1
|
Paensuwan P, Ngoenkam J, Wangteeraprasert A, Pongcharoen S. Essential function of adaptor protein Nck1 in platelet-derived growth factor receptor signaling in human lens epithelial cells. Sci Rep 2022; 12:1063. [PMID: 35058548 PMCID: PMC8776929 DOI: 10.1038/s41598-022-05183-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 01/06/2022] [Indexed: 11/24/2022] Open
Abstract
Binding of platelet-derived growth factor-BB (PDGF-BB) to its cognate receptor (PDGFR) promotes lens epithelial cell (LEC) proliferation and migration. After cataract surgery, these LEC behaviors have been proposed as an influential cause of posterior capsule opacification (PCO). Stimulated PDFGR undergoes dimerization and tyrosine phosphorylation providing docking sites for a SH2-domain-containing noncatalytic region of tyrosine kinase (Nck). Nck is an adaptor protein acting as a linker of the proximal and downstream signaling events. However, the functions of Nck1 protein in LEC have not been investigated so far. We reported here a crucial role of Nck1 protein in regulating PDGFR-mediated LEC activation using LEC with a silenced expression of Nck1 protein. The knockdown of Nck1 suppressed PDGF-BB-stimulated LEC proliferation and migration and disrupted the cell cycle progression especially G1/S transition. LEC lacking Nck1 protein failed to exhibit actin polymerization and membrane protrusions. The downregulation of Nck1 protein in LEC impaired PDGFR-induced phosphorylation of intracellular signaling proteins, including Erk1/2, Akt, CREB and ATF1, which resulted in inhibition of LEC responses. Therefore, these data suggest that the loss of Nck1 expression may disturb LEC activation and Nck1 may potentially be a drug target to prevent PCO and lens-related disease.
Collapse
Affiliation(s)
- Pussadee Paensuwan
- Department of Optometry, Faculty of Allied Health Sciences, Naresuan University, Tapho District, Phitsanulok, 65000, Thailand.
| | - Jatuporn Ngoenkam
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Tapho District, Phitsanulok, 65000, Thailand
| | - Apirath Wangteeraprasert
- Department of Medicine, Faculty of Medicine, Naresuan University, Tapho District, Phitsanulok, 65000, Thailand
| | - Sutatip Pongcharoen
- Department of Medicine, Faculty of Medicine, Naresuan University, Tapho District, Phitsanulok, 65000, Thailand.
| |
Collapse
|
2
|
Konopińska J, Młynarczyk M, Dmuchowska DA, Obuchowska I. Posterior Capsule Opacification: A Review of Experimental Studies. J Clin Med 2021; 10:jcm10132847. [PMID: 34199147 PMCID: PMC8269180 DOI: 10.3390/jcm10132847] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/13/2021] [Accepted: 06/24/2021] [Indexed: 11/16/2022] Open
Abstract
Posterior capsule opacification (PCO) is the most common complication of cataract surgery. It causes a gradual deterioration of visual acuity, which would otherwise improve after a successful procedure. Despite recent advances in ophthalmology, this complication has not been eradicated, and the incidence of PCO can be as high as 10%. This article reviews the literature concerning the pathomechanism of PCO and examines the biochemical pathways involved in its formation and methods to prevent this complication. We also review the reported tests performed in cell cultures under laboratory conditions and in experimental animal models and in ex vivo human lens capsules. Finally, we describe research involving human eyes in the clinical setting and pharmacological methods that may reduce the frequency of PCO. Due to the multifactorial etiology of PCO, in vitro studies make it possible to assess the factors contributing to its complications and search for new therapeutic targets. Not all pathways involved in cell proliferation, migration, and contraction of the lens capsule are reproducible in laboratory conditions; moreover, PCO in humans and laboratory animals may be additionally stimulated by various degrees of postoperative reactions depending on the course of surgery. Therefore, further studies are necessary.
