1
|
Weinberger Y, Budnik I, Nisgav Y, Palevski D, Ben-David G, Fernández JA, Margalit SN, Levy-Mendelovich S, Kenet G, Weinberger D, Griffin JH, Livnat T. 3K3A-Activated Protein C Inhibits Choroidal Neovascularization Growth and Leakage and Reduces NLRP3 Inflammasome, IL-1β, and Inflammatory Cell Accumulation in the Retina. Int J Mol Sci 2023; 24:10642. [PMID: 37445820 PMCID: PMC10341424 DOI: 10.3390/ijms241310642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/20/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
3K3A-Activated Protein C (APC) is a recombinant variant of the physiological anticoagulant APC with cytoprotective properties and reduced bleeding risks. We studied the potential use of 3K3A-APC as a multi-target therapeutic option for choroidal neovascularization (CNV), a common cause of vision loss in age-related macular degeneration. CNV was induced by laser photocoagulation in a murine model, and 3K3A-APC was intravitreally injected. The impact of 3K3A-APC treatment on myeloid and microglia cell activation and recruitment and on NLRP3 inflammasome, IL-1β, and VEGF levels was assessed using cryosection, retinal flat-mount immunohistochemistry and vascular imaging. Additionally, we evaluated the use of fluorescein angiography as a surrogate marker for in vivo evaluation of the efficacy of 3K3A-APC treatment against leaking CNV lesions. Our results demonstrated that 3K3A-APC treatment significantly reduced the accumulation and activation of myeloid cells and microglia in the CNV area and decreased the NLRP3 and IL-1β levels at the CNV site and the surrounding retina. Furthermore, 3K3A-APC treatment resulted in leakage regression and CNV growth suppression. These findings indicate that the anti-inflammatory activities of 3K3A-APC contribute to CNV inhibition. Our study suggests the potential use of 3K3A-APC as a novel multi-target treatment for CNV.
Collapse
Affiliation(s)
- Yehonatan Weinberger
- Rabin Medical Center, Ophthalmology Department and Laboratory of Eye Research Felsenstein Medical Research Center, Petah-Tikva 5251108, Israel
- Faculty of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Ivan Budnik
- Department of Internal Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | - Yael Nisgav
- Rabin Medical Center, Ophthalmology Department and Laboratory of Eye Research Felsenstein Medical Research Center, Petah-Tikva 5251108, Israel
| | - Dahlia Palevski
- Rabin Medical Center, Ophthalmology Department and Laboratory of Eye Research Felsenstein Medical Research Center, Petah-Tikva 5251108, Israel
- Faculty of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Gil Ben-David
- Rabin Medical Center, Ophthalmology Department and Laboratory of Eye Research Felsenstein Medical Research Center, Petah-Tikva 5251108, Israel
- Faculty of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - José A. Fernández
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Shany Nivinsky Margalit
- Rabin Medical Center, Ophthalmology Department and Laboratory of Eye Research Felsenstein Medical Research Center, Petah-Tikva 5251108, Israel
| | - Sarina Levy-Mendelovich
- Faculty of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel
- Sheba Medical Center, The Amalia Biron Thrombosis and Hemostasis Research Institute, Tel-Hashomer 52621, Israel
| | - Gili Kenet
- Faculty of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel
- Sheba Medical Center, The Amalia Biron Thrombosis and Hemostasis Research Institute, Tel-Hashomer 52621, Israel
| | - Dov Weinberger
- Rabin Medical Center, Ophthalmology Department and Laboratory of Eye Research Felsenstein Medical Research Center, Petah-Tikva 5251108, Israel
- Faculty of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - John H. Griffin
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tami Livnat
- Rabin Medical Center, Ophthalmology Department and Laboratory of Eye Research Felsenstein Medical Research Center, Petah-Tikva 5251108, Israel
- Faculty of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel
- Sheba Medical Center, The Amalia Biron Thrombosis and Hemostasis Research Institute, Tel-Hashomer 52621, Israel
| |
Collapse
|
2
|
Activated protein C induces suppression and regression of choroidal neovascularization- A murine model. Exp Eye Res 2019; 186:107695. [PMID: 31201804 DOI: 10.1016/j.exer.2019.107695] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/27/2019] [Accepted: 06/11/2019] [Indexed: 02/04/2023]
Abstract
Activated protein C (APC) exerts diverse cell signaling pathways which results in multiple distinct cytoprotective actions. These include anti-apoptotic and anti-inflammatory activities and stabilization of endothelial and epithelial barriers. We studied the ability of APC to inhibit the leakage and the growth of newly formed as well as pre-existing choroidal neovascularization (CNV) and examined the ability of APC to stabilize the Retinal Pigmented Epithelium (RPE). We explored the contribution of Tie2 receptor to the protective effects of APC. CNV was induced by laser photocoagulation in C57BL/6J mice. APC was injected intravitreally immediately or 7 days after CNV induction. Neovascularization was evaluated on RPE-choroidal flatmounts using FITC-dextran perfusion and CD31 immunofluorescence. CNV leakage was measured by fluorescein angiography (FA). The ability of APC to stabilize the RPE barrier was evaluated in-vitro by dextran permeability and zonula occludens 1 (ZO1) immunostaining. Tie2 blocking was induced in-vivo by intraperitoneal injection of Tie2 kinase inhibitor and in-vitro by incubation with anti Tie2 antibodies. APC treatment dramatically inhibited the generation of newly formed CNV leakage sites and reversed leakage in 85% of the pre-existing CNV leaking sites. In RPE cell culture, APC induced translocation of ZO1 to the cell membrane, accompanied by reduction in permeability of the monolayer. Inhibition of Tie2 significantly decreased APC protective activities in both the mouse model and the RPE cell culture. Our results show that APC treatment significantly inhibits the leakage and growth of newly formed, as well as pre-existing CNV, and its protective activities are partially mediated via the Tie2 receptor. The data suggest that APC should be further investigated as a possible effective treatment for CNV.
Collapse
|
3
|
Intraocular pressure changes: an important determinant of the biocompatibility of intravitreous implants. PLoS One 2011; 6:e28720. [PMID: 22194895 PMCID: PMC3237488 DOI: 10.1371/journal.pone.0028720] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 11/14/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND In recent years, research efforts exploring the possibility of using biomaterial nanoparticles for intravitreous drug delivery has increased significantly. However, little is known about the effect of material properties on intravitreous tissue responses. PRINCIPAL FINDINGS To find the answer, nanoparticles made of hyaluronic acid (HA), poly (l-lactic acid) (PLLA), polystyrene (PS), and Poly N-isopropyl acrylamide (PNIPAM) were tested using intravitreous rabbit implantation model. Shortly after implantation, we found that most of the implants accumulated in the trabecular meshwork area followed by clearance from the vitreous. Interestingly, substantial reduction of intraocular pressure (IOP) was observed in eyes implanted with particles made of PS, PNIPAM and PLLA, but not HA nanoparticles and buffered salt solution control. On the other hand, based on histology, we found that the particle implantation had no influence on cornea, iris and even retina. Surprisingly, substantial CD11b+ inflammatory cells were found to accumulate in the trabecular meshwork area in some animals. In addition, there was a good relationship between recruited CD11b+ cells and IOP reduction. CONCLUSIONS Overall, the results reveal the potential influence of nanoparticle material properties on IOP reduction and inflammatory responses in trabecular meshwork. Such interactions may be critical for the development of future ocular nanodevices with improved safety and perhaps efficacy.
Collapse
|