1
|
Pharmacological Inhibition of Glutaminase 1 Attenuates Alkali-Induced Corneal Neovascularization by Modulating Macrophages. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1106313. [PMID: 35345831 PMCID: PMC8957416 DOI: 10.1155/2022/1106313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 02/24/2022] [Indexed: 11/18/2022]
Abstract
Corneal neovascularization (CoNV) in response to chemical burns is a leading cause of vision impairment. Although glutamine metabolism plays a crucial role in macrophage polarization, its regulatory effect on macrophages involved in chemical burn-induced corneal injury is not known. Here, we elucidated the connection between the reprogramming of glutamine metabolism in macrophages and the development of alkali burn-induced CoNV. Glutaminase 1 (GLS1) expression was upregulated in the mouse corneas damaged with alkali burns and was primarily located in F4/80-positive macrophages. Treatment with a selective oral GLS1 inhibitor, CB-839 (telaglenastat), significantly decreased the distribution of polarized M2 macrophages in the alkali-injured corneas and suppressed the development of CoNV. In vitro studies further demonstrated that glutamine deprivation or CB-839 treatment inhibited the proliferation, adhesion, and M2 polarization of bone marrow-derived macrophages (BMDMs) from C57BL/6J mice. CB-839 treatment markedly attenuated the secretion of proangiogenic factors, including vascular endothelial growth factor-A (VEGF-A) and platelet-derived growth factor-BB (PDGF-BB) from interleukin-4- (IL-4-) regulated M2 macrophages. Our findings revealed that GLS1 inhibition or glutamine deprivation prevented alkali-induced CoNV by inhibiting the infiltration and M2 polarization of macrophages. This work suggests that pharmacological GLS1 inhibition is a feasible and effective treatment strategy for chemical burn-related CoNV in humans.
Collapse
|
2
|
Balne PK, Gupta S, Zhang J, Bristow D, Faubion M, Heil SD, Sinha PR, Green SL, Iozzo RV, Mohan RR. The functional role of decorin in corneal neovascularization in vivo. Exp Eye Res 2021; 207:108610. [PMID: 33940009 DOI: 10.1016/j.exer.2021.108610] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 04/15/2021] [Accepted: 04/26/2021] [Indexed: 12/30/2022]
Abstract
Our earlier decorin (Dcn) gene overexpression studies found that the targeted Dcn gene transfer into the cornea inhibited corneal angiogenesis in vivo using a rabbit model. In this study, we tested the hypothesis that anti-angiogenic effects of decorin in the cornea are mediated by alterations in a normal physiologic balance of pro- and anti-angiogenic factors using decorin deficient (Dcn-/-) and wild type (Dcn+/+) mice. Corneal neovascularization (CNV) in Dcn-/- and Dcn+/+ mice was produced with a standard chemical injury technique. The clinical progression of CNV in mice was monitored with stereo- and slit-lamp microscopes, and histopathological hematoxylin and eosin (H&E) staining. Protein and mRNA expression of pro- and anti-angiogenic factors in the cornea were evaluated using immunofluorescence and quantitative real-time PCR, respectively. Slit-lamp clinical eye examinations revealed significantly more CNV in Dcn-/- mice than the Dcn+/+ mice post-injury (p < 0.05) and AAV5-Dcn gene therapy significantly reduced CNV in Dcn-/- mice compered to no AAV5-Dcn gene therapy controls (p < 0.001). H&E-stained corneal sections exhibited morphology with several neovessels in injured corneas of the Dcn-/- mice than the Dcn+/+ mice. Immunofluorescence of corneal sections displayed significantly higher expression of α-smooth muscle actin (α-SMA) and endoglin proteins in Dcn-/- mice than Dcn+/+ mice (p < 0.05). Quantitative real-time PCR found significantly increased mRNA levels of pro-angiogenic factors endoglin (2.53-fold; p < 0.05), Vegf (2.47-fold; p < 0.05), and Pecam (2.14-fold; p < 0.05) and anti-angiogenic factor Vegfr2 (1.56-fold; p < 0.05) in the normal cornea of the Dcn-/- mice than the Dcn+/+ mice. Furthermore, neovascularized Dcn-/- mice corneas showed greater increase in mRNA expression of pro-angiogenic factors endoglin (4.58-fold; p < 0.0001), Vegf (4.16-fold; p < 0.0001), and Pdgf (2.15-fold; p < 0.0001) and reduced expression of anti-angiogenic factors Ang2 (0.12-fold; p < 0.05), Timp1 (0.22-fold; p < 0.05), and Vegfr2 (0.67-fold; p > 0.05) compared to neovascularized Dcn+/+ mice corneas. These gene deficience studies carried with transgenic Dcn-/- mice revealed decorin's role in influencing a physiologic balance between pro-and anti-angiogenic factors in the normal and injured cornea. We infer that the functional deletion of Dcn promotes irregular corneal repair and aggravates CNV.