Collapse
|
3
|
Parreno J, Amadeo MB, Kwon EH, Fowler VM. Tropomyosin 3.1 Association With Actin Stress Fibers is Required for Lens Epithelial to Mesenchymal Transition. Invest Ophthalmol Vis Sci 2021; 61:2. [PMID: 32492110 PMCID: PMC7415280 DOI: 10.1167/iovs.61.6.2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Purpose Epithelial to mesenchymal transition (EMT) is a cause of anterior and posterior subcapsular cataracts. Central to EMT is the formation of actin stress fibers. Selective targeting of actin stress fiber-associated tropomyosin (Tpm) in epithelial cells may be a means to prevent stress fiber formation and repress lens EMT. Methods We identified Tpm isoforms in mouse immortalized lens epithelial cells and epithelial and fiber cells from whole lenses by semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) followed Sanger sequencing. We focused on the role of one particular tropomyosin isoform, Tpm3.1, in EMT. To induce EMT, we treated cells or native lenses with TGFβ2. To test the function of Tpm3.1, we exposed cells or whole lenses to a Tpm3.1-specific chemical inhibitor, TR100, as well as investigated lenses from Tpm3.1 knockout mice. We examined stress fiber formation by confocal microscopy and assessed EMT progression by analysis of alpha-smooth muscle actin (αSMA) mRNA (real-time RT-PCR), and protein (Western immunoassay [WES]). Results Lens epithelial cells express eight Tpm isoforms. Cell culture studies showed that TGFβ2 treatment results in the upregulation of Tpm3.1, which associates with actin in stress fibers. TR100 prevents stress fiber formation and reduces αSMA in TGFβ2-treated cells. Using an ex vivo lens culture model, TGFβ2 treatment results in stress fiber formation at the basal regions of the epithelial cells. Genetic knockout of Tpm3.1 or treatment of lenses with TR100 prevents basal stress fiber formation and reduces epithelial αSMA levels. Conclusions Targeting specific stress fiber associated tropomyosin isoform, Tpm3.1, is a means to repress lens EMT.
Collapse
|
4
|
Lin L, Lin Q, Li J, Han Y, Chang P, Lu F, Zhao YE. ROCK inhibitor modified intraocular lens as an approach for inhibiting the proliferation and migration of lens epithelial cells and posterior capsule opacification. Biomater Sci 2020; 7:4208-4217. [PMID: 31389407 DOI: 10.1039/c9bm00787c] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lens epithelial cells (LECs) in the capsule play a critical role in posterior capsule opacification (PCO) formation following cataract surgery. Cytoskeleton remodeling and the related ROCK pathway are quite important during cell migration and proliferation, but their role in LECs is still unclear. This study aimed to explore the mechanism of the ROCK pathway in the behavior of LECs and established a drug modified IOL for PCO prevention. We observed that the ROCK pathway inhibitor (Y27632) or cofilin knockdown reduced HLEC-B3 migration and proliferation. Furthermore, we revealed that cofilin could regulate the migration and proliferation of LECs through its phosphorylation. Interestingly, the capping protein CAPZA1 and ERM family also had an effect on the behavior of LECs. In addition, we established Y27632-PLGA modified IOLs, implanted them into rabbit eyes and found them to exhibit good safety and biocompatibility in vivo. Moreover, satisfying PCO prevention results were observed at 28 days post-operation. In summary, the ROCK pathway and the cytoskeleton remodeling protein regulate cell migration and proliferation, and the Y27632-PLGA modified IOL can prevent PCO formation.
