1
|
Hong J, Gaubert M, Lefort M, Ferré JC, Le Page E, Michel L, Labauge P, Pelletier J, de Seze J, Durand-Dubief F, Cotton F, Edan G, Bannier E, Combès B, Kerbrat A. Limited added value of systematic spinal cord MRI vs brain MRI alone to classify patients with MS as active or inactive during follow-up. J Neurol 2025; 272:316. [PMID: 40186635 PMCID: PMC11972184 DOI: 10.1007/s00415-025-13068-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/18/2025] [Accepted: 03/24/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND The utility of systematic spinal cord (SC) MRI for monitoring disease activity after a multiple sclerosis (MS) diagnosis remains a topic of debate. OBJECTIVES To evaluate the frequency of disease activity when considering brain MRI alone versus both brain and SC MRI and to identify factors associated with the occurrence of new SC lesions. METHODS We conducted a retrospective analysis of clinical and imaging data prospectively collected over 5 years as part of the EMISEP cohort study. A total of 221 intervals (with both brain and spinal cord MRI scans available at 2 consecutive time-points) from 68 patients were analysed. For each interval, brain (3D Fluid-Attenuated Inversion Recovery (FLAIR, axial T2 and axial PD) and SC MRI (sagittal T2 and phase-sensitive inversion recovery, axial T2*w and 3D T1) were reviewed to detect new lesions. Each interval was classified as symptomatic (with relapse) or asymptomatic. The baseline brain and SC lesion numbers were computed. RESULTS SC MRI activity without clinical relapse and/or brain MRI activity was rare (4 out of 221 intervals, 2%). The occurrence of a new SC lesion was associated with the number of brain lesions at baseline (OR = 1.002 [1.000; 1.0004], p = 0.015) and the occurrence of a new brain lesion during the interval (OR = 1.170 [1.041; 1.314], p = 0.009), but not with the baseline SC lesion number (p = 0.6). CONCLUSION These findings support the current guidelines recommending routine disease monitoring with brain MRI alone, even in patients with a high SC lesion load.
Collapse
Affiliation(s)
- Jérémy Hong
- Univ Rennes, CHU Rennes, Service de radiologie, 35000, Rennes, France
| | - Malo Gaubert
- Univ Rennes, CHU Rennes, Service de radiologie, 35000, Rennes, France
- EMPENN research team, U1128, Univ Rennes, Inria, CNRS, Inserm, IRISA UMR 6074, Rennes, France
| | - Mathilde Lefort
- Univ Rennes, EHESP, CNRS, Inserm, Arènes - UMR 6051, RSMS (Recherche sur les Services et Management en Santé) - U 1309, 35000, Rennes, France
| | | | - Emmanuelle Le Page
- Univ Rennes, CHU Rennes, Service de Neurologie, CHU Pontchaillou, 2 RUE Henri Le Guilloux, 35000, Rennes, France
| | - Laure Michel
- Univ Rennes, CHU Rennes, Service de Neurologie, CHU Pontchaillou, 2 RUE Henri Le Guilloux, 35000, Rennes, France
| | - Pierre Labauge
- Neurology department, Montpellier University Hospital, Montpellier, France
| | - Jean Pelletier
- Aix Marseille Univ, APHM, Pôle de Neurosciences Cliniques, MICeME, Marseille, France
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
| | - Jérôme de Seze
- CIC Strasbourg INSERM 1434, Strasbourg University Hospital, Strasbourg, France
| | | | - François Cotton
- Department of Radiology, UMR 5220 & INSERM U1044, Lyon Sud Hospital, Hospices Civils de Lyon, France CREATIS - CNRS, University Claude Bernard Lyon 1, Lyon, France
| | - Gilles Edan
- Univ Rennes, CHU Rennes, Service de Neurologie, CHU Pontchaillou, 2 RUE Henri Le Guilloux, 35000, Rennes, France
| | - Elise Bannier
- EMPENN research team, U1128, Univ Rennes, Inria, CNRS, Inserm, IRISA UMR 6074, Rennes, France
| | - Benoit Combès
- EMPENN research team, U1128, Univ Rennes, Inria, CNRS, Inserm, IRISA UMR 6074, Rennes, France
| | - Anne Kerbrat
- EMPENN research team, U1128, Univ Rennes, Inria, CNRS, Inserm, IRISA UMR 6074, Rennes, France.