Collapse
Affiliation(s)
- Praveen K Balne
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Suneel Gupta
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Jinjin Zhang
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Daniel Bristow
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States; Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Matthew Faubion
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States; Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Sally D Heil
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Prashant R Sinha
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Sydney L Green
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Renato V Iozzo
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Rajiv R Mohan
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States; Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, United States.
| |
Collapse
|
3
|
Chen L, Wu H, Ren C, Liu G, Zhang W, Liu W, Lu P. Inhibition of PDGF-BB reduces alkali-induced corneal neovascularization in mice. Mol Med Rep 2021; 23:238. [PMID: 33537811 PMCID: PMC7893695 DOI: 10.3892/mmr.2021.11877] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
The aim of the present study was to investigate the role of platelet-derived growth factor (PDGF)-BB/PDGF receptor (R)-β signaling in an experimental murine corneal neovascularization (CrNV) model. Experimental CrNV was induced by alkali injury. The intra-corneal expression of PDGF-BB was examined using immunohistochemistry. The effect of PDGF-BB on CrNV was evaluated using immunofluorescence staining. The expression levels of PDGFR-β in human retinal endothelial cells (HRECs) under normal conditions or following cobalt chloride treatment, which induced hypoxic conditions, was assessed using reverse transcription-quantitative PCR. The effect of exogenous treatment of PDGF-BB on the proliferation, migration and tube formation of HRECs under normoxic or hypoxic conditions was evaluated in vitro using Cell Counting Kit-8, wound healing and 3D Matrigel capillary tube formation assays, respectively. The results indicated that the intra-corneal expression levels of the proteins of PDGF-BB and PDGFR-β were detectable on days 2 and 7 following alkali injury. The treatment with neutralizing anti-PDGF-BB antibody resulted in significant inhibition of CrNV. The intra-corneal expression levels of vascular endothelial growth factor A, matrix metallopeptidase (MMP)-2 and MMP-9 proteins were downregulated, while the expression levels of thrombospondin (TSP)-1, TSP-2, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-1 and ADAMTS-2 were upregulated significantly in mice treated with anti-PDGF-BB antibody. The expression levels of PDGFR-β were upregulated in HRECs under hypoxic conditions compared with those noted under normoxic conditions. Recombinant human PDGF-BB promoted the proliferation, migration and tube formation of HRECs under hypoxic conditions. The data indicated that PDGF-BB/PDGFR-β signaling was involved in CrNV and that it promoted endothelial cell proliferation, migration and tube formation. The pro-angiogenic effects of this pathway may be mediated via the induction of pro-angiogenic cytokine secretion and the suppression of anti-angiogenic cytokine secretion.
Collapse
Affiliation(s)
- Lei Chen
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Hongya Wu
- Jiangsu Key Laboratory of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Chi Ren
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Gaoqin Liu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Wenpeng Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Weiming Liu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Peirong Lu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
4
|
Nicholas MP, Mysore N. Corneal neovascularization. Exp Eye Res 2020; 202:108363. [PMID: 33221371 DOI: 10.1016/j.exer.2020.108363] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022]
Abstract
The optical clarity of the cornea is essential for maintaining good visual acuity. Corneal neovascularization, which is a major cause of vision loss worldwide, leads to corneal opacification and often contributes to a cycle of chronic inflammation. While numerous factors prevent angiogenesis within the cornea, infection, inflammation, hypoxia, trauma, corneal degeneration, and corneal transplantation can all disrupt these homeostatic safeguards to promote neovascularization. Here, we summarize its etiopathogenesis and discuss the molecular biology of angiogenesis within the cornea. We then review the clinical assessment and diagnostic evaluation of corneal neovascularization. Finally, we describe current and emerging therapies.
