive performance and mild physical disability, and low risk of disability worsening; (2) a Frontal-II subtype showing low cognitive scores and severe physical disability with significant brain volume loss, and a high propensity for disability worsening; (3) a temporal-cerebellar subtype demonstrating lowest cognitive scores and severest physical disability among all subtypes but remaining relatively stable during follow-up; (4) an occipital subtype demonstrating similar clinical and imaging characteristics as the Frontal-II subtype, except a large number of relapses at baseline and preserved cognitive performance; and (5) a subcortical subtype showing preserved cognitive performance and low physical disability but a similar prognosis as the occipital and Frontal-II subtypes. Additional validation confirmed the above findings. CONCLUSION Spatial abnormality maps can explain heterogeneity in cognitive and physical performance in RRMS and may contribute to stratified management. KEY POINTS Question Can a deep learning algorithm characterize the brain abnormalities associated with the cognitive and physical performance of patients with RRMS? Findings Five RRMS subtypes were identified by the algorithm that demonstrated variable cognitive and physical performance. Clinical relevance The spatial abnormality maps derived RRMS subtypes had distinct cognitive and physical performances, which have a potential for individually tailored management.
Collapse
Affiliation(s)
- Zhizheng Zhuo
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Ningnannan Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Feng Ao
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Radiology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Tiantian Hua
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yunyun Duan
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaolu Xu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jinyuan Weng
- Department of Medical Imaging Product, Neusoft Group Ltd., Shenyang, People's Republic of China
| | - Guanmei Cao
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Kuncheng Li
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Fuqing Zhou
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Haiqing Li
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yongmei Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Han
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Sven Haller
- Department of Imaging and Medical Informatics, University Hospitals of Geneva and Faculty of Medicine of the University of Geneva, Geneva, Switzerland
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam, The Netherlands
- Queen Square Institute of Neurology and Center for Medical Image Computing, University College London, London, UK
| | - Geli Hu
- Clinical and Technical Support, Philips Healthcare, Beijing, China
| | - Fudong Shi
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xinghu Zhang
- Center for Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Decai Tian
- Center for Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yaou Liu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Szekely-Kohn AC, Castellani M, Espino DM, Baronti L, Ahmed Z, Manifold WGK, Douglas M. Machine learning for refining interpretation of magnetic resonance imaging scans in the management of multiple sclerosis: a narrative review. ROYAL SOCIETY OPEN SCIENCE 2025; 12:241052. [PMID: 39845718 PMCID: PMC11750376 DOI: 10.1098/rsos.241052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/23/2024] [Accepted: 11/17/2024] [Indexed: 01/24/2025]
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the brain and spinal cord with both inflammatory and neurodegenerative features. Although advances in imaging techniques, particularly magnetic resonance imaging (MRI), have improved the process of diagnosis, its cause is unknown, a cure remains elusive and the evidence base to guide treatment is lacking. Computational techniques like machine learning (ML) have started to be used to understand MS. Published MS MRI-based computational studies can be divided into five categories: automated diagnosis; differentiation between lesion types and/or MS stages; differential diagnosis; monitoring and predicting disease progression; and synthetic MRI dataset generation. Collectively, these approaches show promise in assisting with MS diagnosis, monitoring of disease activity and prediction of future progression, all potentially contributing to disease management. Analysis quality using ML is highly dependent on the dataset size and variability used for training. Wider public access would mean larger datasets for experimentation, resulting in higher-quality analysis, permitting for more conclusive research. This narrative review provides an outline of the fundamentals of MS pathology and pathogenesis, diagnostic techniques and data types in computational analysis, as well as collating literature pertaining to the application of computational techniques to MRI towards developing a better understanding of MS.
Collapse
Affiliation(s)
- Adam C. Szekely-Kohn
- School of Engineering, University of Birmingham, Edgbaston, BirminghamB15 2TT, UK
| | - Marco Castellani
- School of Engineering, University of Birmingham, Edgbaston, BirminghamB15 2TT, UK
| | - Daniel M. Espino
- School of Engineering, University of Birmingham, Edgbaston, BirminghamB15 2TT, UK
| | - Luca Baronti
- School of Computer Science, University of Birmingham, Edgbaston, BirminghamB15 2TT, UK
| | - Zubair Ahmed
- University Hospitals Birmingham NHS Foundation Trust, Edgbaston, BirminghamB15 2GW, UK
- Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, BirminghamB15 2TT, UK
| | | | - Michael Douglas
- University Hospitals Birmingham NHS Foundation Trust, Edgbaston, BirminghamB15 2GW, UK
- Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, BirminghamB15 2TT, UK
- Department of Neurology, Dudley Group NHS Foundation Trust, Russells Hall Hospital, BirminghamDY1 2HQ, UK
- School of Life and Health Sciences, Aston University, Birmingham, UK
| |
Collapse
|
3
|
Mayfield JD, Murtagh R, Ciotti J, Robertson D, Naqa IE. Time-Dependent Deep Learning Prediction of Multiple Sclerosis Disability. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:3231-3249. [PMID: 38871944 PMCID: PMC11612123 DOI: 10.1007/s10278-024-01031-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/05/2024] [Accepted: 01/23/2024] [Indexed: 06/15/2024]
Abstract
The majority of deep learning models in medical image analysis concentrate on single snapshot timepoint circumstances, such as the identification of current pathology on a given image or volume. This is often in contrast to the diagnostic methodology in radiology where presumed pathologic findings are correlated to prior studies and subsequent changes over time. For multiple sclerosis (MS), the current body of literature describes various forms of lesion segmentation with few studies analyzing disability progression over time. For the purpose of longitudinal time-dependent analysis, we propose a combinatorial analysis of a video vision transformer (ViViT) benchmarked against traditional recurrent neural network of Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) architectures and a hybrid Vision Transformer-LSTM (ViT-LSTM) to predict long-term disability based upon the Extended Disability Severity Score (EDSS). The patient cohort was procured from a two-site institution with 703 patients' multisequence, contrast-enhanced MRIs of the cervical spine between the years 2002 and 2023. Following a competitive performance analysis, a VGG-16-based CNN-LSTM was compared to ViViT with an ablation analysis to determine time-dependency of the models. The VGG16-LSTM predicted trinary classification of EDSS score in 6 years with 0.74 AUC versus the ViViT with 0.84 AUC (p-value < 0.001 per 5 × 2 cross-validation F-test) on an 80:20 hold-out testing split. However, the VGG16-LSTM outperformed ViViT when patients with only 2 years of MRIs (n = 94) (0.75 AUC versus 0.72 AUC, respectively). Exact EDSS classification was investigated for both models using both classification and regression strategies but showed collectively worse performance. Our experimental results demonstrate the ability of time-dependent deep learning models to predict disability in MS using trinary stratification of disability, mimicking clinical practice. Further work includes external validation and subsequent observational clinical trials.