Collapse
Affiliation(s)
- Lei Lin
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | | | | | | | | | | | | |
Collapse
|
5
|
Joshi RS, Chavan SA. Rotation versus non-rotation of intraocular lens for prevention of posterior capsular opacification. Indian J Ophthalmol 2020; 67:1428-1432. [PMID: 31436186 PMCID: PMC6727723 DOI: 10.4103/ijo.ijo_1854_18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Purpose: To study the effect of rotation of intraocular lens (IOL) on posterior capsular opacification (PCO) in eyes with phacoemulsification. Methods: This was a prospective, comparative, randomized case series. One eye of each patient was randomized to one of two groups. The 360-degree rotation of IOL was carried out after its placement in the capsular bag (rotation group). The control group had no rotation of IOL. PCO was analyzed by an independent observer on EPCO computer analysis system at 6, 12, 24, and 36 months. Results: The study included 50 patients (100 eyes) with senile cataracts scheduled for phacoemulsification and IOL implantation. The median age in 2 groups was 66 years. 25% quartile age in both the group was 62 years (P = 0.06). There were 30 males, and 20 females. The median PCO score at 6, 12 and 24 months was significantly low in the rotation group (0.15, 0.13, 0.22) compared to the control group (0.22, 0.23, 0.25). There was no significant difference in PCO score between the two groups from 24-36 months. The median PCO score at 36 months was 0.2 in both the groups. At the end of three years, 4 eyes (8%) in the rotation group, and 10 eyes (20%) in the control group needed Nd:YAG capsulotomy (P = 0.04). Conclusion: Rotation of IOL in the capsular bag decreases PCO and Nd:YAG capsulotomy rate.
Collapse
Affiliation(s)
- Rajesh S Joshi
- Department of Ophthalmology, Vasantrao Naik Government Medical College, Yavatmal, Maharashtra, India
| | - Shrutika A Chavan
- Department of Ophthalmology, Vasantrao Naik Government Medical College, Yavatmal, Maharashtra, India
| |
Collapse
|
6
|
Fișuș AD, Findl O. Capsular fibrosis: a review of prevention methods and management. Eye (Lond) 2019; 34:256-262. [PMID: 31804626 DOI: 10.1038/s41433-019-0723-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/27/2019] [Accepted: 11/13/2019] [Indexed: 02/02/2023] Open
Abstract
Opacification of the posterior capsule caused by residual lens epithelial cells (LEC) is still the most frequent long-term complication of cataract surgery. Beside the opacification of the visual axis with posterior capsule opacification (PCO), resulting in a decrease in visual function, fibrotic changes may also have a mechanical effect on intraocular lens (IOL) position such as axial shift, decentration, tilt and capsule striae. In this article, two types of capsular fibrosis are explored, on the one hand the anterior capsule fibrosis and on the other hand PCO. Results from clinical trials concerning their causes, natural course, incidence, influencing factors and possible methods of prophylaxis are presented.
Collapse
Affiliation(s)
- Andreea D Fișuș
- Department of Ophthamology, Vienna Institute for Research in Ocular Surgery - Karl Landsteiner Institute, Hanusch Hospital, Vienna, Austria.,George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu-Mureș, Târgu-Mureș, România
| | - Oliver Findl
- Department of Ophthamology, Vienna Institute for Research in Ocular Surgery - Karl Landsteiner Institute, Hanusch Hospital, Vienna, Austria.