Collapse
Affiliation(s)
- Matthew P Nicholas
- Flaum Eye Institute, University of Rochester Medical Center, 210 Crittenden Blvd., Rochester, NY, USA
| | - Naveen Mysore
- Flaum Eye Institute, University of Rochester Medical Center, 210 Crittenden Blvd., Rochester, NY, USA.
| |
Collapse
|
5
|
Pharmacological Potential of Small Molecules for Treating Corneal Neovascularization. Molecules 2020; 25:molecules25153468. [PMID: 32751576 PMCID: PMC7435801 DOI: 10.3390/molecules25153468] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022] Open
Abstract
Under healthy conditions, the cornea is an avascular structure which allows for transparency and optimal visual acuity. Its avascular nature is maintained by a balance of proangiogenic and antiangiogenic factors. An imbalance of these factors can result in abnormal blood vessel proliferation into the cornea. This corneal neovascularization (CoNV) can stem from a variety of insults including hypoxia and ocular surface inflammation caused by trauma, infection, chemical burns, and immunological diseases. CoNV threatens corneal transparency, resulting in permanent vision loss. Mainstay treatments of CoNV have partial efficacy and associated side effects, revealing the need for novel treatments. Numerous natural products and synthetic small molecules have shown potential in preclinical studies in vivo as antiangiogenic therapies for CoNV. Such small molecules include synthetic inhibitors of the vascular endothelial growth factor (VEGF) receptor and other tyrosine kinases, plus repurposed antimicrobials, as well as natural source-derived flavonoid and non-flavonoid phytochemicals, immunosuppressants, vitamins, and histone deacetylase inhibitors. They induce antiangiogenic and anti-inflammatory effects through inhibition of VEGF, NF-κB, and other growth factor receptor pathways. Here, we review the potential of small molecules, both synthetics and natural products, targeting these and other molecular mechanisms, as antiangiogenic agents in the treatment of CoNV.
Collapse
|
6
|
Zhang J, Ghosh J, Mohamad SF, Zhang C, Huang X, Capitano ML, Gunawan AM, Cooper S, Guo B, Cai Q, Broxmeyer HE, Srour EF. CD166 Engagement Augments Mouse and Human Hematopoietic Progenitor Function via Activation of Stemness and Cell Cycle Pathways. Stem Cells 2019; 37:1319-1330. [PMID: 31260147 DOI: 10.1002/stem.3053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/21/2019] [Indexed: 12/16/2022]
Abstract
Hematopoietic stem (HSC) and progenitor (HPC) cells are regulated by interacting signals and cellular and noncellular elements of the hematopoietic niche. We previously showed that CD166 is a functional marker of murine and human HSC and of cellular components of the murine niche. Selection of murine CD166+ engrafting HSC enriched for marrow repopulating cells. Here, we demonstrate that CD166-CD166 homophilic interactions enhance generation of murine and human HPC in vitro and augment hematopoietic function of these cells. Interactions between cultured CD166+ Lineage- Sca-1+ c-Kit+ (LSK) cells and CD166+ osteoblasts (OBs) significantly enhanced the expansion of colony-forming units (CFUs). Interactions between CD166+ LSK cells and immobilized CD166 protein generated more CFU in short-term cultures than between these cells and bovine serum albumin (BSA) or in cultures initiated with CD166- LSK cells. Similar results were obtained when LSK cells from wildtype (WT) or CD166 knockout (KO) (CD166-/- ) mice were used with immobilized CD166. Human cord blood CD34+ cells expressing CD166 produced significantly higher numbers of CFUs following interaction with immobilized CD166 than their CD166- counterparts. These data demonstrate the positive effects of CD166 homophilic interactions involving CD166 on the surface of murine and human HPCs. Single-cell RNA-seq analysis of CD150+ CD48- (signaling lymphocyte activation molecule (SLAM)) LSK cells from WT and CD166-/- mice incubated with immobilized CD166 protein revealed that engagement of CD166 on these cells activates cytokine, growth factor and hormone signaling, epigenetic pathways, and other genes implicated in maintenance of stem cell pluripotency-related and mitochondria-related signaling pathways. These studies provide tangible evidence implicating CD166 engagement in the maintenance of stem/progenitor cell function. Stem Cells 2019;37:1319-1330.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, AMMS, Beijing, People's Republic of China.,Experimental Hematology and Biochemistry Lab, Beijing Institute of Radiation Medicine, AMMS, Beijing, People's Republic of China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, People's Republic of China
| | - Joydeep Ghosh
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Safa F Mohamad