- Univ Rennes, CHU Rennes, Service de Neurologie, CHU Pontchaillou, 2 RUE Henri Le Guilloux, 35000, Rennes, France.
| |
Collapse
|
2
|
Keegan BM, Absinta M, Cohen-Adad J, Flanagan EP, Henry RG, Klawiter EC, Kolind S, Krieger S, Laule C, Lincoln JA, Messina S, Oh J, Papinutto N, Smith SA, Traboulsee A. Spinal cord evaluation in multiple sclerosis: clinical and radiological associations, present and future. Brain Commun 2024; 6:fcae395. [PMID: 39611182 PMCID: PMC11604059 DOI: 10.1093/braincomms/fcae395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/30/2024] [Accepted: 11/05/2024] [Indexed: 11/30/2024] Open
Abstract
Spinal cord disease is important in most people with multiple sclerosis, but assessment remains less emphasized in patient care, basic and clinical research and therapeutic trials. The North American Imaging in Multiple Sclerosis Spinal Cord Interest Group was formed to determine and present the contemporary landscape of multiple sclerosis spinal cord evaluation, further existing and advanced spinal cord imaging techniques, and foster collaborative work. Important themes arose: (i) multiple sclerosis spinal cord lesions (differential diagnosis, association with clinical course); (ii) spinal cord radiological-pathological associations; (iii) 'critical' spinal cord lesions; (iv) multiple sclerosis topographical model; (v) spinal cord atrophy; and (vi) automated and special imaging techniques. Distinguishing multiple sclerosis from other myelopathic aetiology is increasingly refined by imaging and serological studies. Post-mortem spinal cord findings and MRI pathological correlative studies demonstrate MRI's high sensitivity in detecting microstructural demyelination and axonal loss. Spinal leptomeninges include immune inflammatory infiltrates, some in B-cell lymphoid-like structures. 'Critical' demyelinating lesions along spinal cord corticospinal tracts are anatomically consistent with and may be disproportionately associated with motor progression. Multiple sclerosis topographical model implicates the spinal cord as an area where threshold impairment associates with multiple sclerosis disability. Progressive spinal cord atrophy and 'silent' multiple sclerosis progression may be emerging as an important multiple sclerosis prognostic biomarker. Manual atrophy assessment is complicated by rater bias, while automation (e.g. Spinal Cord Toolbox), and artificial intelligence may reduce this. Collaborative research by the North American Imaging in Multiple Sclerosis and similar groups with experts combining distinct strengths is key to advancing assessment and treatment of people with multiple sclerosis spinal cord disease.
Collapse
Affiliation(s)
- B Mark Keegan
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Martina Absinta
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Julien Cohen-Adad
- Institute of Biomedical Imaging, Polytechnique Montreal, Montreal, Canada H3T 1J4
| | - Eoin P Flanagan
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Roland G Henry
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Eric C Klawiter
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Shannon Kolind
- Division of Neurology, University of British Columbia, Vancouver, Canada V6T 2B5
| | - Stephen Krieger
- Department of Neurology, Mount Sinai, New York City, NY 10029, USA
| | - Cornelia Laule
- Division of Neurology, University of British Columbia, Vancouver, Canada V6T 2B5
| | - John A Lincoln
- McGovern Medical School, UTHealth, Houston, TX 77030, USA
| | - Steven Messina
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jiwon Oh
- Division of Neurology, University of Toronto, Toronto, Canada M5B 1W8
| | - Nico Papinutto
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Seth Aaron Smith
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA
| | - Anthony Traboulsee
- Division of Neurology, University of British Columbia, Vancouver, Canada V6T 2B5
| |
Collapse
|
3
|
Lorefice L, Piras C, Sechi V, Barracciu MA, Cocco E, Fenu G. Spinal cord MRI activity in multiple sclerosis: Predictive value for relapses and impact on treatment decisions. J Neurol Sci 2024; 462:123057. [PMID: 38820738 DOI: 10.1016/j.jns.2024.123057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/29/2024] [Accepted: 05/18/2024] [Indexed: 06/02/2024]
Abstract