Collapse
Affiliation(s)
- John D Mayfield
- USF Health Department of Radiology, 2 Tampa General Circle, STC 6103, Tampa, FL, 33612, USA.
| | - Ryan Murtagh
- USF Health Department of Radiology, 2 Tampa General Circle, STC 6103, Tampa, FL, 33612, USA
| | - John Ciotti
- Department of Neurology, University of South Florida, Morsani College of Medicine, USF Multiple Sclerosis Center, 13330 USF Laurel Drive, Tampa, FL, 33612, USA
| | - Derrick Robertson
- Department of Neurology, James A. Haley VA Medical Center, 13000 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| | - Issam El Naqa
- University of South Florida, College of Engineering, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA
- H. Lee Moffitt Cancer Center Department of Machine Learning, Tampa, FL, 33612, USA
| |
Collapse
|
4
|
Yousef H, Malagurski Tortei B, Castiglione F. Predicting multiple sclerosis disease progression and outcomes with machine learning and MRI-based biomarkers: a review. J Neurol 2024; 271:6543-6572. [PMID: 39266777 PMCID: PMC11447111 DOI: 10.1007/s00415-024-12651-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 09/14/2024]
Abstract
Multiple sclerosis (MS) is a demyelinating neurological disorder with a highly heterogeneous clinical presentation and course of progression. Disease-modifying therapies are the only available treatment, as there is no known cure for the disease. Careful selection of suitable therapies is necessary, as they can be accompanied by serious risks and adverse effects such as infection. Magnetic resonance imaging (MRI) plays a central role in the diagnosis and management of MS, though MRI lesions have displayed only moderate associations with MS clinical outcomes, known as the clinico-radiological paradox. With the advent of machine learning (ML) in healthcare, the predictive power of MRI can be improved by leveraging both traditional and advanced ML algorithms capable of analyzing increasingly complex patterns within neuroimaging data. The purpose of this review was to examine the application of MRI-based ML for prediction of MS disease progression. Studies were divided into five main categories: predicting the conversion of clinically isolated syndrome to MS, cognitive outcome, EDSS-related disability, motor disability and disease activity. The performance of ML models is discussed along with highlighting the influential MRI-derived biomarkers. Overall, MRI-based ML presents a promising avenue for MS prognosis. However, integration of imaging biomarkers with other multimodal patient data shows great potential for advancing personalized healthcare approaches in MS.
Collapse
Affiliation(s)
- Hibba Yousef
- Technology Innovation Institute, Biotechnology Research Center, P.O.Box: 9639, Masdar City, Abu Dhabi, United Arab Emirates.
| | - Brigitta Malagurski Tortei
- Technology Innovation Institute, Biotechnology Research Center, P.O.Box: 9639, Masdar City, Abu Dhabi, United Arab Emirates
| | - Filippo Castiglione
- Technology Innovation Institute, Biotechnology Research Center, P.O.Box: 9639, Masdar City, Abu Dhabi, United Arab Emirates
- Institute for Applied Computing (IAC), National Research Council of Italy, Rome, Italy
| |
Collapse
|
5
|
Noteboom S, Seiler M, Chien C, Rane RP, Barkhof F, Strijbis EMM, Paul F, Schoonheim MM, Ritter K. Evaluation of machine learning-based classification of clinical impairment and prediction of clinical worsening in multiple sclerosis. J Neurol 2024; 271:5577-5589. [PMID: 38909341 PMCID: PMC11319410 DOI: 10.1007/s00415-024-12507-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/01/2024] [Accepted: 06/09/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND Robust predictive models of clinical impairment and worsening in multiple sclerosis (MS) are needed to identify patients at risk and optimize treatment strategies. OBJECTIVE To evaluate whether machine learning (ML) methods can classify clinical impairment and predict worsening in people with MS (pwMS) and, if so, which combination of clinical and magnetic resonance imaging (MRI) features and ML algorithm is optimal. METHODS We used baseline clinical and structural MRI data from two MS cohorts (Berlin: n = 125, Amsterdam: n = 330) to evaluate the capability of five ML models in classifying clinical impairment at baseline and predicting future clinical worsening over a follow-up of 2 and 5 years. Clinical worsening was defined by increases in the Expanded Disability Status Scale (EDSS), Timed 25-Foot Walk Test (T25FW), 9-Hole Peg Test (9HPT), or Symbol Digit Modalities Test (SDMT). Different combinations of clinical and volumetric MRI measures were systematically assessed in predicting clinical outcomes. ML models were evaluated using Monte Carlo cross-validation, area under the curve (AUC), and permutation testing to assess significance. RESULTS The ML models significantly determined clinical impairment at baseline for the Amsterdam cohort, but did not reach significance for predicting clinical worsening over a follow-up of 2 and 5 years. High disability (EDSS ≥ 4) was best determined by a support vector machine (SVM) classifier using clinical and global MRI volumes (AUC = 0.83 ± 0.07, p = 0.015). Impaired cognition (SDMT Z-score ≤ -1.5) was best determined by a SVM using regional MRI volumes (thalamus, ventricles, lesions, and hippocampus), reaching an AUC of 0.73 ± 0.04 (p = 0.008). CONCLUSION ML models could aid in classifying pwMS with clinical impairment and identify relevant biomarkers, but prediction of clinical worsening is an unmet need.
Collapse
Affiliation(s)
- Samantha Noteboom
- MS Center Amsterdam, Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands.
| | - Moritz Seiler
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Claudia Chien
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Roshan P Rane
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Frederik Barkhof
- MS Center Amsterdam, Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Centre for Medical Image Computing, Queen Square Institute of Neurology, University College London, London, UK
| | - Eva M M Strijbis
- MS Center Amsterdam, Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Friedemann Paul
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Menno M Schoonheim
- MS Center Amsterdam, Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Kerstin Ritter
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| |
Collapse
|
6
|
El Morr C, Kundi B, Mobeen F, Taleghani S, El-Lahib Y, Gorman R. AI and disability: A systematic scoping review. Health Informatics J 2024; 30:14604582241285743. [PMID: 39287175 DOI: 10.1177/14604582241285743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Background: Artificial intelligence (AI) can enhance life experiences and present challenges for people with disabilities. Objectives: This study aims to investigate the relationship between AI and disability, exploring the potential benefits and challenges of using AI for people with disabilities. Methods: A systematic scoping review was conducted using eight online databases; 45 scholarly articles from the last 5 years were identified and selected for thematic analysis. Results: The review's findings revealed AI's potential to enhance healthcare; however, it showed a high prevalence of a narrow medical model of disability and an ableist perspective in AI research. This raises concerns about the perpetuation of biases and discrimination against individuals with disabilities in the development and deployment of AI technologies. Conclusion: We recommend shifting towards a social model of disability, promoting interdisciplinary collaboration, addressing AI bias and discrimination, prioritizing privacy and security in AI development, focusing on accessibility and usability, investing in education and training, and advocating for robust policy and regulatory frameworks. The review emphasizes the urgent need for further research to ensure that AI benefits all members of society equitably and that future AI systems are designed with inclusivity and accessibility as core principles.