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Chi Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Xinxin Huang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Maegan L Capitano
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Andrea M Gunawan
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Scott Cooper
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Bin Guo
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Qingchun Cai
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Edward F Srour
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
7
|
Yin J, Jacobs DS. Long-term outcome of using Prosthetic Replacement of Ocular Surface Ecosystem (PROSE) as a drug delivery system for bevacizumab in the treatment of corneal neovascularization. Ocul Surf 2019; 17:134-141. [PMID: 30468876 PMCID: PMC6340761 DOI: 10.1016/j.jtos.2018.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/12/2018] [Accepted: 11/19/2018] [Indexed: 01/04/2023]
Abstract
PURPOSE To report the long-term outcome of Prosthetic Replacement of the Ocular Surface Ecosystem (PROSE) for delivery of bevacizumab in the treatment of corneal neovascularization (KNV). METHODS Retrospective, non-comparative, interventional case series of 13 sequential patients treated for KNV at the BostonSight between 2006 and 2017. In all cases, PROSE treatment was initiated for management of ocular surface disease and patients wore PROSE consistently on a daily wear basis prior to bevacizumab treatment. Patients applied a drop of 1% preservative free bevacizumab to the reservoir of PROSE device twice daily. Patients continued with daily wear of the device during treatment and afterwards. RESULTS 13 patients (8 female and mean age of 45 years) are included with a mean follow-up of 5.1 years (range 6 months-11 years). Underlying ocular diagnoses included Stevens-Johnson syndrome (7), ocular chronic graft-versus-host disease (2), corneal transplant (2), contact lens-related corneal ulcer and limbal stem cell deficiency (1), and familial dysautonomia (1). Median duration of bevacizumab use was 6 months (range 3 months-10 years). Twelve cases (92%) had regression of KNV and 10 cases (77%) had improved best-corrected visual acuity (BCVA) with treatment. Median BCVA improved from -1.1 (LogMAR) at baseline, to -0.66 at end of bevacizumab treatment, and remained -0.63 at last follow-up (P = 0.047). KNV progressed in one eye after discontinuation of bevacizumab. There were no ophthalmic or systemic complications. CONCLUSIONS Topical bevacizumab used in PROSE is effective in treating KNV and improving vision. Long-term follow-up reveals durable response and no complications.
Collapse
Affiliation(s)
- Jia Yin
- Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, 243 Charles Street, Boston, MA, 02114, USA.
| | - Deborah S Jacobs
- Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, 243 Charles Street, Boston, MA, 02114, USA
| |
Collapse
|
8
|
Lledó Riquelme M, Campos-Mollo E, Fernández-Sánchez L. Topical axitinib is a potent inhibitor of corneal neovascularization. Clin Exp Ophthalmol 2018; 46:1063-1074. [PMID: 29888852 DOI: 10.1111/ceo.13333] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/25/2018] [Accepted: 05/16/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND This study evaluated the effects of topically applied axitinib, a tyrosine kinase inhibitor, in an experimental model of corneal neovascularization (CNV). METHODS A total of 48 New Zealand rabbits were used. CNV was induced by placing five silk sutures in the upper cornea of one eye per rabbit. Rabbits were randomized into four groups (12 rabbits each): 0.9% saline (control group), 0.02 mg/mL axitinib, 0.35 mg/mL axitinib and 0.5 mg/mL axitinib groups. All treatments were administered three times daily for 14 days. Photographs were taken using a slit lamp on days 7 and 14. The area of neovascularization was measured in mm2 , as the percentage of total corneal area and as the percentage of corneal surface covered by sutures (SCS). RESULTS On day 14, the CNV area in the control group (31.50 ± 7.47 mm2 ; 115.00 ± 22.55% of the corneal SCS) was larger than that in the 0.02 mg/mL axitinib group (19.20 ± 8.92 mm2 ; 73.89 ± 34.98%), the 0.35 mg/mL axitinib group (8.83 ± 3.92 mm2 ; 31.90 ± 13.59%) and the 0.5 mg/mL axitinib group (5.12 ± 3.97 mm2 ; 18.38 ± 13.65%). Compared with saline, CNV was inhibited 39.04% by 0.02 mg/mL axitinib, 71.96% by 0.35 mg/mL axitinib and 84.73% by 0.5 mg/mL axitinib. CONCLUSION Topical administration of the three axitinib concentrations inhibited CNV in rabbits, blocking both vascular endothelial growth factor and platelet-derived growth factor pathways. Axitinib at 0.5 mg/mL induced profound inhibition of corneal angiogenesis.