INTRODUCTION Emerging evidence suggests the prognostic value of spinal cord (SC) pathology in multiple sclerosis (MS). However, the 2021 MAGNIMS-CMSC-NAIMS guidelines don't recommend routine SC MRI for disease monitoring. This study investigates the frequency of new asymptomatic and isolated SC lesions, exploring their potential to predict clinical activity and guide treatment decisions. METHODS We enrolled relapsing-remitting MS (RRMS) patients who underwent brain and SC MRI at baseline and after 12 months. New, enlarged, or gadolinium-enhanced (Gd+) lesions on MRI were considered disease activity markers. Clinical relapses and treatment changes observed 3 months after the 12-month MRI were analyzed using regression analysis, evaluating their association with worsening SC findings. RESULTS A total of 201 RRMS patients (56 males, 27.9%, mean age 42.5 ± 12.1 years, mean EDSS 2.7 ± 1.9) were included. Isolated worsening of T2 lesion burden in the SC occurred in 16 patients (8%), and 12 (6%) had Gd + lesions. Among patients without brain MRI activity (n = 138), regression analysis revealed a significant association between new Gd + SC lesions and clinical relapses within 3 months of the 12-month MRI (p = 0.024). Worsening SC findings (p = 0.021) and SC lesion enhancement (p = 0.046) emerged as key factors influencing disease-modifying therapy changes within 3 months in these patients. Notably, even without clinical symptoms, worsening SC findings significantly predicted treatment changes (p = 0.003). CONCLUSION Our findings highlight the independent value of SC MRI findings in MS monitoring. Importantly, isolated and asymptomatic SC worsening significantly impacted treatment decisions.
Collapse
Affiliation(s)
- L Lorefice
- Multiple Sclerosis Center, Department of Medical Sciences and Public Health, University of Cagliari, Italy.
| | - C Piras
- Multiple Sclerosis Center, Department of Medical Sciences and Public Health, University of Cagliari, Italy
| | - V Sechi
- Radiology Unit, PO Binaghi, ASL Cagliari, Italy
| | | | - E Cocco
- Multiple Sclerosis Center, Department of Medical Sciences and Public Health, University of Cagliari, Italy
| | - G Fenu
- Department of Neurosciences, ARNAS Brotzu, Cagliari, Italy
| |
Collapse
|
4
|
Lim TRU, Kumaran SP, Suthiphosuwan S, Espiritu AI, Jones A, Lin AW, Oh J, Bharatha A. Limited utility of adding 3T cervical spinal cord MRI to monitor disease activity in multiple sclerosis. Mult Scler 2024; 30:505-515. [PMID: 38419027 DOI: 10.1177/13524585241228426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
BACKGROUND Performing routine brain magnetic resonance imaging (MRI) is widely accepted as the standard of care for disease monitoring in multiple sclerosis (MS), but the utility of performing routine spinal cord (SC) MRI for this purpose is still debatable. OBJECTIVE This study aimed to measure the frequency of new isolated cervical spinal cord lesions (CSLs) in people with MS (pwMS) undergoing routine brain and cervical SC-MRI for disease monitoring and determine the factors associated with the development of new CSLs and their prognostic value. METHODS We retrospectively identified 1576 pwMS who underwent follow-up 3T brain and cervical SC-MRI over a 9-month period. MRI was reviewed for the presence of new brain lesions (BLs) and CSLs. Clinical records were reviewed for interval relapses between sequential scans and subsequent clinical relapse and disability worsening after the follow-up MRI. RESULTS In 1285 pwMS (median interval: 13-14 months) who were clinically stable with respect to relapses, 73 (5.7%) had new CSLs, of which 49 (3.8%) had concomitant new BLs and 24 (1.9%) had new isolated CSLs only. New asymptomatic CSLs were associated with ⩾ 3 prior relapses (p = 0.04), no disease-modifying therapy (DMT) use (p = 0.048), and ⩾ 3 new BLs (p < 0.001); ⩾ 3 new BLs (OR: 7.11, 95% CI: 4.3-11.7, p < 0.001) remained independently associated with new CSLs on multivariable analysis. Having new asymptomatic CSLs was not independently associated with subsequent relapse or disability worsening after the follow-up MRI (median follow-up time of 26 months). CONCLUSION Routine brain and cervical SC-MRI detected new isolated CSLs in only < 2% of clinically stable pwMS. Developing new asymptomatic CSLs was associated with concomitant new BLs and did not confer an independent increased risk of relapse or disability worsening. Performing SC-MRI may not be warranted for routine monitoring in most pwMS, and performing only brain MRI may be sufficient to capture the vast majority of clinically silent disease activity.