Collapse
Affiliation(s)
- Christo El Morr
- School of Health Policy and Management, York University, Toronto, ON, Canada
| | - Bushra Kundi
- Master of Science in eHealth, McMaster University, Hamilton, ON, Canada
| | - Fariah Mobeen
- School of Health Policy and Management, York University, Toronto, ON, Canada
| | - Sarah Taleghani
- School of Health Policy and Management, York University, Toronto, ON, Canada
| | - Yahya El-Lahib
- Faculty of Social Work, University of Calgary, Calgary, AB, Canada
| | - Rachel Gorman
- School of Health Policy and Management, York University, Toronto, ON, Canada
| |
Collapse
|
7
|
Reeve K, On BI, Havla J, Burns J, Gosteli-Peter MA, Alabsawi A, Alayash Z, Götschi A, Seibold H, Mansmann U, Held U. Prognostic models for predicting clinical disease progression, worsening and activity in people with multiple sclerosis. Cochrane Database Syst Rev 2023; 9:CD013606. [PMID: 37681561 PMCID: PMC10486189 DOI: 10.1002/14651858.cd013606.pub2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system that affects millions of people worldwide. The disease course varies greatly across individuals and many disease-modifying treatments with different safety and efficacy profiles have been developed recently. Prognostic models evaluated and shown to be valid in different settings have the potential to support people with MS and their physicians during the decision-making process for treatment or disease/life management, allow stratified and more precise interpretation of interventional trials, and provide insights into disease mechanisms. Many researchers have turned to prognostic models to help predict clinical outcomes in people with MS; however, to our knowledge, no widely accepted prognostic model for MS is being used in clinical practice yet. OBJECTIVES To identify and summarise multivariable prognostic models, and their validation studies for quantifying the risk of clinical disease progression, worsening, and activity in adults with MS. SEARCH METHODS We searched MEDLINE, Embase, and the Cochrane Database of Systematic Reviews from January 1996 until July 2021. We also screened the reference lists of included studies and relevant reviews, and references citing the included studies. SELECTION CRITERIA We included all statistically developed multivariable prognostic models aiming to predict clinical disease progression, worsening, and activity, as measured by disability, relapse, conversion to definite MS, conversion to progressive MS, or a composite of these in adult individuals with MS. We also included any studies evaluating the performance of (i.e. validating) these models. There were no restrictions based on language, data source, timing of prognostication, or timing of outcome. DATA COLLECTION AND ANALYSIS Pairs of review authors independently screened titles/abstracts and full texts, extracted data using a piloted form based on the Checklist for Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies (CHARMS), assessed risk of bias using the Prediction Model Risk Of Bias Assessment Tool (PROBAST), and assessed reporting deficiencies based on the checklist items in Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD). The characteristics of the included models and their validations are described narratively. We planned to meta-analyse the discrimination and calibration of models with at least three external validations outside the model development study but no model met this criterion. We summarised between-study heterogeneity narratively but again could not perform the planned meta-regression. MAIN RESULTS We included 57 studies, from which we identified 75 model developments, 15 external validations corresponding to only 12 (16%) of the models, and six author-reported validations. Only two models were externally validated multiple times. None of the identified external validations were performed by researchers independent of those that developed the model. The outcome was related to disease progression in 39 (41%), relapses in 8 (8%), conversion to definite MS in 17 (18%), and conversion to progressive MS in 27 (28%) of the 96 models or validations. The disease and treatment-related characteristics of included participants, and definitions of considered predictors and outcome, were highly heterogeneous amongst the studies. Based on the publication year, we observed an increase in the percent of participants on treatment, diversification of the diagnostic criteria used, an increase in consideration of biomarkers or treatment as predictors, and increased use of machine learning methods over time. Usability and reproducibility All identified models contained at least one predictor requiring the skills of a medical specialist for measurement or assessment. Most of the models (44; 59%) contained predictors that require specialist equipment likely to be absent from primary care or standard hospital settings. Over half (52%) of the developed models were not accompanied by model coefficients, tools, or instructions, which hinders their application, independent validation or reproduction. The data used in model developments were made publicly available or reported to be available on request only in a few studies (two and six, respectively). Risk of bias We rated all but one of the model developments or validations as having high overall risk of bias. The main reason for this was the statistical methods used for the development or evaluation of prognostic models; we rated all but two of the included model developments or validations as having high risk of bias in the analysis domain. None of the model developments that were externally validated or these models' external validations had low risk of bias. There were concerns related to applicability of the models to our research question in over one-third (38%) of the models or their validations. Reporting deficiencies Reporting was poor overall and there was no observable increase in the quality of reporting over time. The items that were unclearly reported or not reported at all for most of the included models or validations were related to sample size justification, blinding of outcome assessors, details of the full model or how to obtain predictions from it, amount of missing data, and treatments received by the participants. Reporting of preferred model performance measures of discrimination and calibration was suboptimal. AUTHORS' CONCLUSIONS The current evidence is not sufficient for recommending the use of any of the published prognostic prediction models for people with MS in clinical routine today due to lack of independent external validations. The MS prognostic research community should adhere to the current reporting and methodological guidelines and conduct many more state-of-the-art external validation studies for the existing or newly developed models.
Collapse
Affiliation(s)
- Kelly Reeve
- Epidemiology, Biostatistics and Prevention Institute, University of Zürich, Zurich, Switzerland
| | - Begum Irmak On
- Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Joachim Havla
- lnstitute of Clinical Neuroimmunology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jacob Burns
- Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany
- Pettenkofer School of Public Health, Munich, Germany
| | | | - Albraa Alabsawi
- Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Zoheir Alayash
- Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany
- Institute of Health Services Research in Dentistry, University of Münster, Muenster, Germany
| | - Andrea Götschi
- Epidemiology, Biostatistics and Prevention Institute, University of Zürich, Zurich, Switzerland
| | | | - Ulrich Mansmann
- Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany
- Pettenkofer School of Public Health, Munich, Germany
| | - Ulrike Held
- Epidemiology, Biostatistics and Prevention Institute, University of Zürich, Zurich, Switzerland
| |
Collapse
|
8
|
Labiano-Fontcuberta A, Costa-Frossard L, Sainz de la Maza S, Rodríguez-Jorge F, Chico-García JL, González PN, Monreal E. Predictive models of multiple sclerosis-related cognitive performance using routine clinical practice predictors. Mult Scler Relat Disord 2023; 76:104849. [PMID: 37356257 DOI: 10.1016/j.msard.2023.104849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/25/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND The application of machine learning (ML) to predict cognitive evolution is exceptionally scarce. Computer-based self-administered cognitive tests provide the opportunity to set up large longitudinal datasets to aid in developing ML prediction models of risk for Multiple Sclerosis-related cognitive decline. OBJECTIVE to analyze to what extent clinically feasible models can be built with standard clinical practice features and subsequently used for reliable prediction of cognitive evolution. METHODS This prospective longitudinal study includes 1184 people with MS who received a Processing Speed (PS) evaluation at 12 months of follow-up measured by the iPad®-based Processing Speed Test (PST). Six of the most potent classification models built with routine clinical practice features were trained and tested to predict the 12-month patient class label (PST worsening (PSTw) versus PST stable). A rigorous scheme of all the preprocessing steps run to obtain reliable generalization performance is detailed. RESULTS Based on a 12-month reduction of 10% of the PST raw score, 187/1184 (15.8%) people with MS were classified as PSTw. The trees-based models (random forest and the eXtreme Gradient Boosting) achieved the best performance, with an area under the receiver operating characteristic curve (AUC) of 0.90 and 0.89, respectively. The timing of high-efficacy disease-modifying therapies (heDMTs) was identified as one of the top importance predictors in all the models evaluated. CONCLUSION Using trees-based machine learning models to predict individual future information processing speed deterioration in MS could become a reality in clinical practice.