| |
Collapse
|
7
|
Shihan MH, Novo SG, Duncan MK. Cataract surgeon viewpoints on the need for novel preventative anti-inflammatory and anti-posterior capsular opacification therapies. Curr Med Res Opin 2019; 35:1971-1981. [PMID: 31328581 PMCID: PMC6995282 DOI: 10.1080/03007995.2019.1647012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Purpose: To determine cataract surgeon viewpoints on the efficacy of available therapies/preventatives for two common sequelae of cataract surgery: inflammation and posterior capsular opacification (PCO). Methods: Cataract surgeons practicing worldwide specializing in adult, pediatric and veterinary patients were interviewed between March and August 2018. Results: Ocular inflammation following cataract surgery is treated by either corticosteroids and/or nonsteroidal anti-inflammatories (NSAIDs). Adult and pediatric cataract surgeons are satisfied with current treatments whereas this inflammation is still considered a problem by some in veterinary practice due to its slow resolution. Yttrium-aluminum-garnet (YAG) laser therapy is the PCO treatment of choice for adult cataract surgeons and they are generally pleased with its outcome. However, pediatric cataract surgeons find YAG problematic, especially in patients under 6 years of age, and invasive surgery is often needed to correct PCO/visual axis opacification (VAO). Veterinary ophthalmologists report that YAG is not effective for PCO in animals, especially dogs, due to the density of the fibrotic plaques; 86% of adult and 100% of veterinary and pediatric cataract surgeons surveyed agree that effective anti-PCO therapeutics would improve clinical care. Conclusions: Surgeons treating human patients are pleased with the available treatments for ocular inflammation following cataract surgery, although some veterinary ophthalmologists disagree. The surgeons surveyed agree that PCO/VAO remains an unsolved problem in pediatric and veterinary cataract surgery while the long-term outcome of adult cataract surgery could be improved by additional attention to this issue.
Collapse
Affiliation(s)
- Mahbubul H Shihan
- Department of Biological Sciences, The University of Delaware , Newark , DE , USA
| | - Samuel G Novo
- Department of Biological Sciences, The University of Delaware , Newark , DE , USA
| | - Melinda K Duncan
- Department of Biological Sciences, The University of Delaware , Newark , DE , USA
| |
Collapse
|
8
|
Kumar B, Reilly MA. The Development, Growth, and Regeneration of the Crystalline Lens: A Review. Curr Eye Res 2019; 45:313-326. [DOI: 10.1080/02713683.2019.1681003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Bharat Kumar
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - M. A. Reilly
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
- Department of Ophthalmology and Visual Science, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
9
|
Kumar B, Chandler HL, Plageman T, Reilly MA. Lens Stretching Modulates Lens Epithelial Cell Proliferation via YAP Regulation. Invest Ophthalmol Vis Sci 2019; 60:3920-3929. [PMID: 31546253 PMCID: PMC7043215 DOI: 10.1167/iovs.19-26893] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 08/13/2019] [Indexed: 01/13/2023] Open
Abstract
Purpose The continuous growth of the lens throughout life may contribute to the onset of age-related conditions in the lens (i.e., presbyopia and cataract). Volumetric growth is the result of continuous proliferation of lens epithelial cells (LECs). The driving factors controlling LEC proliferation are not well understood. This study tested the hypothesis that mechanical stretching modulates LEC proliferation. Methods Biomechanical regulation of LEC proliferation was investigated by culturing whole porcine lenses and connective tissues ex vivo under varying physiologically relevant stretching conditions using a bespoke lens stretching device. Additionally, some lenses were treated with a YAP function inhibitor to determine the Hippo signaling pathway's role in regulating lens growth. Resulting changes in LEC labeling index were analyzed using EdU incorporation and flow cytometry for each lens. Results LEC proliferation was found to be modulated by mechanical strain. Increasing both the magnitude of static stretching and the stretching frequency in cyclic stretching resulted in a proportional increase in the labeling indices of the LECs. Additionally, treatment with the YAP function inhibitor effectively eliminated this relationship. Conclusions These data demonstrate that LEC proliferation is regulated in part, by the mechanotransduction of stresses induced in the lens capsule and that YAP plays an important role in mechanosensing. These results have important implications for understanding lens growth and morphogenesis. The model may also be used to identify and evaluate targets for modulating lens growth.