Collapse
Affiliation(s)
- Timothy Reynold U Lim
- Division of Neuroradiology, Department of Medical Imaging, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Sunitha P Kumaran
- Division of Neuroradiology, Department of Medical Imaging, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Suradech Suthiphosuwan
- Division of Neuroradiology, Department of Medical Imaging, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Adrian I Espiritu
- Division of Neurology, Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada/Department of Neurosciences and Department of Clinical Epidemiology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Ashley Jones
- Division of Neurology, Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Amy Wei Lin
- Division of Neuroradiology, Department of Medical Imaging, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Jiwon Oh
- Division of Neurology, Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada/ Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Aditya Bharatha
- Division of Neuroradiology, Department of Medical Imaging, St. Michael's Hospital, University of Toronto, 30 Bond Street, Toronto, ON M5B 1W8, Canada
- Division of Neuroradiology, Department of Medical Imaging, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Ruggieri S, Prosperini L, Al-Araji S, Annovazzi PO, Bisecco A, Ciccarelli O, De Stefano N, Filippi M, Fleischer V, Evangelou N, Enzinger C, Gallo A, Garjani A, Groppa S, Haggiag S, Khalil M, Lucchini M, Mirabella M, Montalban X, Pozzilli C, Preziosa P, Río J, Rocca MA, Rovira A, Stromillo ML, Zaffaroni M, Tortorella C, Gasperini C. Assessing treatment response to oral drugs for multiple sclerosis in real-world setting: a MAGNIMS Study. J Neurol Neurosurg Psychiatry 2024; 95:142-150. [PMID: 37775266 DOI: 10.1136/jnnp-2023-331920] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/09/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND The assessment of treatment response is a crucial step for patients with relapsing-remitting multiple sclerosis on disease-modifying therapies (DMTs). We explored whether a scoring system developed within the MAGNIMS (MRI in Multiple Sclerosis) network to evaluate treatment response to injectable drugs can be adopted also to oral DMTs. METHODS A multicentre dataset of 1200 patients who started three oral DMTs (fingolimod, teriflunomide and dimethyl fumarate) was collected within the MAGNIMS network. Disease activity after the first year was classified by the 'MAGNIMS' score based on the combination of relapses (0-≥2) and/or new T2 lesions (<3 or ≥3) on brain MRI. We explored the association of this score with the following 3-year outcomes: (1) confirmed disability worsening (CDW); (2) treatment failure (TFL); (3) relapse count between years 1 and 3. The additional value of contrast-enhancing lesions (CELs) and lesion location was explored. RESULTS At 3 years, 160 patients experienced CDW: 12% of them scored '0' (reference), 18% scored '1' (HR=1.82, 95% CI 1.20 to 2.76, p=0.005) and 37% scored '2' (HR=2.74, 95% CI 1.41 to 5.36, p=0.003) at 1 year. The analysis of other outcomes provided similar findings. Considering the location of new T2 lesions (supratentorial vs infratentorial/spinal cord) and the presence of CELs improved the prediction of CDW and TFL, respectively, in patients with minimal MRI activity alone (one or two new T2 lesions). CONCLUSIONS Early relapses and substantial MRI activity in the first year of treatment are associated with worse short-term outcomes in patients treated with some of the oral DMTs.