Collapse
Affiliation(s)
- Andrés Labiano-Fontcuberta
- Department of Neurology, University Hospital12 de Octubre, Avenida de Córdoba 41, Community of Madrid 28026, Spain.
| | - Lucienne Costa-Frossard
- Department of Neurology, University Hospital Ramón y Cajal, Universidad de Alcalá, Ramón y Cajal Institute for Health Research (IRYCIS), Spanish Network of Multiple Sclerosis (REEM), Colmenar Viejo, km 9,100, Community of Madrid 28034, Spain
| | - Susana Sainz de la Maza
- Department of Neurology, University Hospital Ramón y Cajal, Universidad de Alcalá, Ramón y Cajal Institute for Health Research (IRYCIS), Spanish Network of Multiple Sclerosis (REEM), Colmenar Viejo, km 9,100, Community of Madrid 28034, Spain
| | - Fernando Rodríguez-Jorge
- Department of Neurology, University Hospital Ramón y Cajal, Universidad de Alcalá, Ramón y Cajal Institute for Health Research (IRYCIS), Spanish Network of Multiple Sclerosis (REEM), Colmenar Viejo, km 9,100, Community of Madrid 28034, Spain
| | - Juan Luis Chico-García
- Department of Neurology, University Hospital Ramón y Cajal, Universidad de Alcalá, Ramón y Cajal Institute for Health Research (IRYCIS), Spanish Network of Multiple Sclerosis (REEM), Colmenar Viejo, km 9,100, Community of Madrid 28034, Spain
| | - Pablo Nieto González
- Department of Neurology, University Hospital Infanta Elena, Avda. de los Reyes Católicos 21Valdemoro, Community of Madrid 28342, Spain
| | - Enric Monreal
- Department of Neurology, University Hospital Ramón y Cajal, Universidad de Alcalá, Ramón y Cajal Institute for Health Research (IRYCIS), Spanish Network of Multiple Sclerosis (REEM), Colmenar Viejo, km 9,100, Community of Madrid 28034, Spain
| |
Collapse
|
9
|
Lopez-Soley E, Martinez-Heras E, Solana E, Solanes A, Radua J, Vivo F, Prados F, Sepulveda M, Cabrera-Maqueda JM, Fonseca E, Blanco Y, Alba-Arbalat S, Martinez-Lapiscina EH, Villoslada P, Saiz A, Llufriu S. Diffusion tensor imaging metrics associated with future disability in multiple sclerosis. Sci Rep 2023; 13:3565. [PMID: 36864113 PMCID: PMC9981711 DOI: 10.1038/s41598-023-30502-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
The relationship between brain diffusion microstructural changes and disability in multiple sclerosis (MS) remains poorly understood. We aimed to explore the predictive value of microstructural properties in white (WM) and grey matter (GM), and identify areas associated with mid-term disability in MS patients. We studied 185 patients (71% female; 86% RRMS) with the Expanded Disability Status Scale (EDSS), timed 25-foot walk (T25FW), nine-hole peg test (9HPT), and Symbol Digit Modalities Test (SDMT) at two time-points. We used Lasso regression to analyse the predictive value of baseline WM fractional anisotropy and GM mean diffusivity, and to identify areas related to each outcome at 4.1 years follow-up. Motor performance was associated with WM (T25FW: RMSE = 0.524, R2 = 0.304; 9HPT dominant hand: RMSE = 0.662, R2 = 0.062; 9HPT non-dominant hand: RMSE = 0.649, R2 = 0.139), and SDMT with GM diffusion metrics (RMSE = 0.772, R2 = 0.186). Cingulum, longitudinal fasciculus, optic radiation, forceps minor and frontal aslant were the WM tracts most closely linked to motor dysfunction, and temporal and frontal cortex were relevant for cognition. Regional specificity related to clinical outcomes provide valuable information that can be used to develop more accurate predictive models that could improve therapeutic strategies.
Collapse
Affiliation(s)
- E Lopez-Soley
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Calle Villarroel 170, 08036, Barcelona, Spain
| | - E Martinez-Heras
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Calle Villarroel 170, 08036, Barcelona, Spain.
| | - E Solana
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Calle Villarroel 170, 08036, Barcelona, Spain.
| | - A Solanes
- Imaging of Mood- and Anxiety-Related Disorders Group, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, and CIBERSAM, Barcelona, Spain
| | - J Radua
- Imaging of Mood- and Anxiety-Related Disorders Group, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, and CIBERSAM, Barcelona, Spain
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Early Psychosis Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - F Vivo
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Calle Villarroel 170, 08036, Barcelona, Spain
| | - F Prados
- E-Health Center, Universitat Oberta de Catalunya, Barcelona, Spain
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK
- Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - M Sepulveda
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Calle Villarroel 170, 08036, Barcelona, Spain
| | - J M Cabrera-Maqueda
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Calle Villarroel 170, 08036, Barcelona, Spain
| | - E Fonseca
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Calle Villarroel 170, 08036, Barcelona, Spain
- Department of Neurology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile
| | - Y Blanco
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Calle Villarroel 170, 08036, Barcelona, Spain
| | - S Alba-Arbalat
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Calle Villarroel 170, 08036, Barcelona, Spain
| | - E H Martinez-Lapiscina
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Calle Villarroel 170, 08036, Barcelona, Spain
| | - P Villoslada
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Calle Villarroel 170, 08036, Barcelona, Spain
| | - A Saiz
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Calle Villarroel 170, 08036, Barcelona, Spain
| | - S Llufriu
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Calle Villarroel 170, 08036, Barcelona, Spain
| |
Collapse
|
10
|
Lin S, Wu Y, He L, Fang Y. Prediction of depressive symptoms onset and long-term trajectories in home-based older adults using machine learning techniques. Aging Ment Health 2023; 27:8-17. [PMID: 35118924 DOI: 10.1080/13607863.2022.2031868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Our aim was to explore the possibility of using machine learning (ML) in predicting the onset and trajectories of depressive symptom in home-based older adults over a 7-year period. METHODS Depressive symptom data (collected in the year 2011, 2013, 2015 and 2018) of home-based older Chinese (n = 2650) recruited in the China Health and Retirement Longitudinal Study (CHARLS) were included in the current analysis. The latent class growth modeling (LCGM) and growth mixture modeling (GMM) were used to classify different trajectory classes. Based on the identified trajectory patterns, three ML classification algorithms (i.e. gradient boosting decision tree, support vector machine and random forest) were evaluated with a 10-fold cross-validation procedure and a metric of the area under the receiver operating characteristic curve (AUC). RESULTS Four trajectories were identified for the depressive symptoms: no symptoms (63.9%), depressive symptoms onset {incident increasing symptoms [new-onset increasing (16.8%)], chronic symptoms [slowly decreasing (12.5%), persistent high (6.8%)]}. Among the analyzed baseline variables, the 10-item Center for Epidemiologic Studies Depression Scale (CESD-10) score, cognition, sleep time, self-reported memory were the top five important predictors across all trajectories. The mean AUCs of the three predictive models had a range from 0.661 to 0.892. CONCLUSIONS ML techniques can be robust in predicting depressive symptom onset and trajectories over a 7-year period with easily accessible sociodemographic and health information. UNLABELLED Supplemental data for this article is available online at http://dx.doi.org/10.1080/13607863.2022.2031868.
