1
|
Anoop G, Kamaraj M, Nithya TG, Babu PR, Babu SS. Lyophilization of dehydrated human amniotic membrane: a proactive approach to preserve growth factors for enhanced wound healing. Cell Tissue Bank 2025; 26:18. [PMID: 40156630 DOI: 10.1007/s10561-025-10167-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 03/10/2025] [Indexed: 04/01/2025]
Abstract
The preservation of key growth factors in the human amniotic membrane (hAM) that are involved in tissue regeneration and wound healing is the primary focus of this research work. Here, we quantified the total protein content and the major growth factors present in different sample preparations of hAM. The membrane is initially processed, dehydrated, and gamma-irradiated and subsequently subjected to histological staining, cytotoxicity assays, and total protein estimation. The ELISA method was used to quantify TGF b1, bFGF, PDGF-BB, VEGF-A, and EGF in three distinct preservation samples: tissue homogenate (AC-H), ball milled powder (AC-P), and lyophilized powder (AC-L). An in-vitro scratch assay was performed to analyse cell migration and wound healing. Higher TGF-b1 and FGF-b concentrations indicate the potential impact of HAM on re-epithelialization and granular tissue formation. For major growth factors, the quantification shows no significant differences between the samples. On treating the wound area with concentrations of 0.4 mg/ml and 0.6 mg/ml, the remaining wound area for AC-H, AC-L, and AC-P are 39.71%, 40.31%, 55.99% and 25.48%, 62.8%, and 29.65%, respectively. This indicates the presence of growth factors in the membrane promotes wound healing and facilitates cell migration and proliferation. This study provides insights into the quantity of key growth factors within the human amniotic membrane, thereby presenting the approach as a viable option for treating chronic wounds. Additionally, as lyophilization preserves more growth factors and offers greater stability and shelf life than other preservation techniques, it may be an appropriate substitute for ball milling.
Collapse
Affiliation(s)
- Gayathri Anoop
- Department of Biochemistry, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - M Kamaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Ramapuram, Chennai, Tamil Nadu, 600089, India
- Life Science Division, Faculty of Health and Life Sciences, INTI International University, 71800, Nilai, Malaysia
| | - T G Nithya
- Department of Biochemistry, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| | - Pothireddy Raghu Babu
- Acadicell Innovations International Pvt Ltd, Seethakathi Estate, Grand Southern Trunk Road, Vandalur, Chennai, Tamil Nadu, 600048, India
| | - Seetha S Babu
- Department of Biochemistry, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| |
Collapse
|
2
|
Korkmaz I, Gurdal M, Arici M, Barut Selver O. Beyond transplants: current and future therapeutic potential of amniotic membrane extract (AME) in ophthalmology. Regen Med 2025; 20:97-109. [PMID: 40028702 PMCID: PMC11951707 DOI: 10.1080/17460751.2025.2472578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/20/2025] [Indexed: 03/05/2025] Open
Abstract
There is no established consensus or standardized method for the preparation of amniotic membrane extract (AME). Consequently, various preparation, preservation, and sterilization techniques have been employed. To obtain AME rich in bioactive components with high therapeutic efficacy, each step of the preparation process is of critical importance. The appropriate procurement of the amniotic membrane minimizes the risk of infection transmission and reduces inter- and intra-donor variability. For the subsequent extraction process, different approaches are utilized due to factors such as laboratory infrastructure variability and the lack of a standardized method. Although lyophilization has recently emerged as a prominent method for the long-term preservation of AME, further investigation is required to assess its impact on the biochemical composition and clinical efficacy of the membrane. In ophthalmology, in vitro, in vivo, and clinical studies indicate that AME supports corneal epithelial regeneration, suppresses inflammation, and is a well-tolerated therapeutic agent. Consequently, further studies are still needed to enhance the effective release of therapeutic components from the amniotic membrane, improve the quality and consistency of AME, and preserve its content over an extended period. Thus, the clinical application of AME-derived products in the form of eye drops will become more widespread in the future.
Collapse
Affiliation(s)
- Ilayda Korkmaz
- Bandirma Training and Research Hospital, Department of Ophthalmology, Balikesir, Turkey
- Faculty of Medicine, Ocular Surface Research Laboratory, Ege University, Izmir, Turkey
| | - Mehmet Gurdal
- Faculty of Medicine, Ocular Surface Research Laboratory, Ege University, Izmir, Turkey
- LimbuStem R&D Medical Products, Spin-off Company, Izmir, Turkey
| | - Mesut Arici
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Ege University, Izmir, Turkey
| | - Ozlem Barut Selver
- Faculty of Medicine, Ocular Surface Research Laboratory, Ege University, Izmir, Turkey
- LimbuStem R&D Medical Products, Spin-off Company, Izmir, Turkey
- Faculty of Medicine, Department of Ophthalmology, Ege University, Izmir, Turkey
- Graduate School of Health Sciences, Department of Stem Cell, Ege University, Izmir, Turkey
- Cord Blood-Cell Tissue Application and Research Center, Ege University, Izmir, Turkey
| |
Collapse
|
3
|
Gómez LA, Domínguez-Paz C, Ospina JF, Vargas EJ. Procurement, Processing, and Storage of Human Amniotic Membranes for Implantation Purposes in Non-Healing Pressure Ulcers. Methods Protoc 2025; 8:12. [PMID: 39997636 PMCID: PMC11858804 DOI: 10.3390/mps8010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 02/26/2025] Open
Abstract
The human amniotic membrane (hAM) has been used as an implant to enhance the regenerative process and control inflammation in different diseases, given their structure, biocompatibility, presence of stem cells and multiple growth factors. The objective of this study was to generate a standardized protocol for obtaining, processing, and storing hAMs that guarantee the conservation of their structural and cellular characteristics as well as their mechanical properties, ensuring their ease of handling, sterility, and quality that allows their implementation for therapeutic purposes in the field of regenerative medicine. The hAMs were obtained from mothers with healthy, full-term, controlled pregnancies and by cesarean section. The hAMs were processed under sterile conditions, manually separated from the placenta and, subsequently, they were frozen in a solution of culture medium plus 50% v/v glycerol. The protocol allows obtaining sterile hAMs composed of both epithelium and stroma with adequate preservation of the amniotic cells. The glycerol's impact on the mechanical properties may enhance the membrane's adaptability and conformability to diverse wound surfaces, potentially improving the healing process. It is necessary to repeat microbiological, cell viability and mechanical studies at 6 and 12 months to ensure that long-term frozen conditions do not affect the quality of the hAMs.