Collapse
Affiliation(s)
| | | | - Laura Fernández-Sánchez
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| |
Collapse
|
9
|
Roshandel D, Eslani M, Baradaran-Rafii A, Cheung AY, Kurji K, Jabbehdari S, Maiz A, Jalali S, Djalilian AR, Holland EJ. Current and emerging therapies for corneal neovascularization. Ocul Surf 2018; 16:398-414. [PMID: 29908870 DOI: 10.1016/j.jtos.2018.06.004] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/10/2018] [Accepted: 06/12/2018] [Indexed: 02/08/2023]
Abstract
The cornea is unique because of its complete avascularity. Corneal neovascularization (CNV) can result from a variety of etiologies including contact lens wear; corneal infections; and ocular surface diseases due to inflammation, chemical injury, and limbal stem cell deficiency. Management is focused primarily on the etiology and pathophysiology causing the CNV and involves medical and surgical options. Because inflammation is a key factor in the pathophysiology of CNV, corticosteroids and other anti-inflammatory medications remain the mainstay of treatment. Anti-VEGF therapies are gaining popularity to prevent CNV in a number of etiologies. Surgical options including vessel occlusion and ocular surface reconstruction are other options depending on etiology and response to medical therapy. Future therapies should provide more effective treatment options for the management of CNV.
Collapse
Affiliation(s)
- Danial Roshandel
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Medi Eslani
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA; Cincinnati Eye Institute, Edgewood, KY/ University of Cincinnati, Department of Ophthalmology, Cincinnati, OH, USA
| | - Alireza Baradaran-Rafii
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Albert Y Cheung
- Cincinnati Eye Institute, Edgewood, KY/ University of Cincinnati, Department of Ophthalmology, Cincinnati, OH, USA
| | - Khaliq Kurji
- Cincinnati Eye Institute, Edgewood, KY/ University of Cincinnati, Department of Ophthalmology, Cincinnati, OH, USA
| | - Sayena Jabbehdari
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Alejandra Maiz
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Setareh Jalali
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| | - Edward J Holland
- Cincinnati Eye Institute, Edgewood, KY/ University of Cincinnati, Department of Ophthalmology, Cincinnati, OH, USA.
| |
Collapse
|
10
|
Feizi S, Azari AA, Safapour S. Therapeutic approaches for corneal neovascularization. EYE AND VISION 2017; 4:28. [PMID: 29234686 PMCID: PMC5723406 DOI: 10.1186/s40662-017-0094-6] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/26/2017] [Indexed: 02/07/2023]
Abstract
Angiogenesis refers to new blood vessels that originate from pre-existing vascular structures. Corneal neovascularization which can lead to compromised visual acuity occurs in a wide variety of corneal pathologies. A large subset of measures has been advocated to prevent and/or treat corneal neovascularization with varying degrees of success. These approaches include topical corticosteroid administration, laser treatment, cautery, and fine needle diathermy. Since the imbalance between proangiogenic agents and antiangiogenic agents primarily mediate the process of corneal neovascularization, recent therapies are intended to disrupt the different steps in the synthesis and actions of proangiogenic factors. These approaches, however, are only partially effective and may lead to several side effects. The aim of this article is to review the most relevant treatments for corneal neovascularization available so far.