Collapse
Affiliation(s)
- Shaowu Lin
- The State Key Laboratory of Molecular Vaccine and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China.,National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.,Key Laboratory of Health Technology Assessment of Fujian Province, School of Public Health, Xiamen University, Xiamen, China
| | - Yafei Wu
- The State Key Laboratory of Molecular Vaccine and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China.,National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.,Key Laboratory of Health Technology Assessment of Fujian Province, School of Public Health, Xiamen University, Xiamen, China
| | - Lingxiao He
- The State Key Laboratory of Molecular Vaccine and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China.,Key Laboratory of Health Technology Assessment of Fujian Province, School of Public Health, Xiamen University, Xiamen, China
| | - Ya Fang
- The State Key Laboratory of Molecular Vaccine and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China.,National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.,Key Laboratory of Health Technology Assessment of Fujian Province, School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
11
|
Diakou I, Papakonstantinou E, Papageorgiou L, Pierouli K, Dragoumani K, Spandidos DA, Bacopoulou F, Chrousos GP, Goulielmos GΝ, Eliopoulos E, Vlachakis D. Multiple sclerosis and computational biology (Review). Biomed Rep 2022; 17:96. [PMID: 36382258 PMCID: PMC9634047 DOI: 10.3892/br.2022.1579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/27/2022] [Indexed: 12/02/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune neurodegenerative disease whose prevalence has increased worldwide. The resultant symptoms may be debilitating and can substantially reduce the of patients. Computational biology, which involves the use of computational tools to answer biomedical questions, may provide the basis for novel healthcare approaches in the context of MS. The rapid accumulation of health data, and the ever-increasing computational power and evolving technology have helped to modernize and refine MS research. From the discovery of novel biomarkers to the optimization of treatment and a number of quality-of-life enhancements for patients, computational biology methods and tools are shaping the field of MS diagnosis, management and treatment. The final goal in such a complex disease would be personalized medicine, i.e., providing healthcare services that are tailored to the individual patient, in accordance to the particular biology of their disease and the environmental factors to which they are subjected. The present review article summarizes the current knowledge on MS, modern computational biology and the impact of modern computational approaches of MS.
Collapse
Affiliation(s)
- Io Diakou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Eleni Papakonstantinou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Louis Papageorgiou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Katerina Pierouli
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Konstantina Dragoumani
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Flora Bacopoulou
- University Research Institute of Maternal and Child Health and Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, ‘Aghia Sophia’ Children's Hospital, 11527 Athens, Greece
| | - George P. Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, ‘Aghia Sophia’ Children's Hospital, 11527 Athens, Greece
| | - Georges Ν. Goulielmos
- Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Elias Eliopoulos
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
- University Research Institute of Maternal and Child Health and Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, ‘Aghia Sophia’ Children's Hospital, 11527 Athens, Greece
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of The Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
12
|
Fuh-Ngwa V, Zhou Y, Melton PE, van der Mei I, Charlesworth JC, Lin X, Zarghami A, Broadley SA, Ponsonby AL, Simpson-Yap S, Lechner-Scott J, Taylor BV. Ensemble machine learning identifies genetic loci associated with future worsening of disability in people with multiple sclerosis. Sci Rep 2022; 12:19291. [PMID: 36369345 PMCID: PMC9652373 DOI: 10.1038/s41598-022-23685-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022] Open
Abstract
Limited studies have been conducted to identify and validate multiple sclerosis (MS) genetic loci associated with disability progression. We aimed to identify MS genetic loci associated with worsening of disability over time, and to develop and validate ensemble genetic learning model(s) to identify people with MS (PwMS) at risk of future worsening. We examined associations of 208 previously established MS genetic loci with the risk of worsening of disability; we learned ensemble genetic decision rules and validated the predictions in an external dataset. We found 7 genetic loci (rs7731626: HR 0.92, P = 2.4 × 10-5; rs12211604: HR 1.16, P = 3.2 × 10-7; rs55858457: HR 0.93, P = 3.7 × 10-7; rs10271373: HR 0.90, P = 1.1 × 10-7; rs11256593: HR 1.13, P = 5.1 × 10-57; rs12588969: HR = 1.10, P = 2.1 × 10-10; rs1465697: HR 1.09, P = 1.7 × 10-128) associated with risk worsening of disability; most of which were located near or tagged to 13 genomic regions enriched in peptide hormones and steroids biosynthesis pathways by positional and eQTL mapping. The derived ensembles produced a set of genetic decision rules that can be translated to provide additional prognostic values to existing clinical predictions, with the additional benefit of incorporating relevant genetic information into clinical decision making for PwMS. The present study extends our knowledge of MS progression genetics and provides the basis of future studies regarding the functional significance of the identified loci.