Collapse
Affiliation(s)
- Lina A. Gómez
- Biomedical Research Center (CIBUS), Faculty of Medicine, Universidad de La Sabana, Chía 53753, Colombia;
| | - Carlos Domínguez-Paz
- Department of Prototypes and Manufacturing, Grupo de Energia, Materiales y Ambiente (GEMA), Universidad de La Sabana, Chía 140013, Colombia;
| | - Juan F. Ospina
- Hospital Universitario La Samaritana, Ginecohus Research Group, Bogotá 111321, Colombia
| | - Elga J. Vargas
- Pathology Laboratory, Department of Pathology, Faculty of Medicine, Universidad de La Sabana, Chía 140013, Colombia
| |
Collapse
|
4
|
Khaydukova IV, Ivannikova VM, Zhidkov DA, Belikov NV, Peshkova MA, Timashev PS, Tsiganov DI, Pushkarev AV. Current State and Challenges of Tissue and Organ Cryopreservation in Biobanking. Int J Mol Sci 2024; 25:11124. [PMID: 39456905 PMCID: PMC11508709 DOI: 10.3390/ijms252011124] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/26/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Recent years have witnessed significant advancements in the cryopreservation of various tissues and cells, yet several challenges persist. This review evaluates the current state of cryopreservation, focusing on contemporary methods, notable achievements, and ongoing difficulties. Techniques such as slow freezing and vitrification have enabled the successful preservation of diverse biological materials, including embryos and ovarian tissue, marking substantial progress in reproductive medicine and regenerative therapies. These achievements highlight improved post-thaw survival and functionality of cryopreserved samples. However, there are remaining challenges such as ice crystal formation, which can lead to cell damage, and the cryopreservation of larger, more complex tissues and organs. This review also explores the role of cryoprotectants and the importance of optimizing both cooling and warming rates to enhance preservation outcomes. Future research priorities include developing new cryoprotective agents, elucidating the mechanisms of cryoinjury, and refining protocols for preserving complex tissues and organs. This comprehensive overview underscores the transformative potential of cryopreservation in biomedicine, while emphasizing the necessity for ongoing innovation to address existing challenges.
Collapse
Affiliation(s)
- Irina V. Khaydukova
- Department of Refrigeration and Cryogenic Technology, Conditioning Systems, and Life Support Systems, Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - Valeria M. Ivannikova
- Department of Refrigeration and Cryogenic Technology, Conditioning Systems, and Life Support Systems, Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - Dmitry A. Zhidkov
- Department of Refrigeration and Cryogenic Technology, Conditioning Systems, and Life Support Systems, Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - Nikita V. Belikov
- Department of Refrigeration and Cryogenic Technology, Conditioning Systems, and Life Support Systems, Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - Maria A. Peshkova
- Institute for Regenerative Medicine, Sechenov University, 119048 Moscow, Russia
| | - Peter S. Timashev
- Institute for Regenerative Medicine, Sechenov University, 119048 Moscow, Russia
| | - Dmitry I. Tsiganov
- Department of Refrigeration and Cryogenic Technology, Conditioning Systems, and Life Support Systems, Bauman Moscow State Technical University, 105005 Moscow, Russia
- Russian Medical Academy of Continuous Professional Education, 125993 Moscow, Russia
| | - Aleksandr V. Pushkarev
- Department of Refrigeration and Cryogenic Technology, Conditioning Systems, and Life Support Systems, Bauman Moscow State Technical University, 105005 Moscow, Russia
- Russian Medical Academy of Continuous Professional Education, 125993 Moscow, Russia
| |
Collapse
|
5
|
Bn L, Deshpande AD, Shukla S, Emmanuel RS, Singh A, Thirupathi Y, Singh V, Saikumar G, Chandra V, Sharma GT. Exploring the therapeutic potential of allogeneic amniotic membrane for quality wound healing in rabbit model. Am J Reprod Immunol 2024; 91:e13853. [PMID: 38706383 DOI: 10.1111/aji.13853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/20/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024] Open
Abstract
BACKGROUND The amniotic membrane (AM) has shown immense potential in repairing wounds due to its great regenerative qualities. Although the role of AM as a biological scaffold in repairing wounds has been studied well, the tissue regenerative potential of AM-derived mesenchymal stem cells (MSCs) and conditioned media (CM) derived from it remains to be discovered as of now. Here, we examined the wound healing abilities of fresh and frozen thawed rabbit AM (rAM) along with the MSCs and their lyophilised CM in rabbits challenged with skin wounds. METHODS To elucidate the role of rAM-MSCs and its CM in repairing the wound, we isolated it from the freshly derived placenta and characterised their differentiation potential by performing an in vitro tri-lineage differentiation assay besides other standard confirmations. We compared the wound repair capacities of rAM-MSCs and lyophilised CM with the fresh and cryopreserved AM at different timelines by applying them to excision wounds created in rabbits. RESULTS By monitoring wound contractions and tissue histology of wounded skin at different time points after the application, we observed that rAM-MSCs and rAM-MSC-derived CM significantly promoted wound closure compared to the control group. We also observed that the wound closure capacity of rAM-MSCs and rAM-MSC-derived CM is as efficient as fresh and cryopreserved rAM. CONCLUSION Our findings suggest that rAM-MSCs and rAM-MSC derived CM can be effectively used to treat skin wounds in animals and correctly delivered to the damaged tissue using AM as a bioscaffold, either fresh or frozen.
Collapse
Affiliation(s)
- Likhitha Bn
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, U.P., India
| | - Aditya D Deshpande
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, U.P., India
- Laboratory of Stem Cells and Regenerative Medicine, DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India
| | - Smriti Shukla
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, U.P., India
| | - Rony S Emmanuel
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, U.P., India
| | - Archita Singh
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, U.P., India
| | - Yasotha Thirupathi
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, U.P., India
| | - Vidya Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, U.P., India
| | - G Saikumar
- Division of Pathology, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, U.P., India
| | - Vikash Chandra
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, U.P., India
| | - G Taru Sharma
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, U.P., India
- Laboratory of Stem Cells and Regenerative Medicine, DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India
- Adjunct Professor, DBT-Regional Centre for Biotechnology (RCB), Faridabad, Haryana, India
| |
Collapse
|
6
|
Gurdal M, Korkmaz I, Barut Selver O. An important detail that is still not clear in amniotic membrane applications: How do we store the amniotic membrane best? Cell Tissue Bank 2024; 25:339-347. [PMID: 38191687 DOI: 10.1007/s10561-023-10121-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024]
Abstract
The use of fresh amniotic membrane (AM) is not a viable option, as it has many disadvantages. Preserving the AM reduces the risk of cross-infection and maintains its effectiveness for a long time. In order to maximize the therapeutic effects of the AM, the basic need is to preserve its vitality and the bioactive molecules it contains. However, the effect of preservation procedures on cell viability and growth factors is a still matter of debate. Optimum preservation method is expected to be cost-effective, easily-accessible, and most importantly, to preserve the effectiveness of the tissue for the longest time. However, each preservation technique has its advantages and disadvantages over the other, and each one compromises the vitality and bioactive molecules of the tissue to some extent. Therefore, the best method of preservation is still controversial, and the question of 'how to preserve the AM best?' has not yet been definitively answered.