Collapse
Affiliation(s)
- Sepehr Feizi
- Ophthalmic Research Center, Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, 16666 Iran
| | - Amir A Azari
- Ophthalmic Research Center, Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, 16666 Iran
| | - Sharareh Safapour
- Ophthalmic Research Center, Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, 16666 Iran
| |
Collapse
|
11
|
Spiteri N, Romano V, Zheng Y, Yadav S, Dwivedi R, Chen J, Ahmad S, Willoughby CE, Kaye SB. Corneal Angiography for Guiding and Evaluating Fine-Needle Diathermy Treatment of Corneal Neovascularization. Ophthalmology 2015; 122:1079-84. [DOI: 10.1016/j.ophtha.2015.02.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/04/2015] [Accepted: 02/05/2015] [Indexed: 11/17/2022] Open
|
12
|
Abbaszadeh M, Aidenloo NS, Nematollahi MK, Motarjemizadeh Q. Investigating the Association between Angiogenic Cytokines and Corneal Neovascularization in Sulfur Mustard Intoxicated Subjects 26 Years after Exposure. Toxicol Int 2015; 21:300-6. [PMID: 25948970 PMCID: PMC4413414 DOI: 10.4103/0971-6580.155375] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVES This study aimed to evaluate the associations between the concentrations of three major angiogenic cytokines-vascular endothelial growth factor-A165 (VEGF-A165), basic fibroblast growth factor (bFGF), and platelet-derived growth factor-BB (PDGF-BB)-in the tear of sulfur mustard (SM)-exposed subjects and corneal neovascularization (CNV) 26 years after exposure. MATERIALS AND METHODS The concentrations of VEGF-A, bFGF, and PDGF-BB were measured by enzyme-linked immunosorbent assay (ELISA) in reflex tears of (i) SM-injured patients with CNV (positive case group including 18 individuals) and (ii) SM-injured patients without CNV (negative case group including 22 individuals). Then results were compared to corresponding values obtained from tears of 40 healthy control subjects. RESULTS The mean concentrations of all investigated growth factors, VEGF-A165, bFGF, and PDGF-BB, were significantly higher in positive cases than controls (P ≤ 0.001, P = 0.028, and P = 0.041, respectively). Whereas, VEGF-A165 was the only growth factor which displayed significantly elevated concentrations in negative case group compared to the healthy individuals (P = 0.030). Additionally, the mean level of VEGF-A165 was also higher in positive patient group than negative patients (P = 0.022). Subjects with increased concentrations of tear VEGF-A165 were more than 10 times more likely to suffer from CNV than normal individuals (odds ratio (OR) = 10.43, confidence interval (CI): 2.14-38.46, P = 0.001), while elevated levels of bFGF and PDGF-BB increased the risk of CNV by about twofold. CONCLUSION Although all investigated cytokines had increased in tears of positive patients, VEGF-A was the only one which showed a significant correlation with the severity of CNV, and thus played a crucial role in corneal angiogenesis.
Collapse
|
13
|
Arboleda-Velasquez JF, Valdez CN, Marko CK, D'Amore PA. From pathobiology to the targeting of pericytes for the treatment of diabetic retinopathy. Curr Diab Rep 2015; 15:573. [PMID: 25620405 PMCID: PMC5599150 DOI: 10.1007/s11892-014-0573-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pericytes, the mural cells that constitute the capillaries along with endothelial cells, have been associated with the pathobiology of diabetic retinopathy; however, therapeutic implications of this association remain largely unexplored. Pericytes appear to be highly susceptible to the metabolic challenges associated with a diabetic environment, and there is substantial evidence that their loss may contribute to microvascular instability leading to the formation of microaneurysms, microhemorrhages, acellular capillaries, and capillary nonperfusion. Since pericytes are strategically located at the interface between the vascular and neural components of the retina, they offer extraordinary opportunities for therapeutic interventions in diabetic retinopathy. Moreover, the availability of novel imaging methodologies now allows for the in vivo visualization of pericytes, enabling a new generation of clinical trials that use pericyte tracking as clinical endpoints. The recognition of multiple signaling mechanisms involved in pericyte development and survival should allow for a renewed interest in pericytes as a therapeutic target for diabetic retinopathy.
Collapse
Affiliation(s)
- Joseph F Arboleda-Velasquez
- Schepens Eye Research Institute/Massachusetts Eye and Ear and the Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA, 02114, USA
| | | | | | | |
Collapse
|
14
|
Current knowledge and trends in age-related macular degeneration: today's and future treatments. Retina 2014; 33:1487-502. [PMID: 23222393 DOI: 10.1097/iae.0b013e318271f265] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE To address the most dynamic and current issues concerning today's treatment options and promising research efforts regarding treatment for age-related macular degeneration. This review is aimed to serve as a practical reference for more in-depth reviews on the subject. METHODS An online review of the database PubMed and Ovid were performed, searching for the key words age-related macular degeneration, AMD, VEGF, treatment, PDT, steroids, bevacizumab, ranibizumab, VEGF-trap, radiation, combined therapy, as well as their compound phrases. The search was limited to articles published since 1985. All returned articles were carefully screened, and their references were manually reviewed for additional relevant data. The web page www.clinicaltrials.gov was also accessed in search of relevant research trials. RESULTS A total of 363 articles were reviewed, including 64 additional articles extracted from the references. At the end, only 160 references were included in this review. CONCLUSION Treatment for age-related macular degeneration is a very dynamic research field. While current treatments are mainly aimed at blocking vascular endothelial growth factor, future treatments seek to prevent vision loss because of scarring. Promising efforts have been made to address the dry form of the disease, which has lacked effective treatment.