Collapse
Affiliation(s)
- Valery Fuh-Ngwa
- grid.1009.80000 0004 1936 826XMenzies Institute for Medical Research, University of Tasmania, 17 Liverpool St, Hobart, TAS 7000 Australia
| | - Yuan Zhou
- grid.1009.80000 0004 1936 826XMenzies Institute for Medical Research, University of Tasmania, 17 Liverpool St, Hobart, TAS 7000 Australia
| | - Phillip E. Melton
- grid.1009.80000 0004 1936 826XMenzies Institute for Medical Research, University of Tasmania, 17 Liverpool St, Hobart, TAS 7000 Australia
| | - Ingrid van der Mei
- grid.1009.80000 0004 1936 826XMenzies Institute for Medical Research, University of Tasmania, 17 Liverpool St, Hobart, TAS 7000 Australia
| | - Jac C. Charlesworth
- grid.1009.80000 0004 1936 826XMenzies Institute for Medical Research, University of Tasmania, 17 Liverpool St, Hobart, TAS 7000 Australia
| | - Xin Lin
- grid.1009.80000 0004 1936 826XMenzies Institute for Medical Research, University of Tasmania, 17 Liverpool St, Hobart, TAS 7000 Australia
| | - Amin Zarghami
- grid.1009.80000 0004 1936 826XMenzies Institute for Medical Research, University of Tasmania, 17 Liverpool St, Hobart, TAS 7000 Australia
| | - Simon A. Broadley
- grid.1022.10000 0004 0437 5432Menzies Health Institute Queensland and School of Medicine, Griffith University Gold Coast, G40 Griffith Health Centre, QLD 4222, Australia
| | - Anne-Louise Ponsonby
- grid.1058.c0000 0000 9442 535XDeveloping Brain Division, The Florey Institute for Neuroscience and Mental Health, Royal Children’s Hospital, University of Melbourne Murdoch Children’s Research Institute, Parkville, VIC 3052 Australia
| | - Steve Simpson-Yap
- grid.1008.90000 0001 2179 088XNeuroepidemiology Unit, Melbourne School of Population & Global Health, The University of Melbourne, Melbourne, VIC 3053 Australia
| | - Jeannette Lechner-Scott
- grid.266842.c0000 0000 8831 109XDepartment of Neurology, Hunter Medical Research Institute, Hunter New England Health, University of Newcastle, Callaghan, NSW 2310 Australia
| | - Bruce V. Taylor
- grid.1009.80000 0004 1936 826XMenzies Institute for Medical Research, University of Tasmania, 17 Liverpool St, Hobart, TAS 7000 Australia
| |
Collapse
|
13
|
Marzi C, d'Ambrosio A, Diciotti S, Bisecco A, Altieri M, Filippi M, Rocca MA, Storelli L, Pantano P, Tommasin S, Cortese R, De Stefano N, Tedeschi G, Gallo A. Prediction of the information processing speed performance in multiple sclerosis using a machine learning approach in a large multicenter magnetic resonance imaging data set. Hum Brain Mapp 2022; 44:186-202. [PMID: 36255155 PMCID: PMC9783441 DOI: 10.1002/hbm.26106] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/02/2022] [Accepted: 09/24/2022] [Indexed: 02/05/2023] Open
Abstract
Many patients with multiple sclerosis (MS) experience information processing speed (IPS) deficits, and the Symbol Digit Modalities Test (SDMT) has been recommended as a valid screening test. Magnetic resonance imaging (MRI) has markedly improved the understanding of the mechanisms associated with cognitive deficits in MS. However, which structural MRI markers are the most closely related to cognitive performance is still unclear. We used the multicenter 3T-MRI data set of the Italian Neuroimaging Network Initiative to extract multimodal data (i.e., demographic, clinical, neuropsychological, and structural MRIs) of 540 MS patients. We aimed to assess, through machine learning techniques, the contribution of brain MRI structural volumes in the prediction of IPS deficits when combined with demographic and clinical features. We trained and tested the eXtreme Gradient Boosting (XGBoost) model following a rigorous validation scheme to obtain reliable generalization performance. We carried out a classification and a regression task based on SDMT scores feeding each model with different combinations of features. For the classification task, the model trained with thalamus, cortical gray matter, hippocampus, and lesions volumes achieved an area under the receiver operating characteristic curve of 0.74. For the regression task, the model trained with cortical gray matter and thalamus volumes, EDSS, nucleus accumbens, lesions, and putamen volumes, and age reached a mean absolute error of 0.95. In conclusion, our results confirmed that damage to cortical gray matter and relevant deep and archaic gray matter structures, such as the thalamus and hippocampus, is among the most relevant predictors of cognitive performance in MS.
Collapse
Affiliation(s)
- Chiara Marzi
- MS Center and 3T‐MRI Research Unit, Department of Advanced Medical and Surgical Sciences (DAMSS)University of Campania “Luigi Vanvitelli”NapoliItaly,Department of Electrical, Electronic, and Information Engineering “Guglielmo Marconi” – DEIAlma Mater Studiorum – University of BolognaBolognaItaly
| | - Alessandro d'Ambrosio
- MS Center and 3T‐MRI Research Unit, Department of Advanced Medical and Surgical Sciences (DAMSS)University of Campania “Luigi Vanvitelli”NapoliItaly
| | - Stefano Diciotti
- Department of Electrical, Electronic, and Information Engineering “Guglielmo Marconi” – DEIAlma Mater Studiorum – University of BolognaBolognaItaly,Alma Mater Research Institute for Human‐Centered Artificial IntelligenceUniversity of BolognaBolognaItaly
| | - Alvino Bisecco
- MS Center and 3T‐MRI Research Unit, Department of Advanced Medical and Surgical Sciences (DAMSS)University of Campania “Luigi Vanvitelli”NapoliItaly
| | - Manuela Altieri
- MS Center and 3T‐MRI Research Unit, Department of Advanced Medical and Surgical Sciences (DAMSS)University of Campania “Luigi Vanvitelli”NapoliItaly,Department of PsychologyUniversity of Campania “Luigi Vanvitelli”NapoliItaly
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of NeuroscienceVita‐Salute San Raffaele University, IRCCS San Raffaele Scientific InstituteMilanItaly,Neurology and Neurophysiology UnitVita‐Salute San Raffaele University, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Maria Assunta Rocca
- Neuroimaging Research Unit, Division of NeuroscienceVita‐Salute San Raffaele University, IRCCS San Raffaele Scientific InstituteMilanItaly,Neurology and Neurophysiology UnitVita‐Salute San Raffaele University, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Loredana Storelli
- Neuroimaging Research Unit, Division of NeuroscienceVita‐Salute San Raffaele University, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Patrizia Pantano
- Department of Human NeurosciencesSapienza University of RomeRomeItaly,IRCCS NeuromedPozzilliItaly
| | - Silvia Tommasin
- Department of Human NeurosciencesSapienza University of RomeRomeItaly
| | - Rosa Cortese
- Department of Medicine, Surgery and NeuroscienceUniversity of SienaSienaItaly
| | - Nicola De Stefano
- Department of Medicine, Surgery and NeuroscienceUniversity of SienaSienaItaly
| | - Gioacchino Tedeschi
- MS Center and 3T‐MRI Research Unit, Department of Advanced Medical and Surgical Sciences (DAMSS)University of Campania “Luigi Vanvitelli”NapoliItaly
| | - Antonio Gallo
- MS Center and 3T‐MRI Research Unit, Department of Advanced Medical and Surgical Sciences (DAMSS)University of Campania “Luigi Vanvitelli”NapoliItaly
| | | |
Collapse
|
14
|
Taloni A, Farrelly FA, Pontillo G, Petsas N, Giannì C, Ruggieri S, Petracca M, Brunetti A, Pozzilli C, Pantano P, Tommasin S. Evaluation of Disability Progression in Multiple Sclerosis via Magnetic-Resonance-Based Deep Learning Techniques. Int J Mol Sci 2022; 23:ijms231810651. [PMID: 36142563 PMCID: PMC9505100 DOI: 10.3390/ijms231810651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Short-term disability progression was predicted from a baseline evaluation in patients with multiple sclerosis (MS) using their three-dimensional T1-weighted (3DT1) magnetic resonance images (MRI). One-hundred-and-eighty-one subjects diagnosed with MS underwent 3T-MRI and were followed up for two to six years at two sites, with disability progression defined according to the expanded-disability-status-scale (EDSS) increment at the follow-up. The patients’ 3DT1 images were bias-corrected, brain-extracted, registered onto MNI space, and divided into slices along coronal, sagittal, and axial projections. Deep learning image classification models were applied on slices and devised as ResNet50 fine-tuned adaptations at first on a large independent dataset and secondly on the study sample. The final classifiers’ performance was evaluated via the area under the curve (AUC) of the false versus true positive diagram. Each model was also tested against its null model, obtained by reshuffling patients’ labels in the training set. Informative areas were found by intersecting slices corresponding to models fulfilling the disability progression prediction criteria. At follow-up, 34% of patients had disability progression. Five coronal and five sagittal slices had one classifier surviving the AUC evaluation and null test and predicted disability progression (AUC > 0.72 and AUC > 0.81, respectively). Likewise, fifteen combinations of classifiers and axial slices predicted disability progression in patients (AUC > 0.69). Informative areas were the frontal areas, mainly within the grey matter. Briefly, 3DT1 images may give hints on disability progression in MS patients, exploiting the information hidden in the MRI of specific areas of the brain.