Collapse
Affiliation(s)
- Mehmet Gurdal
- Limbustem R&D Medical Products Ltd., Izmir, Turkey
- Ocular Surface Research Laboratory, Ege University, Izmir, Turkey
| | - Ilayda Korkmaz
- Department of Ophthalmology, Faculty of Medicine, Ege University, 35040, Bornova, Izmir, Turkey
| | - Ozlem Barut Selver
- Limbustem R&D Medical Products Ltd., Izmir, Turkey.
- Ocular Surface Research Laboratory, Ege University, Izmir, Turkey.
- Department of Ophthalmology, Faculty of Medicine, Ege University, 35040, Bornova, Izmir, Turkey.
| |
Collapse
|
7
|
Echarte L, Grazioli G, Pereira L, Francia A, Pérez H, Kuzuian W, Vicentino W, Pardo H, Mombrú A, Maglia Á, Touriño C, Álvarez I. Processing methods for human amniotic membrane as scaffold for tissue engineering with mesenchymal stromal human cells. Cell Tissue Bank 2024; 25:269-283. [PMID: 35906514 DOI: 10.1007/s10561-022-10014-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 04/27/2022] [Indexed: 11/30/2022]
Abstract
Tissue engineering is an interdisciplinary field that applies the principles of engineering and life sciences toward the development of biological substitutes that restore, maintain, or improve tissue function. The aims of this work were to compare chemically and physically processed human Amniotic Membranes (hAM) and analyze the cytocompatibility and proliferation rate (PR) of two primary human mesenchymal stromal cell lines, from different sources and donor conditions seeded over these scaffolds. The evaluated hAM processes were: cold shock to obtain a frozen amniotic membrane (FEAM) with remaining dead epithelial cells, denudation of hAM with trypsin for 20/10 min (DEAM20/10) or treatment with sodium dodecyl sulfate to decellularized hAM (DAM). All samples were sterilized with gamma radiation. The selection of the treated hAM to then generate composites was performed by scanning and transmission electron microscopy and characterization by X-ray diffraction, selecting DEAM10 and FEAM as scaffolds for cell seeding. Two sources of primary human stromal cells were used, both developed by our researchers, human Dental Pulp Stem Cells (hDPSC) from living donors and human Mesenchymal Stromal Cells (hMSC) from bone marrow isolated from brain dead donors. This last line of cells conveys a novel source of human cells that, to our knowledge, have not been tested as part of this type of construct. We developed four in vitro constructs without cytotoxicity signs and with different PR depending on the scaffolds and cells. hDPSC and hMSC grew over both FEAM and DEAM10, but DEAM10 allowed higher PR.
Collapse
Affiliation(s)
- L Echarte
- Área Terapia Celular y Medicina Regenerativa (ATCMR), Departamento Básico de Medicina, Hospital de Clínicas, Facultad de Medicina, UdelaR, Montevideo, Uruguay
| | - G Grazioli
- Cátedra de Materiales Dentales, Facultad de Odontología UdelaR, Montevideo, Uruguay
| | - L Pereira
- Departamento de Biomateriales, Facultad de Química, Parque Científico Tecnológico de Pando, UdelaR, Canelones, Uruguay
| | - A Francia
- Facultad de Odontología UdelaR, Fisiología General y Bucodental, Montevideo, Uruguay
| | - H Pérez
- Facultad de Medicina, Instituto Nacional de Donación y Trasplante (INDT), Ministerio de Salud Pública- Hospital de Clínicas, Universidad de La República (UdelaR), Montevideo, Uruguay
| | - W Kuzuian
- Facultad de Medicina, Instituto Nacional de Donación y Trasplante (INDT), Ministerio de Salud Pública- Hospital de Clínicas, Universidad de La República (UdelaR), Montevideo, Uruguay
| | - W Vicentino
- Facultad de Medicina, Instituto Nacional de Donación y Trasplante (INDT), Ministerio de Salud Pública- Hospital de Clínicas, Universidad de La República (UdelaR), Montevideo, Uruguay
| | - H Pardo
- Departamento de Biomateriales, Facultad de Química, Parque Científico Tecnológico de Pando, UdelaR, Canelones, Uruguay
| | - A Mombrú
- Departamento de Biomateriales, Facultad de Química, Parque Científico Tecnológico de Pando, UdelaR, Canelones, Uruguay
| | - Á Maglia
- Facultad de Odontología UdelaR, Cátedra de Histología y Embriología Bucodental, Montevideo, Uruguay
| | - C Touriño
- Área Terapia Celular y Medicina Regenerativa (ATCMR), Departamento Básico de Medicina, Hospital de Clínicas, Facultad de Medicina, UdelaR, Montevideo, Uruguay
| | - I Álvarez
- Facultad de Medicina, Instituto Nacional de Donación y Trasplante (INDT), Ministerio de Salud Pública- Hospital de Clínicas, Universidad de La República (UdelaR), Montevideo, Uruguay.
| |
Collapse
|
8
|
Ingraldi AL, Audet RG, Tabor AJ. The Preparation and Clinical Efficacy of Amnion-Derived Membranes: A Review. J Funct Biomater 2023; 14:531. [PMID: 37888195 PMCID: PMC10607219 DOI: 10.3390/jfb14100531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
Biological tissues from various anatomical sources have been utilized for tissue transplantation and have developed into an important source of extracellular scaffolding material for regenerative medicine applications. Tissue scaffolds ideally integrate with host tissue and provide a homeostatic environment for cellular infiltration, growth, differentiation, and tissue resolution. The human amniotic membrane is considered an important source of scaffolding material due to its 3D structural architecture and function and as a source of growth factors and cytokines. This tissue source has been widely studied and used in various areas of tissue repair including intraoral reconstruction, corneal repair, tendon repair, microvascular reconstruction, nerve procedures, burns, and chronic wound treatment. The production of amniotic membrane allografts has not been standardized, resulting in a wide array of amniotic membrane products, including single, dual, and tri-layered products, such as amnion, chorion, amnion-chorion, amnion-amnion, and amnion-chorion-amnion allografts. Since these allografts are not processed using the same methods, they do not necessarily produce the same clinical responses. The aim of this review is to highlight the properties of different human allograft membranes, present the different processing and preservation methods, and discuss their use in tissue engineering and regenerative applications.