Collapse
Affiliation(s)
- Bharat Kumar
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
| | - Heather L. Chandler
- College of Optometry, The Ohio State University, Columbus, Ohio, United States
- College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Timothy Plageman
- College of Optometry, The Ohio State University, Columbus, Ohio, United States
| | - Matthew A. Reilly
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
- Department of Ophthalmology and Visual Science, The Ohio State University, Columbus, Ohio, United States
| |
Collapse
|
10
|
Zhang P, Zhang L, Qin Z, Hua S, Guo Z, Chu C, Lin H, Zhang Y, Li W, Zhang X, Chen X, Liu G. Genetically Engineered Liposome-like Nanovesicles as Active Targeted Transport Platform. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 29. [PMID: 29280210 DOI: 10.1002/adma.201701617] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/06/2017] [Indexed: 05/10/2023]
Abstract
Ligand-targeted delivery of drug molecules to various types of tumor cells remains a major challenge in precision medicine. Inspired by the secretion process and natural cargo delivery functions of natural exosomes, biomimetic synthetic strategies are exploited to prepare biofunctionalized liposome-like nanovesicles (BLNs) that can artificially display a wide variety of targeting protein/peptide ligands and directly encapsulate medical agents for enhanced drug delivery. Here, as a proof of concept, genetically engineered BLNs, which display human epidermal growth factor (hEGF) or anti-HER2 Affibody as targeting moieties, are developed to, respectively, target two types of tumor cells. Notably, in comparison to synthetic liposomes covalently coupled with hEGF, it is demonstrated in this work that biosynthetically displayed hEGF ligands on BLNs possess higher biological activities and targeting capabilities. Additionally, treatments with doxorubicin-loaded BLNs displaying Affibody ligands exhibit much better antitumor therapeutic outcomes than clinically approved liposomal doxorubicin (Doxil) in HER2-overexpressing BT474 tumor xenograft models. These data suggest that BLN is suitable as a potent surrogate for conventional proteoliposomes or immunoliposomes as a result of excellent targeting capacities and facile production of BLNs.
Collapse
Affiliation(s)
- Pengfei Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Long Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- Department of Hepatobiliary Pancreas and Vessel Surgery, Chenggong Hospital of Xiamen University, Xiamen, 361005, China
| | - Zainen Qin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- Collaborative Innovation Center of Guangxi Biological Medicine and the, Medical and Scientific Research Center, Guangxi Medical University, Nanning, 530021, China
| | - Suhang Hua
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Zhide Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Chengchao Chu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Huirong Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Wengang Li
- Department of Hepatobiliary Pancreas and Vessel Surgery, Chenggong Hospital of Xiamen University, Xiamen, 361005, China
| | - Xianzhong Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
11
|
Dickkopf-1 inhibits Wnt3a-induced migration and epithelial-mesenchymal transition of human lens epithelial cells. Exp Eye Res 2017; 161:43-51. [DOI: 10.1016/j.exer.2017.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 05/19/2017] [Accepted: 06/01/2017] [Indexed: 02/01/2023]
|
12
|
Li J, Xia CH, Wang E, Yao K, Gong X. Screening, genetics, risk factors, and treatment of neonatal cataracts. Birth Defects Res 2017; 109:734-743. [PMID: 28544770 DOI: 10.1002/bdr2.1050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 04/15/2017] [Indexed: 12/21/2022]
Abstract
Neonatal cataracts remain the most common cause of visual loss in children worldwide and have diverse, often unknown, etiologies. This review summarizes current knowledge about the detection, treatment, genetics, risk factors, and molecular mechanisms of congenital cataracts. We emphasize significant progress and topics requiring further study in both clinical cataract therapy and basic lens research. Advances in genetic screening and surgical technologies have improved the diagnosis, management, and visual outcomes of affected children. For example, mutations in lens crystallins and membrane/cytoskeletal components that commonly underlie genetically inherited cataracts are now known. However, many questions still remain regarding the causes, progression, and pathology of neonatal cataracts. Further investigations are also required to improve diagnostic criteria for determining the timing of appropriate interventions, such as the implantation of intraocular lenses and postoperative management strategies, to ensure safety and predictable visual outcomes for children. Birth Defects Research 109:734-743, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jinyu Li