Collapse
Affiliation(s)
- Alessandro Taloni
- Institute for Complex Systems, National Research Council (ISC-CNR), 00185 Rome, Italy
| | | | - Giuseppe Pontillo
- Department of Advanced Biomedical Sciences, Federico II University of Naples, 80131 Naples, Italy
- Department of Electrical Engineering and Information Technology, Federico II University of Naples, 80125 Naples, Italy
| | - Nikolaos Petsas
- Department of Radiology, IRCCS NEUROMED, 86077 Pozzilli, Italy
| | - Costanza Giannì
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Serena Ruggieri
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
- Neuroimmunology Unit, IRCSS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Maria Petracca
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, Federico II University of Naples, 80131 Naples, Italy
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, Federico II University of Naples, 80131 Naples, Italy
| | - Carlo Pozzilli
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Patrizia Pantano
- Department of Radiology, IRCCS NEUROMED, 86077 Pozzilli, Italy
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Silvia Tommasin
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence:
| |
Collapse
|
15
|
Ray J, Wijesekera L, Cirstea S. Machine learning and clinical neurophysiology. J Neurol 2022; 269:6678-6684. [PMID: 35907045 DOI: 10.1007/s00415-022-11283-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/05/2022] [Accepted: 07/09/2022] [Indexed: 11/29/2022]
Abstract
Clinical neurophysiology constructs a wealth of dynamic information pertaining to the integrity and function of both central and peripheral nervous systems. As with many technological fields, there has been an explosion of data in neurophysiology over recent years, and this requires considerable analysis by experts. Computational algorithms and especially advances in machine learning (ML) have the ability to assist with this task and potentially reveal hidden insights. In this update article, we will provide a brief overview where such technology is being applied in clinical neurophysiology and possible future directions.
Collapse
Affiliation(s)
- Julian Ray
- Department of Clinical Neurophysiology, Addenbrooke's Hospital, Cambridge University Hospitals Neurosciences, Cambridge, UK.
| | - Lokesh Wijesekera
- Department of Clinical Neurophysiology, Addenbrooke's Hospital, Cambridge University Hospitals Neurosciences, Cambridge, UK
| | - Silvia Cirstea
- Department of Clinical Neurophysiology, Addenbrooke's Hospital, Cambridge University Hospitals Neurosciences, Cambridge, UK
| |
Collapse
|
16
|
Wu Y, Xiang C, Jia M, Fang Y. Interpretable classifiers for prediction of disability trajectories using a nationwide longitudinal database. BMC Geriatr 2022; 22:627. [PMID: 35902789 PMCID: PMC9336105 DOI: 10.1186/s12877-022-03295-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 07/12/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES To explore the heterogeneous disability trajectories and construct explainable machine learning models for effective prediction of long-term disability trajectories and understanding the mechanisms of predictions among the elderly Chinese at community level. METHODS This study retrospectively collected data from the Chinese Longitudinal Healthy Longevity and Happy Family Study between 2002 and 2018. A total of 4149 subjects aged 65 + in 2002 with completed activities of daily living (ADL) information for at least three waves were included. The mixed growth model was used to identify disability trajectories, and five machine learning models were further established to predict disability trajectories using epidemiological variables. An explainable approach was deployed to understand the model's decisions. RESULTS Three distinct disability trajectories, including normal class (77.3%), progressive class (15.5%), and high-onset class (7.2%), were identified for three-class prediction. The latter two were further merged into abnormal class, accompanied by normal class for two-class prediction. Machine learning, especially random forest and extreme gradient boosting achieved good performance in both two tasks. ADL, age, leisure activity, cognitive function, and blood pressure were key predictors. CONCLUSION The findings suggest that machine learning showed good performance and maybe of additional value in analyzing quality indicators in predicting disability trajectories, thereby providing basis to personalize intervention measures.
Collapse
Affiliation(s)
- Yafei Wu
- The State Key Laboratory of Molecular Vaccine and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China.,National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, 361102, Fujian, China.,Key Laboratory of Health Technology Assessment of Fujian Province, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China.,School of Public Health, Xiamen University, Xiang'an Nan Road, Xiang'an District, Xiamen, 361102, Fujian, China
| | - Chaoyi Xiang
- The State Key Laboratory of Molecular Vaccine and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China.,Key Laboratory of Health Technology Assessment of Fujian Province, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China.,School of Public Health, Xiamen University, Xiang'an Nan Road, Xiang'an District, Xiamen, 361102, Fujian, China
| | - Maoni Jia
- The State Key Laboratory of Molecular Vaccine and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China.,Key Laboratory of Health Technology Assessment of Fujian Province, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China.,School of Public Health, Xiamen University, Xiang'an Nan Road, Xiang'an District, Xiamen, 361102, Fujian, China
| | - Ya Fang
- The State Key Laboratory of Molecular Vaccine and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China. .,National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, 361102, Fujian, China. .,Key Laboratory of Health Technology Assessment of Fujian Province, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China. .,School of Public Health, Xiamen University, Xiang'an Nan Road, Xiang'an District, Xiamen, 361102, Fujian, China.
| |
Collapse
|
17
|
Bonacchi R, Filippi M, Rocca MA. Role of artificial intelligence in MS clinical practice. Neuroimage Clin 2022; 35:103065. [PMID: 35661470 PMCID: PMC9163993 DOI: 10.1016/j.nicl.2022.103065] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/04/2022] [Accepted: 05/26/2022] [Indexed: 11/24/2022]
Abstract
Machine learning (ML) and its subset, deep learning (DL), are branches of artificial intelligence (AI) showing promising findings in the medical field, especially when applied to imaging data. Given the substantial role of MRI in the diagnosis and management of patients with multiple sclerosis (MS), this disease is an ideal candidate for the application of AI techniques. In this narrative review, we are going to discuss the potential applications of AI for MS clinical practice, together with their limitations. Among their several advantages, ML algorithms are able to automate repetitive tasks, to analyze more data in less time and to achieve higher accuracy and reproducibility than the human counterpart. To date, these algorithms have been applied to MS diagnosis, prognosis, disease and treatment monitoring. Other fields of application have been improvement of MRI protocols as well as automated lesion and tissue segmentation. However, several challenges remain, including a better understanding of the information selected by AI algorithms, appropriate multicenter and longitudinal validations of results and practical aspects regarding hardware and software integration. Finally, one cannot overemphasize the paramount importance of human supervision, in order to optimize the use and take full advantage of the potential of AI approaches.