Collapse
Affiliation(s)
- Alison L. Ingraldi
- Carmell Corporation, Pittsburg, PA 15203, USA;
- Department of Research and Development, Axolotl Biologix, Flagstaff, AZ 86001, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Robert G. Audet
- Carmell Corporation, Pittsburg, PA 15203, USA;
- Department of Research and Development, Axolotl Biologix, Flagstaff, AZ 86001, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Aaron J. Tabor
- Carmell Corporation, Pittsburg, PA 15203, USA;
- Department of Research and Development, Axolotl Biologix, Flagstaff, AZ 86001, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
- Department of Clinical Operations, Axolotl Biologix, Flagstaff, AZ 86001, USA
| |
Collapse
|
9
|
Skopinska-Wisniewska J, Michalak M, Tworkiewicz J, Tyloch D, Tuszynska M, Bajek A. Modification of the Human Amniotic Membrane Using Different Cross-Linking Agents as a Promising Tool for Regenerative Medicine. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6726. [PMID: 37895710 PMCID: PMC10608722 DOI: 10.3390/ma16206726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/25/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023]
Abstract
Human amniotic membranes (hAMs) obtained during cesarean sections have proven to be clinically useful as an interesting biomaterial in a wide range of tissue engineering applications such as ocular surface reconstruction, burn treatments, chronic wounds, or bedsore ulcers. It presents antimicrobial properties, promotes epithelization, reduces inflammation and angiogenesis, contains growth factors, and constitutes the reservoir of stem cells. However, variability in hAM stiffness and its fast degradation offers an explanation for the poor clinical applications and reproducibility. In addition, the preparatory method of hAM for clinical use can affect its mechanical properties, and these differences can influence its application. As a directly applied biomaterial, the hAM should be available in a ready-to-use manner in clinical settings. In the present study, we performed an analysis to improve the mechanical properties of hAM by the addition of various reagents used as protein cross-linkers: EDC/NHS, PEG-dialdehyde, PEG-NHS, dialdehyde starch, and squaric acid. The effect of hAM modification using different cross-linking agents was determined via infrared spectroscopy, thermal analyses, mechanical properties analyses, enzymatic degradation, and cytotoxicity tests. The use of PEG-dialdehyde, PEG-NHS, dialdehyde starch, and squaric acid increases the mechanical strength and elongation at the breaking point of hAM, while the addition of EDC/NHS results in material stiffening and shrinkage. Also, the thermal stability and degradation resistance were evaluated, demonstrating higher values after cross-linking. Overall, these results suggest that modification of human amniotic membrane by various reagents used as protein cross-linkers may make it easier to use hAM in clinical applications, and the presented study is a step forward in the standardization of the hAM preparation method.
Collapse
Affiliation(s)
- Joanna Skopinska-Wisniewska
- Department of Chemistry of Biomaterials and Cosmetics, Nicolaus Copernicus University, Gagarina 7 Street, 87-100 Torun, Poland
| | - Marlena Michalak
- Department of Chemistry of Biomaterials and Cosmetics, Nicolaus Copernicus University, Gagarina 7 Street, 87-100 Torun, Poland
| | - Jakub Tworkiewicz
- Department of Urology and Andrology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24 Street, 85-092 Bydgoszcz, Poland
| | - Dominik Tyloch
- Department of Urology and Andrology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24 Street, 85-092 Bydgoszcz, Poland
| | - Marta Tuszynska
- Chair of Urology and Andrology, Department of Tissue Engineering Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24 Street, 85-092 Bydgoszcz, Poland;
| | - Anna Bajek
- Chair of Urology and Andrology, Department of Tissue Engineering Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24 Street, 85-092 Bydgoszcz, Poland;
| |
Collapse
|
10
|
Hofmann N, Rennekampff HO, Salz AK, Börgel M. Preparation of human amniotic membrane for transplantation in different application areas. FRONTIERS IN TRANSPLANTATION 2023; 2:1152068. [PMID: 38993896 PMCID: PMC11235369 DOI: 10.3389/frtra.2023.1152068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/20/2023] [Indexed: 07/13/2024]
Abstract
The human amniotic membrane (hAM) is the inner layer of the placenta and plays protective and nutritional roles for the fetus during pregnancy. It contains multiple growth factors and proteins that mediate unique regenerative properties and enhance wound healing in tissue regeneration. Due to these characteristics hAM has been successfully utilized in ophthalmology for many decades. This material has also found application in a variety of additional therapeutic areas. Particularly noteworthy are the extraordinary effects in the healing of chronic wounds and in the treatment of burns. But hAM has also been used successfully in gynecology, oral medicine, and plastic surgery and as a scaffold for in vitro cell culture approaches. This review aims to summarize the different graft preparation, preservation and storage techniques that are used and to present advantages and disadvantages of these methods. It shows the characteristics of the hAM according to the processing and storage methods used. The paper provides an overview of the currently mainly used application areas and raises new application possibilities. In addition, further preparation types like extracts, homogenates, and the resulting treatment alternatives are described.
Collapse
Affiliation(s)
- Nicola Hofmann
- German Society for Tissue Transplantation (DGFG) gGmbH, Hannover, Germany
| | - Hans-Oliver Rennekampff
- Klinik für Plastische Chirurgie, Hand- und Verbrennungschirurgie, Rhein-Maas Klinikum GmbH, Würselen, Germany
| | | | - Martin Börgel
- German Society for Tissue Transplantation (DGFG) gGmbH, Hannover, Germany
| |
Collapse
|
11
|
Influence of Storage Conditions on Decellularized Porcine Conjunctiva. Bioengineering (Basel) 2023; 10:bioengineering10030350. [PMID: 36978741 PMCID: PMC10045143 DOI: 10.3390/bioengineering10030350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/22/2023] [Accepted: 03/03/2023] [Indexed: 03/16/2023] Open
Abstract
Porcine decellularized conjunctiva (PDC) represents a promising alternative source for conjunctival reconstruction. Methods of its re-epithelialization in vitro with primary human conjunctival epithelial cells (HCEC) have already been established. However, a long-term storage method is required for a simplified clinical use of PDC. This study investigates the influence of several storage variants on PDC. PDC were stored in (1) phosphate-buffered saline solution (PBS) at 4 °C, (2) in glycerol-containing epithelial cell medium (EM/gly) at −80 °C and (3) in dimethyl sulfoxide-containing epithelial cell medium (EM/DMSO) at −196 °C in liquid nitrogen for two and six months, respectively. Fresh PDC served as control. Histological structure, biomechanical parameters, the content of collagen and elastin and the potential of re-epithelialization with primary HCEC under cultivation for 14 days were compared (n = 4–10). In all groups, PDC showed a well-preserved extracellular matrix without structural disruptions and with comparable fiber density (p ≥ 0.74). Collagen and elastin content were not significantly different between the groups (p ≥ 0.18; p ≥ 0.13, respectively). With the exception of the significantly reduced tensile strength of PDC after storage at −196 °C in EM/DMSO for six months (0.46 ± 0.21 MPa, p = 0.02), no differences were seen regarding the elastic modulus, tensile strength and extensibility compared to control (0.87 ± 0.25 MPa; p ≥ 0.06). The mean values of the epithelialized PDC surface ranged from 51.9 ± 8.8% (−196 °C) to 78.3 ± 4.4% (−80 °C) and did not differ significantly (p ≥ 0.35). In conclusion, all examined storage methods were suitable for storing PDC for at least six months. All PDC were able to re-epithelialize, which rules out cytotoxic influences of the storage conditions and suggests preserved biocompatibility for in vivo application.