Collapse
|
15
|
Trophic factors in the pathogenesis and therapy for retinal degenerative diseases. Surv Ophthalmol 2014; 59:134-65. [PMID: 24417953 DOI: 10.1016/j.survophthal.2013.09.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 09/11/2013] [Accepted: 09/17/2013] [Indexed: 12/27/2022]
Abstract
Trophic factors are endogenously secreted proteins that act in an autocrine and/or paracrine fashion to affect vital cellular processes such as proliferation, differentiation, and regeneration, thereby maintaining overall cell homeostasis. In the eye, the major contributors of these molecules are the retinal pigment epithelial (RPE) and Müller cells. The primary paracrine targets of these secreted proteins include the photoreceptors and choriocapillaris. Retinal degenerative diseases such as age-related macular degeneration and retinitis pigmentosa are characterized by aberrant function and/or eventual death of RPE cells, photoreceptors, choriocapillaris, and other retinal cells. We discuss results of in vitro and in vivo animal studies in which candidate trophic factors, either singly or in combination, were used in an attempt to ameliorate photoreceptor and/or retinal degeneration. We also examine current trophic factor therapies as they relate to the treatment of retinal degenerative diseases in clinical studies.
Collapse
|
16
|
Amparo F, Sadrai Z, Jin Y, Alfonso-Bartolozzi B, Wang H, Shikari H, Ciolino JB, Chodosh J, Jurkunas U, Schaumberg DA, Dana R. Safety and efficacy of the multitargeted receptor kinase inhibitor pazopanib in the treatment of corneal neovascularization. Invest Ophthalmol Vis Sci 2013; 54:537-44. [PMID: 23233252 DOI: 10.1167/iovs.12-11032] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
PURPOSE To evaluate the safety and efficacy of topical pazopanib in the treatment of corneal neovascularization (CNV). METHODS Twenty eyes of 20 patients with stable CNV were enrolled in a prospective, open label, noncomparative study and treated with topical pazopanib 0.5% for 3 weeks, and followed for 12 weeks. The primary endpoint was to determine the tolerability and safety of topical pazopanib in the treatment of CNV defined by the occurrence of ocular and systemic adverse events during the study. The secondary endpoint was to evaluate the effect of topical pazopanib on the reduction of (1) neovascular area (NA), defined as the area of the corneal vessels themselves, (2) invasion area (IA), defined as the fraction of the total cornea into which the vessels extend, (3) vessel length (VL), defined as the mean measurement of the extent of vessels from end to end, and (4) vessel caliber (VC), defined as the mean diameter of the corneal vessels. RESULTS There were no severe adverse events following the use of topical pazopanib. Compared with the baseline visit, NA and VL showed a statistically significant decrease at week 3 (P = 0.02 and 0.01, respectively); and NA, IA, and VL statistically significantly decreased at week 12 (P = 0.03, 0.04, and <0.01, respectively). Visual acuity maintained without changes after the 12 week follow-up. CONCLUSIONS This preliminary study suggests that topical treatment with pazopanib 0.5% is safe, well tolerated, and may have a role as an alternative for the treatment of CNV (ClinicalTrials.gov number, NCT01257750).