Collapse
Affiliation(s)
- Raffaello Bonacchi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
18
|
Opfer R, Krüger J, Spies L, Kitzler HH, Schippling S, Buchert R. Single-subject analysis of regional brain volumetric measures can be strongly influenced by the method for head size adjustment. Neuroradiology 2022; 64:2001-2009. [PMID: 35462574 PMCID: PMC9474386 DOI: 10.1007/s00234-022-02961-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/14/2022] [Indexed: 12/03/2022]
Abstract
Purpose
Total intracranial volume (TIV) is often a nuisance covariate in MRI-based brain volumetry. This study compared two TIV adjustment methods with respect to their impact on z-scores in single subject analyses of regional brain volume estimates. Methods Brain parenchyma, hippocampus, thalamus, and TIV were segmented in a normal database comprising 5059 T1w images. Regional volume estimates were adjusted for TIV using the residual method or the proportion method. Age was taken into account by regression with both methods. TIV- and age-adjusted regional volumes were transformed to z-scores and then compared between the two adjustment methods. Their impact on the detection of thalamus atrophy was tested in 127 patients with multiple sclerosis. Results The residual method removed the association with TIV in all regions. The proportion method resulted in a switch of the direction without relevant change of the strength of the association. The reduction of physiological between-subject variability was larger with the residual method than with the proportion method. The difference between z-scores obtained with the residual method versus the proportion method was strongly correlated with TIV. It was larger than one z-score point in 5% of the subjects. The area under the ROC curve of the TIV- and age-adjusted thalamus volume for identification of multiple sclerosis patients was larger with the residual method than with the proportion method (0.84 versus 0.79). Conclusion The residual method should be preferred for TIV and age adjustments of T1w-MRI-based brain volume estimates in single subject analyses. Supplementary Information The online version contains supplementary material available at 10.1007/s00234-022-02961-6.
Collapse
Affiliation(s)
| | | | | | - Hagen H Kitzler
- Institute of Diagnostic and Interventional Neuroradiology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Sven Schippling
- Center for Neuroscience Zurich (ZNZ), Federal Institute of Technology (ETH), Multimodal Imaging in Neuroimmunological Diseases (MINDS), University of Zurich, Zurich, Switzerland
| | - Ralph Buchert
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| |
Collapse
|
19
|
Alves P, Green E, Leavy M, Friedler H, Curhan G, Marci C, Boussios C. Validation of a machine learning approach to estimate expanded disability status scale scores for multiple sclerosis. Mult Scler J Exp Transl Clin 2022; 8:20552173221108635. [PMID: 35755008 PMCID: PMC9228644 DOI: 10.1177/20552173221108635] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
Background Disability assessment using the Expanded Disability Status Scale (EDSS) is important to inform treatment decisions and monitor the progression of multiple sclerosis. Yet, EDSS scores are documented infrequently in electronic medical records. Objective To validate a machine learning model to estimate EDSS scores for multiple sclerosis patients using clinical notes from neurologists. Methods A machine learning model was developed to estimate EDSS scores on specific encounter dates using clinical notes from neurologist visits. The OM1 MS Registry data were used to create a training cohort of 2632 encounters and a separate validation cohort of 857 encounters, all with clinician-recorded EDSS scores. Model performance was assessed using the area under the receiver-operating-characteristic curve (AUC), positive predictive value (PPV), and negative predictive value (NPV), calculated using a binarized version of the outcome. The Spearman R and Pearson R values were calculated. The model was then applied to encounters without clinician-recorded EDSS scores in the MS Registry. Results The model had a PPV of 0.85, NPV of 0.85, and AUC of 0.91. The model had a Spearman R value of 0.75 and Pearson R value of 0.74 when evaluating performance using the continuous estimated EDSS and clinician-recorded EDSS scores. Application of the model to eligible encounters resulted in the generation of eEDSS scores for an additional 190,282 encounters from 13,249 patients. Conclusion EDSS scores can be estimated with very good performance using a machine learning model applied to clinical notes, thus increasing the utility of real-world data sources for research purposes.
Collapse
Affiliation(s)
| | - Eric Green
- Data Science, OM1, Inc., Boston, MA, USA
| | | | | | | | - Carl Marci
- Mental Health and Neuroscience, OM1, Inc., Boston, MA, USA
| | | |
Collapse
|
20
|
Petracca M. Editorial: Multi-Modal Imaging in Neurological Conditions: Translational Applications. Front Neurol 2022; 13:855122. [PMID: 35242103 PMCID: PMC8885811 DOI: 10.3389/fneur.2022.855122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 01/24/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Maria Petracca
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
21
|
Petracca M, Cutter G, Cocozza S, Freeman L, Kangarlu J, Margoni M, Moro M, Krieger S, El Mendili MM, Droby A, Wolinsky JS, Lublin F, Inglese M. Cerebellar pathology and disability worsening in relapsing-remitting multiple sclerosis: A retrospective analysis from the CombiRx trial. Eur J Neurol 2022; 29:515-521. [PMID: 34695274 DOI: 10.1111/ene.15157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/27/2021] [Accepted: 10/21/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND PURPOSE Cerebellar damage is a valuable predictor of disability, particularly in progressive multiple sclerosis. It is not clear if it could be an equally useful predictor of motor disability worsening in the relapsing-remitting phenotype. AIM We aimed to determine whether cerebellar damage is an equally useful predictor of motor disability worsening in the relapsing-remitting phenotype. METHODS Cerebellar lesion loads and volumes were estimated using baseline magnetic resonance imaging from the CombiRx trial (n = 838). The relationship between cerebellar damage and time to disability worsening (confirmed disability progression [CDP], timed 25-foot walk test [T25FWT] score worsening, nine-hole peg test [9HPT] score worsening) was tested in stagewise and stepwise Cox proportional hazards models, accounting for demographics and supratentorial damage. RESULTS Shorter time to 9HPT score worsening was associated with higher baseline Expanded Disability Status Scale (EDSS) score (hazard ratio [HR] 1.408, p = 0.0042) and higher volume of supratentorial and cerebellar T2 lesions (HR 1.005 p = 0.0196 and HR 2.211, p = 0.0002, respectively). Shorter time to T25FWT score worsening was associated with higher baseline EDSS (HR 1.232, p = 0.0006). Shorter time to CDP was associated with older age (HR 1.026, p = 0.0010), lower baseline EDSS score (HR 0.428, p < 0.0001) and higher volume of supratentorial T2 lesions (HR 1.024, p < 0.0001). CONCLUSION Among the explored outcomes, single time-point evaluation of cerebellar damage only allows the prediction of manual dexterity worsening. In clinical studies the selection of imaging biomarkers should be informed by the outcome of interest.
Collapse
Affiliation(s)
- Maria Petracca
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Human Neurosciences, Sapienza University, Rome, Italy
| | - Gary Cutter
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sirio Cocozza
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Advanced Biomedical Sciences, University "Federico II", Naples, Italy
| | - Leorah Freeman
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Houston, Texas, USA
| | - John Kangarlu
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Monica Margoni
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Padova Neuroscience Centre, University of Padua, Padua, Italy
| | - Matteo Moro
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Informatics, Bioengineering, Robotics and Systems Engineering (DIBRIS), University of Genova, Genova, Italy
| | - Stephen Krieger
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mohamed Mounir El Mendili
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
| | - Amgad Droby
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Laboratory for Early Markers of Neurodegeneration (LEMON), Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School for Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Jerry S Wolinsky
- University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
| | - Fred Lublin
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Matilde Inglese
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa, Genoa, Italy
- Ospedale Policlinico San Martino, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Genoa, Italy
| |
Collapse
|