Collapse
|
12
|
Questions about Residual Cell Viability in Cryopreserved Human Amniotic Membrane and Its Impact on Clinical Applications. Biomedicines 2022; 10:biomedicines10102456. [PMID: 36289719 PMCID: PMC9598775 DOI: 10.3390/biomedicines10102456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
We questioned the relevance of evaluating residual cell viability in human amniotic membrane (hAM) after its cryopreservation since cell survival is controversial and its ability to act as a matrix (including the presence of growth factors and cytokines) appears to be most important for tissue regeneration purposes. We also discussed the usefulness of osteodifferentiating amniotic cells in whole hAM for bone repair applications. We have evidence that determining residual cell viability after cryopreservation and hAM osteodifferentiation is not justified.
Collapse
|
13
|
Witt J, Grumm L, Salla S, Geerling G, Menzel-Severing J. Cryopreservation in a Standard Freezer: −28 °C as Alternative Storage Temperature for Amniotic Membrane Transplantation. J Clin Med 2022; 11:jcm11041109. [PMID: 35207382 PMCID: PMC8877302 DOI: 10.3390/jcm11041109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 01/27/2023] Open
Abstract
Human amniotic membrane (hAM) is usually stored at −80 °C. However, in many regions, cryopreservation at −80 °C is not feasible, making hAM unavailable. Therefore, the possibility of cryopreservation at −28 °C (household freezer) was investigated. hAMs (n = 8) were stored at −80 °C or −28 °C for a mean time of 8.2 months. hAM thickness, epithelial integrity and basement membrane were assessed histologically. The collagen content, concentration of hepatocyte growth factor (HGF) and basic fibroblast growth factor (bFGF) were determined. Elastic modulus and tensile strength were measured. The mean thickness of hAM stored at −28 °C was 33.1 ± 21.6 µm (range 9.7–74.9); thickness at −80 °C was 30.8 ± 14.7 µm (range 13.1–50.7; p = 0.72). Mean collagen content, epithelial cell number and integrity score showed no significant difference between samples stored at −28 °C or −80 °C. Basement membrane proteins were well preserved in both groups. Mean tensile strength and elastic modulus were not significantly different. Concentration of bFGF at −28 °C was 1063.2 ± 680.3 pg/g (range 369.2–2534.2), and 1312.1 ± 778.2 pg/g (range 496.2–2442.7) at −80 °C (p = 0.11). HGF was 5322.0 ± 2729.3 pg/g (range 603.3–9149.8) at −28 °C, and 11338.5 ± 6121.8 pg/g (range 4143.5 to 19806.7) at −80 °C (p = 0.02). No microbiological contamination was detected in any sample. The cryopreservation of hAM at −28 °C has no overt disadvantages compared to −80 °C; the essential characteristics of hAM are preserved. This temperature could be used in an alternative storage method whenever storage at −80 °C is unavailable.
Collapse
Affiliation(s)
- Joana Witt
- Department of Ophthalmology, Medical Faculty, Heinrich-Heine-University of Düsseldorf, 40225 Düsseldorf, Germany; (J.W.); (L.G.); (G.G.)
| | - Luis Grumm
- Department of Ophthalmology, Medical Faculty, Heinrich-Heine-University of Düsseldorf, 40225 Düsseldorf, Germany; (J.W.); (L.G.); (G.G.)
| | - Sabine Salla
- Department of Ophthalmology, RWTH Aachen University, 52074 Aachen, Germany;
| | - Gerd Geerling
- Department of Ophthalmology, Medical Faculty, Heinrich-Heine-University of Düsseldorf, 40225 Düsseldorf, Germany; (J.W.); (L.G.); (G.G.)
| | - Johannes Menzel-Severing
- Department of Ophthalmology, Medical Faculty, Heinrich-Heine-University of Düsseldorf, 40225 Düsseldorf, Germany; (J.W.); (L.G.); (G.G.)
- Correspondence: ; Tel.: +49-(0)-211-81-16041
| |
Collapse
|
14
|
Elkhenany H, El-Derby A, Abd Elkodous M, Salah RA, Lotfy A, El-Badri N. Applications of the amniotic membrane in tissue engineering and regeneration: the hundred-year challenge. Stem Cell Res Ther 2022; 13:8. [PMID: 35012669 PMCID: PMC8744057 DOI: 10.1186/s13287-021-02684-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/09/2021] [Indexed: 12/11/2022] Open
Abstract
The amniotic membrane (Amnio-M) has various applications in regenerative medicine. It acts as a highly biocompatible natural scaffold and as a source of several types of stem cells and potent growth factors. It also serves as an effective nano-reservoir for drug delivery, thanks to its high entrapment properties. Over the past century, the use of the Amnio-M in the clinic has evolved from a simple sheet for topical applications for skin and corneal repair into more advanced forms, such as micronized dehydrated membrane, amniotic cytokine extract, and solubilized powder injections to regenerate muscles, cartilage, and tendons. This review highlights the development of the Amnio-M over the years and the implication of new and emerging nanotechnology to support expanding its use for tissue engineering and clinical applications.
Collapse
Affiliation(s)
- Hoda Elkhenany
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, 12582, Giza, Egypt
- Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22785, Egypt
| | - Azza El-Derby
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, 12582, Giza, Egypt
| | - Mohamed Abd Elkodous
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, 12582, Giza, Egypt
| | - Radwa A Salah
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, 12582, Giza, Egypt
| | - Ahmed Lotfy
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, 12582, Giza, Egypt.
| |
Collapse
|
15
|
Ogawa M, Mukudai S, Sugiyama Y, Matsushita H, Kinoshita S, Ozawa S, Hashimoto K, Fuse S, Kaneko M, Nakanishi Y, Yoshizaki T, Sotozono C, Hirano S. The Effects of Amniotic Membrane Transplantation on Vocal Fold Regeneration. Laryngoscope 2021; 132:2017-2025. [PMID: 34951490 DOI: 10.1002/lary.29997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/05/2021] [Accepted: 12/10/2021] [Indexed: 11/08/2022]
Abstract
OBJECTIVES/HYPOTHESIS Vocal fold (VF) scar and sulcus cause severe vocal problems, but optimal methods have not been established. Total replacement of the mucosa is required particularly for cases in which the whole lamina propria is occupied by severe fibrosis and vibratory function is totally lost. The amniotic membrane (AM) has been proven to have regenerative potential, as it contains stem cells and growth factors. The current study investigated the biocompatibility and effects of AM for regeneration of the VF mucosa. STUDY DESIGN In vitro and in vivo studies. METHODS Vocal fold fibroblasts (VFFs) from 13 Sprague-Dawley rats were seeded on AM and subjected to histology and immunohistochemistry, and gene expressions in the VFFs on AM were examined in in vitro study. Twelve New Zealand White rabbits were used in in vivo study. VFs were stripped down and were reconstructed with AM. The regenerative effects were examined 3 months later by histological examination. RESULTS In vitro study indicated VFFs survived on AM and stained positively for Ki67, vimentin, and fibronectin. Gene expressions of Has1, Has2, and Hgf were significantly increased in the VFFs on AM compared with the other groups. The in vivo study indicated AM-transplanted VFs showed a significantly higher density of hyaluronic acid and lower density of collagen compared with sham VFs. CONCLUSIONS The current preliminary study suggests biocompatibility and possible regenerative effects of AM for VFs. LEVEL OF EVIDENCE NA Laryngoscope, 2021.