Collapse
Affiliation(s)
- Serena Ruggieri
- Department of Neurosciences, San Camillo Forlanini Hospital, Rome, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Luca Prosperini
- Department of Neurosciences, San Camillo Forlanini Hospital, Rome, Italy
| | - Sarmad Al-Araji
- Department of Neuroinflammation, Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Pietro Osvaldo Annovazzi
- Neuroimmunology Unit-Multiple Sclerosis Center, Hospital of Gallarate, ASST della Valle Olona, Gallarate, Italy
| | - Alvino Bisecco
- Department of Advanced Medical and Surgical Sciences, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Olga Ciccarelli
- Department of Neuroinflammation, Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- National Institute for Health Research Biomedical Research Centre, University College London Hospitals, London, UK
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Massimo Filippi
- Neurology Unit and Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Vinzenz Fleischer
- Department of Neurology and Neuroimaging Center (NIC) of the Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Nikos Evangelou
- Mental Health & Clinical Neuroscience Unit, University of Nottingham, Nottingham, UK
- Department of Neurology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Christian Enzinger
- Department of Neurology, Medical University of Graz, Graz, Austria
- Department of Radiology (Division of Neuroradiology, Vascular and Interventional Radiology), Medical University of Graz, Graz, Austria
| | - Antonio Gallo
- Department of Advanced Medical and Surgical Sciences, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Afagh Garjani
- Mental Health & Clinical Neuroscience Unit, University of Nottingham, Nottingham, UK
- Department of Neurology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Sergiu Groppa
- Department of Neurology and Neuroimaging Center (NIC) of the Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Shalom Haggiag
- Department of Neurosciences, San Camillo Forlanini Hospital, Rome, Italy
| | - Michael Khalil
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Matteo Lucchini
- Multiple Sclerosis Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Centro di ricerca Sclerosi Multipla (CERSM), Università Cattolica del Sacro Cuore, Rome, Italy
| | - Massimiliano Mirabella
- Multiple Sclerosis Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Centro di ricerca Sclerosi Multipla (CERSM), Università Cattolica del Sacro Cuore, Rome, Italy
| | - Xavier Montalban
- Centre d'Esclerosi Multiple de Catalunya (Cemcat), Department of Neurology/Neuroimmunology, Hospital Universitari Vall d'Hebron, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Carlo Pozzilli
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Paolo Preziosa
- Neurology Unit and Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Jordi Río
- Centre d'Esclerosi Multiple de Catalunya (Cemcat), Department of Neurology/Neuroimmunology, Hospital Universitari Vall d'Hebron, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Maria A Rocca
- Neurology Unit and Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Alex Rovira
- Section of Neuroradiology, Department of Radiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria L Stromillo
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Mauro Zaffaroni
- Neuroimmunology Unit-Multiple Sclerosis Center, Hospital of Gallarate, ASST della Valle Olona, Gallarate, Italy
| | - Carla Tortorella
- Department of Neurosciences, San Camillo Forlanini Hospital, Rome, Italy
| | - Claudio Gasperini
- Department of Neurosciences, San Camillo Forlanini Hospital, Rome, Italy
| |
Collapse
|
6
|
Ruggieri S, Prosperini L, Petracca M, Logoteta A, Tinelli E, De Giglio L, Ciccarelli O, Gasperini C, Pozzilli C. The added value of spinal cord lesions to disability accrual in multiple sclerosis. J Neurol 2023; 270:4995-5003. [PMID: 37386292 PMCID: PMC10511608 DOI: 10.1007/s00415-023-11829-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/01/2023]
Abstract
Spinal cord MRI is not routinely performed for multiple sclerosis (MS) monitoring. Here, we explored whether spinal cord MRI activity offers any added value over brain MRI activity for clinical outcomes prediction in MS. This is a retrospective, monocentric study including 830 MS patients who underwent longitudinal brain and spinal cord MRI [median follow-up 7 years (range: < 1-26)]. According to the presence (or absence) of MRI activity defined as at least one new T2 lesion and/or gadolinium (Gd) enhancing lesion, each scan was classified as: (i) brain MRI negative/spinal cord MRI negative; (ii) brain MRI positive/spinal cord MRI negative; (iii) brain MRI negative/spinal cord MRI positive; (iv) brain MRI positive/spinal cord MRI positive. The relationship between such patterns and clinical outcomes was explored by multivariable regression models. When compared with the presence of brain MRI activity alone: (i) Gd + lesions in the spine alone and both in the brain and in the spinal cord were associated with an increased risk of concomitant relapses (OR = 4.1, 95% CI 2.4-7.1, p < 0.001 and OR = 4.9, 95% CI 4.6-9.1, p < 0.001, respectively); (ii) new T2 lesions at both locations were associated with an increased risk of disability worsening (HR = 1.4, 95% CI = 1.0-2.1, p = 0.05). Beyond the presence of brain MRI activity, new spinal cord lesions are associated with increased risk of both relapses and disability worsening. In addition, 16.1% of patients presented asymptomatic, isolated spinal cord activity (Gd + lesions). Monitoring MS with spinal cord MRI may allow a more accurate risk stratification and treatment optimization.