- Eye Center, Second Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Ophthalmology of Zhejiang Province, China
| | - Chun-Hong Xia
- School of Optometry and Vision Science Program, University of California, Berkeley, California, USA
| | - Eddie Wang
- School of Optometry and Vision Science Program, University of California, Berkeley, California, USA
| | - Ke Yao
- Eye Center, Second Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Ophthalmology of Zhejiang Province, China
| | - Xiaohua Gong
- School of Optometry and Vision Science Program, University of California, Berkeley, California, USA
| |
Collapse
|
13
|
Bao X, Hou M, Qin Y, Luo F, Shang F, Wu M. Effect of an MG132-Sustained Drug Delivery Capsular Ring on the Inhibition of Posterior Capsule Opacification in a Rabbit Model. J Ocul Pharmacol Ther 2017; 33:103-110. [PMID: 28106491 DOI: 10.1089/jop.2016.0163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
PURPOSE To design an MG132-sustained drug delivery capsular ring (SDDCR) and investigate its effect on the inhibition of posterior capsule opacification (PCO) in a rabbit model. METHODS The SDDCRs were prepared by forming a slice of film made by the mixture of poly lactic-co-glycolic acid (PLGA) and MG132 on the surface of capsular tension rings (CTRs). The drug-loading capacity, entrapment efficiency, and in vitro release of the drug-containing film were detected. Eighteen New Zealand white rabbits were operated with phacoemulsification and MG132-SDDCRs/PLGA-CTRs/CTRs implantation in the single eye. The images of the anterior segments were acquired at certain days, and the epithelial-mesenchymal transition (EMT) markers were detected by western blot and immunofluorescence. RESULTS The drug-loading capacity and entrapment efficiency of MG132-SDDCRs were 1.15% ± 0.04% and 66.16% ± 0.027%, respectively, and the drug released well within a month. The PCO degree of the MG132-SDDCR group was significantly lower than the other groups. The expression of alpha-smooth muscle actin, fibronectin, vimentin, and collagen-I was lower, and the expression of E-cadherin (E-cad) was higher in the MG132-SDDCR group than the other groups. CONCLUSIONS MG132-SDDCRs could be established successfully. The PCO process was prevented, and the expression of EMT markers was inhibited by the implantation of MG132-SDDCRs, indicating that this could be a potential treatment against PCO.
Collapse
Affiliation(s)
- Xuan Bao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou, China
| | - Min Hou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou, China
| | - Yingyan Qin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou, China
| | - Furong Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou, China
| | - Fu Shang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou, China
| | - Mingxing Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou, China
| |
Collapse
|
14
|
Prevention of posterior capsular opacification. Exp Eye Res 2015; 136:100-15. [PMID: 25783492 DOI: 10.1016/j.exer.2015.03.011] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 02/04/2015] [Accepted: 03/13/2015] [Indexed: 01/22/2023]
Abstract
Posterior capsular opacification (PCO) is a common complication of cataract surgery. The development of PCO is due to a combination of the processes of proliferation, migration, and transdifferentiation of residual lens epithelial cells (LECs) on the lens capsule. In the past decades, various forms of PCO prevention have been examined, including adjustments of techniques and intraocular lens materials, pharmacological treatments, and prevention by interfering with biological processes in LECs. The only method so far that seems effective is the implantation of an intraocular lens with sharp edged optics to mechanically prevent PCO formation. In this review, current knowledge of the prevention of PCO will be described. We illustrate the biological pathways underlying PCO formation and the various approaches to interfere with the biological processes to prevent PCO. In this type of prevention, the use of nanotechnological advances can play a role.
Collapse
|
15
|
Interleukin-6 in the pathogenesis of posterior capsule opacification and the potential role for interleukin-6 inhibition in the future of cataract surgery. Med Hypotheses 2013; 80:466-74. [DOI: 10.1016/j.mehy.2012.12.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 07/18/2012] [Accepted: 12/29/2012] [Indexed: 12/14/2022]
|