Collapse
Affiliation(s)
- Machiko Ogawa
- Department of Otolaryngology Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Department of Otolaryngology Head and Neck Surgery, Kanazawa University, Kanazawa, Japan
| | - Shigeyuki Mukudai
- Department of Otolaryngology Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoichiro Sugiyama
- Department of Otolaryngology Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroki Matsushita
- Department of Otolaryngology Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shota Kinoshita
- Department of Otolaryngology Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satomi Ozawa
- Department of Otolaryngology Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Keiko Hashimoto
- Department of Otolaryngology Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shinya Fuse
- Department of Otolaryngology Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mami Kaneko
- Department of Otolaryngology Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yosuke Nakanishi
- Department of Otolaryngology Head and Neck Surgery, Kanazawa University, Kanazawa, Japan
| | - Tomokazu Yoshizaki
- Department of Otolaryngology Head and Neck Surgery, Kanazawa University, Kanazawa, Japan
| | - Chie Sotozono
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shigeru Hirano
- Department of Otolaryngology Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
16
|
Loureiro RR, Cristovam PC, da Rosa LR, Nova L, Gasparetto G, Gil CD, Gomes JÁP. Analysis of different conditioned media secreted by limbal progenitor cells in the modulation of corneal healing. Exp Eye Res 2021; 215:108907. [PMID: 34954203 DOI: 10.1016/j.exer.2021.108907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 11/18/2022]
Abstract
Ex vivo cultivation and transplantation of limbal epithelial cells has been reported as an alternative source for ocular surface reconstruction. However, until now, the functional improvement of these patients is limited due to the low survival rate of the transplanted cells. Consequently, the clinical benefits of this therapeutic strategy are only temporary and can assign them to paracrine effects associated with the transplanted cells. With this background in mind, we aimed to analyze the effect of different conditioned media containing growth factors secreted by limbal progenitor cells on corneal epithelial healing, both in vitro and in vivo. Limbal tissue was used to obtain different conditioned media (CM). For the in vitro assay, corneal epithelial cells were treated with CM and the epithelial migration was analyzed. Growth factors in the CM were identified with ELISA and multiplex. For the in vivo assay in rats, total limbal stem cell deficiency (LSCD) was induced with an abrasive injury to the ocular surface, and the animals were treated with different CM. Clinical and histological analyses were performed. In the in vitro assay, treatment with limbal fibroblast (LF CM) was more effective compared to the other CM, and analysis revealed high concentrations of keratinocyte growth factor (KGF) and hepatocyte growth factor (HGF). In the in vivo assay, animals treated with LF CM showed epithelial defect improvement, maintenance of thickness, and decreased opacity and neovascularization. This treatment also allowed better ocular surface tissue organization when compared to the other treatments. The in vitro and in vivo experiments showed better outcomes in the corneal wound healing for the LF CM treatment. The high concentrations of KGF and HGF, linked to epithelial cell migration and proliferation, may correlate to the best results found in this treatment.
Collapse
Affiliation(s)
- Renata Ruoco Loureiro
- Advanced Center of Ocular Surface (CASO), Department of Ophthalmology and Visual Science, Federal University of São Paulo (UNIFESP), São Paulo, Brazil.
| | - Priscila Cardoso Cristovam
- Advanced Center of Ocular Surface (CASO), Department of Ophthalmology and Visual Science, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Larissa Rigobeli da Rosa
- Advanced Center of Ocular Surface (CASO), Department of Ophthalmology and Visual Science, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Lucimeire Nova
- Advanced Center of Ocular Surface (CASO), Department of Ophthalmology and Visual Science, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Gustavo Gasparetto
- Advanced Center of Ocular Surface (CASO), Department of Ophthalmology and Visual Science, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Cristiane Damas Gil
- Department of Morphology and Genetics, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - José Álvaro Pereira Gomes
- Advanced Center of Ocular Surface (CASO), Department of Ophthalmology and Visual Science, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
17
|
Using of Amniotic Membrane Derivatives for the Treatment of Chronic Wounds. MEMBRANES 2021; 11:membranes11120941. [PMID: 34940442 PMCID: PMC8706466 DOI: 10.3390/membranes11120941] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 01/04/2023]
Abstract
Amniotic membrane grafts have some therapeutic potential for wounds healing. Early application of amniotic membrane turned out as beneficial in healing ulcers, burns, and dermal injuries. Since the second half of the 20th century, the autotransplants of amniotic/chorion tissue have been also used for the treatment of chronic neuropathic wounds, cornea surface injuries, pterygium and conjunctivochalasis, and dental and neurosurgical applications. The aim of this publication is to prepare a coherent overview of amniotic membrane derivatives use in the field of wound healing and also its efficacy. In total 60 publications and 39 posters from 2000-2020 were examined. In these examined publications of case studies with known study results was an assemblage of 1141 patients, and from this assemblage 977 were successfully cured. In case of posters, the assemblage is 570 patients and 513 successfully cured. From the investigated data it is clear that the treatment efficacy is very high-86% and 90%, respectively. Based on this information the use of the amniotic membrane for chronic wounds can be considered highly effective.