Collapse
Affiliation(s)
- Francisco Amparo
- Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Chang JH, Garg NK, Lunde E, Han KY, Jain S, Azar DT. Corneal neovascularization: an anti-VEGF therapy review. Surv Ophthalmol 2012; 57:415-29. [PMID: 22898649 DOI: 10.1016/j.survophthal.2012.01.007] [Citation(s) in RCA: 273] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 01/14/2012] [Accepted: 01/16/2012] [Indexed: 01/02/2023]
Abstract
Corneal neovascularization is a serious condition that can lead to a profound decline in vision. The abnormal vessels block light, cause corneal scarring, compromise visual acuity, and may lead to inflammation and edema. Corneal neovascularization occurs when the balance between angiogenic and antiangiogenic factors is tipped toward angiogenic molecules. Vascular endothelial growth factor (VEGF), one of the most important mediators of angiogenesis, is upregulated during neovascularization. In fact, anti-VEGF agents have efficacy in the treatment of neovascular age-related macular degeneration, diabetic retinopathy, macular edema, neovascular glaucoma, and other neovascular diseases. These same agents have great potential for the treatment of corneal neovascularization. We review some of the most promising anti-VEGF therapies, including bevacizumab, VEGF trap, siRNA, and tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago 60612, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Triple therapy for corneal neovascularization: a case report. Eur J Ophthalmol 2012; 22 Suppl 7:S126-8. [PMID: 21928258 DOI: 10.5301/ejo.5000050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2011] [Indexed: 11/20/2022]
Abstract
PURPOSE To investigate the effect of the combination of photodynamic therapy with verteporfin and subconjunctival bevacizumab and triamcinolone acetonide on corneal neovascularization secondary to corneal graft failure. METHODS A patient with extensive deep and superficial corneal neovascularization underwent same day triple therapy with subconjunctival bevacizumab (1.25 mg), subconjunctival triamcinolone acetonide (40 mg), and photodynamic therapy with verteporfin (fluence 50 J/cm², irradiance 300 mW/cm²). RESULTS A complete angiographic new vessel regression was obtained and was discernible starting 7 days after combination therapy. Three months after treatment, an initial new-vessel sprout was noted. Triple therapy was then repeated. No angiographic evidence of corneal neovascularization was detectable for the entire 6-month follow-up duration. CONCLUSIONS Triple therapy may offer a promising tool in the treatment of corneal neovascularization.
Collapse
|
19
|
Stevenson W, Cheng SF, Dastjerdi MH, Ferrari G, Dana R. Corneal neovascularization and the utility of topical VEGF inhibition: ranibizumab (Lucentis) vs bevacizumab (Avastin). Ocul Surf 2012; 10:67-83. [PMID: 22482468 DOI: 10.1016/j.jtos.2012.01.005] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 01/10/2012] [Accepted: 01/14/2012] [Indexed: 12/21/2022]
Abstract
Corneal avascularity is necessary for the preservation of optimal vision. The cornea maintains a dynamic balance between pro- and antiangiogenic factors that allows it to remain avascular under normal homeostatic conditions; however, corneal avascularity can be compromised by pathologic conditions that negate the cornea's "angiogenic privilege." The clinical relevance of corneal neovascularization has long been recognized, but management of this condition has been hindered by a lack of safe and effective therapeutic modalities. Herein, the etiology, epidemiology, pathogenesis, and treatment of corneal neovascularization are reviewed. Additionally, the authors' recent findings regarding the clinical utility of topical ranibizumab (Lucentis®) and bevacizumab (Avastin®) in the treatment of corneal neovascularization are summarized. These findings clearly indicate that ranibizumab and bevacizumab are safe and effective treatments for corneal neovascularization when appropriate precautions are observed. Although direct comparisons are not conclusive, the results suggest that ranibizumab may be modestly superior to bevacizumab in terms of both onset of action and degree of efficacy. In order to justify the increased cost of ranibizumab, it will be necessary to demonstrate meaningful treatment superiority in a prospective, randomized, head-to-head comparison study.
Collapse
Affiliation(s)
- William Stevenson
- Schepens Eye Research Institute, Massachusetts Eye & Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|
20
|
Farooqi AA, Waseem S, Riaz AM, Dilawar BA, Mukhtar S, Minhaj S, Waseem MS, Daniel S, Malik BA, Nawaz A, Bhatti S. PDGF: the nuts and bolts of signalling toolbox. Tumour Biol 2011; 32:1057-70. [PMID: 21769672 DOI: 10.1007/s13277-011-0212-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Accepted: 07/07/2011] [Indexed: 12/16/2022] Open
Abstract
PDGF is a growth factor and is extensively involved in multi-dimensional cellular dynamics. It switches on a plethora of molecules other than its classical pathway. It is engaged in various transitions of development; however, if the unleashed potentials lead astray, it brings forth tumourigenesis. Conventionally, it has been assumed that the components of this signalling pathway show fidelity and act with a high degree of autonomy. However, as illustrated by the PDGF signal transduction, reinterpretation of recent data suggests that machinery is often shared between multiple pathways, and other components crosstalk to each other through multiple mechanisms. It is important to note that metastatic cascade is an intricate process that we have only begun to understand in recent years. Many of the early steps of this PDGF cascade are not readily targetable in the clinic. In this review, we will unravel the paradoxes with reference to mitrons and cellular plasticity and discuss how disruption of signalling cascade triggers cellular proliferation phase transition and metastasis. We will also focus on the therapeutic interventions to counteract resultant molecular disorders.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, 1 km defence road, Lahore, Pakistan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|