Collapse
Affiliation(s)
- Serena Ruggieri
- Department of Human Neurosciences, Sapienza University of Rome, Viale Dell'Università 30, 00185, Rome, Italy.
- Neuroimmunology Unit, IRCSS Fondazione Santa Lucia, Rome, Rome, Italy.
| | - Luca Prosperini
- Department of Neurosciences, San Camillo-Forlanini Hospital, Rome, Italy
| | - Maria Petracca
- Department of Human Neurosciences, Sapienza University of Rome, Viale Dell'Università 30, 00185, Rome, Italy
| | - Alessandra Logoteta
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Emanuele Tinelli
- Unit of Neuroradiology, Department of Medical and Surgical Sciences, "Magna Graecia" University, Catanzaro, Italy
- Radiology, Neurological Center of Latium, Rome, Rome, Italy
| | | | - Olga Ciccarelli
- Queen Square MS Centre, Faculty of Brain Sciences, University College London Queen Square Institute of Neurology, London, UK
- National Institute for Health Research Biomedical Research Centre, University College London Hospitals, London, UK
| | - Claudio Gasperini
- Department of Neurosciences, San Camillo-Forlanini Hospital, Rome, Italy
| | - Carlo Pozzilli
- Department of Human Neurosciences, Sapienza University of Rome, Viale Dell'Università 30, 00185, Rome, Italy
| |
Collapse
|
7
|
Lorefice L, Mellino P, Fenu G, Cocco E. How to measure the treatment response in progressive multiple sclerosis: Current perspectives and limitations in clinical settings'. Mult Scler Relat Disord 2023; 76:104826. [PMID: 37327601 DOI: 10.1016/j.msard.2023.104826] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 06/18/2023]
Abstract
New treatment options are available for active progressive multiple sclerosis (MS), including primary and secondary progressive forms. Several pieces of evidence have recently suggested a "window of beneficial treatment opportunities," principally in the early stages of progression. However, for progressive MS, which is characterised by an inevitable tendency to get worse, it is crucial to redefine the "response to treatment" beyond the concept of "no evidence of disease activity" (NEDA-3), which was initially conceived to evaluate disease outcomes in relapsing-remitting form, albeit it is currently applied to all MS cases in clinical practice. This review examines the current perspectives and limitations in assessing the effectiveness of DMTs and disease outcomes in progressive MS, the current criteria applied in defining the response to DMTs, and the strengths and limitations of clinical scales and tools for evaluating MS evolution and patient perception. Additionally, the impact of age and comorbidities on the assessment of MS outcomes was examined.
Collapse
Affiliation(s)
- L Lorefice
- Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari, Department of Medical Sciences and Public Health, University of Cagliari, Address: via Is Guadazzonis 2, Cagliari 09126, Italy.