Collapse
|
18
|
Wahab C, Fakhoury O, Serhan H, Ayash J, Jabbour F, Dirani A, Kallassy M, Waked N. Biomolecular evaluation of cryopreserved amniotic membranes for ophthalmological use by ELISA and RT-PCR at one and eighteen months. J Fr Ophtalmol 2021; 44:1529-1535. [PMID: 34728097 DOI: 10.1016/j.jfo.2021.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/04/2021] [Accepted: 05/24/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE To study the presence of certain proteins - EGF (epidermal growth factor), KGF (keratinocyte growth factor), IL-10 (interleukin 10), HGF (hepatocyte growth factor), Alpha2-macroglobulin and IL-1RA (interleukin 1 receptor antagonist) in cryopreserved amniotic membranes at 1 and 18 months and, as a secondary objective, to detect mRNA corresponding to KGF, IL-1Ra, Alpha2-macroglobulin, Fas Ligand, TGF beta (transforming growth factor beta) and Lumican by RT-PCR in membranes preserved at 1 and 18 months. MATERIAL AND METHODS Four samples of amniotic membrane were divided into 2 groups: the first group (N=2) cryopreserved for 1 month and the second group (N=2) cryopreserved for 18 months, in order to be studied by RT-PCR and ELISA. RESULTS RT-PCR detected KGF, IL-1Ra, Alpha2-macroglobulin, Fas Ligand, and Lumican. Of these, FAS Ligand mRNA was found in samples preserved for 1and 18 months. KGF, Lumican, and alpha2-microglobulin mRNA were found only at 1 month, and IL-1Ra mRNA was absent in both sample groups. RT-PCR for TGF-beta was inconclusive. ELISA was performed for detection and quantification of 6 proteins (EGF, KGF, IL-10, HGF, Alpha2-macroglobulin and IL-1Ra) in both amniotic membrane groups. All 6 proteins were found in all samples, with a lower concentration at 18 months compared to 1 month of preservation. CONCLUSION This study shows that membranes cryopreserved in 50% glycerol for 18 months do retain the proteins necessary for regeneration of the corneal surface, giving these membranes their biochemical properties.
Collapse
Affiliation(s)
- C Wahab
- Département d'ophtalmologie du centre médical universitaire de l'hôpital Saint-George en association avec l'université de Balamand, Beyrouth, Liban
| | - O Fakhoury
- Département d'ophtalmologie du centre médical universitaire de l'hôpital Saint-George en association avec l'université de Balamand, Beyrouth, Liban.
| | - H Serhan
- Département d'ophtalmologie du centre médical universitaire de l'hôpital Saint-George en association avec l'université de Balamand, Beyrouth, Liban
| | - J Ayash
- Département d'ophtalmologie du centre médical universitaire de l'hôpital Saint-George en association avec l'université de Balamand, Beyrouth, Liban
| | - F Jabbour
- Département d'ophtalmologie du centre médical universitaire de l'hôpital Saint-George en association avec l'université de Balamand, Beyrouth, Liban
| | - A Dirani
- Département d'ophtalmologie CHU de Québec, Québec, Canada
| | - M Kallassy
- Département des sciences de la terre et de la vie, université Saint-Joseph, Beyrouth, Liban
| | - N Waked
- Département d'ophtalmologie de l'Hôtel Dieu de France, Beyrouth, Liban
| |
Collapse
|
19
|
Characterization of Cryopreserved Canine Amniotic Membrane. MEMBRANES 2021; 11:membranes11110824. [PMID: 34832052 PMCID: PMC8624976 DOI: 10.3390/membranes11110824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022]
Abstract
Amniotic membrane is an effective corneal reconstruction material in veterinary surgery. Cryopreserved amniotic membrane is widely used in practice. Properties of cryopreserved canine amniotic membranes are currently not well studied. This study aimed to compare three properties between canine amniotic membranes cryopreserved for 7 days and 30 days, including tensile strength, transparency, and cell viability. After their respective cryopreservation time, stress-strain curves of the cryopreserved membranes' tensile strength were assessed using a universal testing machine. Both groups produced J-shaped stress-strain curves with statistically comparable parameters, including maximum stress, strain, and Young's modulus. The percentage of cell viability was observed by trypan blue staining under a light microscope. Membrane transparency was tested with a spectrophotometer. Transparency tests showed high levels of light transmission and low haze, with no statistical difference between groups. Cell viability was statistically lower in the 30-day cryopreserved group. Tensile strength and transparency of cryopreserved CAM were not significantly impeded for up to 30 days. For CAM to be used as an alternative corneal transplant material in veterinary and regenerative medicine, further research on cell biology, biomechanical properties of the membrane, and cell viability should be conducted.
Collapse
|
20
|
Dower NMB, Ribeiro AP, Gomes LG, de Cássia Martini A, Taques IIGG, de Almeida SLH, da Silva MIV, de Aguiar DM. Concentrations of tissue inhibitor of matrix metalloproteinase-1 and hyaluronic acid in canine amniotic membranes cryopreserved for different time points and its effects in dogs with complicated corneal ulcers. Vet Ophthalmol 2021; 25:62-72. [PMID: 34240563 DOI: 10.1111/vop.12916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVES To determine the concentrations of total protein (TP), tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) and hyaluronic acid (HA) in amniotic membranes (AMs) harvested from placentas of bitches of different ages and cryopreserved for different time points. The outcomes of complicated corneal defects of dogs repaired with AMs stored for the same time points were also evaluated. PROCEDURES Ten cryopreserved canine AMs were stored for short term (2-50 days), middle term (92-210 days), or long term (256-357 days). TP was quantified by Bradford's test, whereas TIMP-1 and HA were quantified by ELISA. Twenty-one dogs that had an AM transplantation to restore deep or perforating corneal wounds were selected. RESULTS TIMP-1 levels were lower in AMs cryopreserved for middle term (p = .02) and long term (p = .0009), when compared to AMs stored for short term. TP (p = .39) and HA (p = .18) concentrations in AMs did not differ among the storage time. TIMP-1 concentration in AMs correlated with storage time (R = -.65, p < .0001), while TP (R = -.33, p = .07) and HA concentrations did not (R = -.15, p = .41). The age of donors did not correlate with the components evaluated in the AMs. Corneal defects repaired with AMs stored for short term healed sooner than the ones repaired with AMs stored for middle (p < .01) and long term (p = .02). Additionally, TIMP-1 levels in AMs correlated negatively with the epithelization time (R = -.62, p = .002). Graft opacity was severe in 55% of cases. However, the HA levels in AMs correlated negatively with the opacification score (R = -.47, p = .03). Vision was observed in more patients who presented deep ulcers and descemetoceles, than in the ones with perforations (p = .004). CONCLUSIONS TIMP-1 concentration in canine AMs significantly decreased over a year storage time, while TP and HA concentrations did not change during the same period. The age of donors did not correlate with the components evaluated in the AMs. Complicated corneal defects repaired with AMs cryopreserved for short term healed sooner and tended to be less opaque; however, satisfactory to optimal outcomes were achieved even in the eyes repaired with AMs stored for up to a year.