| | - P Mellino
- Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari, Department of Medical Sciences and Public Health, University of Cagliari, Address: via Is Guadazzonis 2, Cagliari 09126, Italy
| | - G Fenu
- Department of Neurosciences, ARNAS Brotzu, Cagliari, Italy
| | - E Cocco
- Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari, Department of Medical Sciences and Public Health, University of Cagliari, Address: via Is Guadazzonis 2, Cagliari 09126, Italy
| |
Collapse
|
8
|
Dallera G, Affinito G, Caliendo D, Petracca M, Carotenuto A, Triassi M, Brescia Morra V, Palladino R, Moccia M. The independent contribution of brain, spinal cord and gadolinium MRI in treatment decision in multiple sclerosis: A population-based retrospective study. Mult Scler Relat Disord 2023; 69:104423. [PMID: 36436395 DOI: 10.1016/j.msard.2022.104423] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/29/2022] [Accepted: 11/19/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Spinal cord and gadolinium (Gd)-enhanced magnetic resonance imaging (MRI) can provide additional information to brain MRI to determine prognosis of multiple sclerosis (MS). However, the real-world impact of routine use of brain MRI with spinal cord and/or Gd sequences is unknown. Our aim was to evaluate the effect of brain, spinal cord and Gd MRI on treatment decisions in MS. METHODS In this 2015-2020 population-based study, we performed a retrospective analysis on MS patients resident in the Campania Region (South Italy), with disease modifying treatment (DMT) prescription (n = 6,161). DMTs were classified as platform (dimethyl fumarate, glatiramer acetate, interferon-beta, peg-interferon-beta, teriflunomide), or high-efficacy (alemtuzumab, cladribine, fingolimod, natalizumab, ocrelizumab). We evaluated the association between binary MRI variables and switch from platform to high-efficacy DMT using multivariable logistic regression. RESULTS The likelihood of switch from platform to high-efficacy DMT was 47% higher when including post-Gd acquisitions to brain and/or spinal cord MRI, 59% higher when including spinal cord acquisitions to brain MRI, and 132% higher when including any MRI compared with no MRI (all p < 0.05). The likelihood of switch to high-efficacy DMT decreased over time from treatment start. CONCLUSION Our results show that spinal cord and Gd MRI acquisitions can provide relevant information to influence subsequent treatment decisions, especially in early treatment phases, compared with stand-alone brain MRI.
Collapse
Affiliation(s)
- Giulia Dallera
- Department of Primary Care and Public Health, Imperial College London, London, United Kingdom; Department of Public Health, Federico II University of Naples, Naples, Italy
| | - Giuseppina Affinito
- Department of Public Health, Federico II University of Naples, Naples, Italy
| | - Daniele Caliendo
- Multiple Sclerosis Clinical Care and Research Centre, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, via Sergio Pansini 5, Naples 80131, Italy
| | - Maria Petracca
- Multiple Sclerosis Clinical Care and Research Centre, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, via Sergio Pansini 5, Naples 80131, Italy
| | - Antonio Carotenuto
- Multiple Sclerosis Clinical Care and Research Centre, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, via Sergio Pansini 5, Naples 80131, Italy
| | - Maria Triassi
- Department of Public Health, Federico II University of Naples, Naples, Italy
| | - Vincenzo Brescia Morra
- Multiple Sclerosis Clinical Care and Research Centre, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, via Sergio Pansini 5, Naples 80131, Italy
| | - Raffaele Palladino
- Department of Primary Care and Public Health, Imperial College London, London, United Kingdom; Department of Public Health, Federico II University of Naples, Naples, Italy
| | - Marcello Moccia
- Multiple Sclerosis Clinical Care and Research Centre, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, via Sergio Pansini 5, Naples 80131, Italy.
| |
Collapse
|
9
|
Predictive MRI Biomarkers in MS—A Critical Review. Medicina (B Aires) 2022; 58:medicina58030377. [PMID: 35334554 PMCID: PMC8949449 DOI: 10.3390/medicina58030377] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/12/2022] [Accepted: 02/21/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Objectives: In this critical review, we explore the potential use of MRI measurements as prognostic biomarkers in multiple sclerosis (MS) patients, for both conventional measurements and more novel techniques such as magnetization transfer, diffusion tensor, and proton spectroscopy MRI. Materials and Methods: All authors individually and comprehensively reviewed each of the aspects listed below in PubMed, Medline, and Google Scholar. Results: There are numerous MRI metrics that have been proven by clinical studies to hold important prognostic value for MS patients, most of which can be readily obtained from standard 1.5T MRI scans. Conclusions: While some of these parameters have passed the test of time and seem to be associated with a reliable predictive power, some are still better interpreted with caution. We hope this will serve as a reminder of how vast a resource we have on our hands in this versatile tool—it is up to us to make use of it.
Collapse
|