Collapse
Affiliation(s)
| | | | - Lianna Ghisi Gomes
- Faculdade de Medicina Veterinária, Universidade Federal de Mato Grosso, Cuiabá, Brazil
| | | | | | | | | | | |
Collapse
|
21
|
Freeze-Dried Versus Cryopreserved Amniotic Membranes in Corneal Ulcers Treated by Overlay Transplantation: A Case-Control Study. Cornea 2021; 41:280-285. [PMID: 34176918 DOI: 10.1097/ico.0000000000002794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/03/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE The purpose of this study was to assess cryopreserved amniotic membrane (C-AM) versus chorion-free freeze-dried amniotic membrane (FD-AM) overlay transplantation for corneal ulcers in a French tertiary ophthalmology hospital. METHODS Between March and July 2020, when C-AMs were not available because of the COVID-19 pandemic, 28 corneal ulcers underwent FD-AM overlay transplantation and were retrospectively compared with 22 corneal ulcers treated with C-AM during the same period in 2018. All patients had at least 3 months of follow-up, and those who underwent combined surgeries were excluded. Ulcers were assessed at baseline and then at 72 hours, 1 month, and 3 months. Population demographics, follow-up time, ulcer etiologies, epithelial defect size, ulcer depth, and complications were also recorded. RESULTS Baseline characteristics and clinical features of both groups were comparable. There was no statistically significant difference in the number of overlay AM transplantations (P = 0.52) or early detachments (P = 0.57). At 3 months, the corneal healing rate was almost the same in both groups (89% and 91% for FD-AM and C-AM, respectively; P = 0.87). Complications were equally uncommon (11% and 9%, respectively; P = 0.92). In logistic regression, the type of the membrane did not influence corneal healing at 1 month (P = 0.42) or 3 months (P = 0.99), regardless of the depth of the ulcer. However, whatever the type of AM used, the deeper the ulcer was, the less likely it was to heal at 3 months (P = 0.02). CONCLUSIONS This is the first study that provides positive insight into the effectiveness of FD-AM compared with C-AM when used as overlay transplantation for treating corneal ulcers.
Collapse
|
22
|
Moraes JTGDO, Costa MM, Alves PCS, Sant'Anna LB. Effects of Preservation Methods in the Composition of the Placental and Reflected Regions of the Human Amniotic Membrane. Cells Tissues Organs 2021; 210:66-76. [PMID: 34010831 DOI: 10.1159/000515448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 02/20/2021] [Indexed: 11/19/2022] Open
Abstract
The human amniotic membrane (AM) is emerging as an interesting biomaterial for regenerative medicine due to its biological and mechanical proprieties. The beneficial effects of the AM are probably related to its bioactive factors produced by local cells and stored in the stromal matrix. However, the search for a preservation method capable of preserving AM properties remains a challenge. The aim of this study was to evaluate important features of 2 anatomical regions of the human AM (reflected and placental amnion) after different preservation methods. For this purpose, human placentas were harvested and processed for AM isolation and storage at 2 different conditions: room temperature for 18 h in DMEM (fresh AM) and -80°C in DMEM/glycerol solution for 30 days (cryopreserved AM). After the storage period, the structural integrity of the membrane was assessed by histological and Picrosirius polarization analysis, cellular viability analysis was performed using the MTT assay, and the soluble proteins were quantified with the Qubit Protein Assay Kit. Both preservation protocols reduced the cell viability, mainly in the placental amnion region of the AM, but preserved the morphology of epithelial and stromal layers, as well as the organization and distribution of collagen fibers. There was a reduction in soluble proteins only in fresh AM. Importantly, the cryopreserved AM group presented the same concentration as the control group. In conclusion, the cryopreservation using DMEM/glycerol was ideal for preserving the structural integrity and soluble protein content, indicating the feasibility of this method in preserving AM for its use in regenerative medicine.
Collapse
Affiliation(s)
- Jéssica Tereza Guedes de Oliveira Moraes
- Laboratory of Histology and Regenerative Therapy, Institute of Research and Development (IPD), University of Vale do Paraíba (UNIVAP), São José dos Campos, Brazil
| | - Maíra Maftoum Costa
- Laboratory of Histology and Regenerative Therapy, Institute of Research and Development (IPD), University of Vale do Paraíba (UNIVAP), São José dos Campos, Brazil
| | - Paula Cristina Santos Alves
- Laboratory of Histology and Regenerative Therapy, Institute of Research and Development (IPD), University of Vale do Paraíba (UNIVAP), São José dos Campos, Brazil
| | - Luciana Barros Sant'Anna
- Laboratory of Histology and Regenerative Therapy, Institute of Research and Development (IPD), University of Vale do Paraíba (UNIVAP), São José dos Campos, Brazil
| |
Collapse
|
23
|
Leal-Marin S, Kern T, Hofmann N, Pogozhykh O, Framme C, Börgel M, Figueiredo C, Glasmacher B, Gryshkov O. Human Amniotic Membrane: A review on tissue engineering, application, and storage. J Biomed Mater Res B Appl Biomater 2020; 109:1198-1215. [PMID: 33319484 DOI: 10.1002/jbm.b.34782] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/07/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022]
Abstract
Human amniotic membrane (hAM) has been employed as scaffolding material in a wide range of tissue engineering applications, especially as a skin dressing and as a graft for corneal treatment, due to the structure of the extracellular matrix and excellent biological properties that enhance both wound healing and tissue regeneration. This review highlights recent work and current knowledge on the application of native hAM, and/or production of hAM-based tissue-engineered products to create scaffolds mimicking the structure of the native membrane to enhance the hAM performance. Moreover, an overview is presented on the available (cryo) preservation techniques for storage of native hAM and tissue-engineered products that are necessary to maintain biological functions such as angiogenesis, anti-inflammation, antifibrotic and antibacterial activity.
Collapse
Affiliation(s)
- Sara Leal-Marin
- Institute for Multiphase Processes, Leibniz University Hannover, Garbsen, Germany
| | - Thomas Kern
- Department of Ophthalmology, University Eye Hospital, Hannover Medical School, Hannover, Germany
| | - Nicola Hofmann
- German Society for Tissue Transplantation (DGFG), Hannover, Germany
| | - Olena Pogozhykh
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Carsten Framme
- Department of Ophthalmology, University Eye Hospital, Hannover Medical School, Hannover, Germany
| | - Martin Börgel
- German Society for Tissue Transplantation (DGFG), Hannover, Germany
| | - Constanca Figueiredo
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Birgit Glasmacher
- Institute for Multiphase Processes, Leibniz University Hannover, Garbsen, Germany
| | - Oleksandr Gryshkov
- Institute for Multiphase Processes, Leibniz University Hannover, Garbsen, Germany
| |
Collapse
|
24
|
Fuest M, Yam GHF, Mehta JS, Duarte Campos DF. Prospects and Challenges of Translational Corneal Bioprinting. Bioengineering (Basel) 2020; 7:bioengineering7030071. [PMID: 32640721 PMCID: PMC7552635 DOI: 10.3390/bioengineering7030071] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/01/2020] [Accepted: 07/04/2020] [Indexed: 12/13/2022] Open
Abstract
Corneal transplantation remains the ultimate treatment option for advanced stromal and endothelial disorders. Corneal tissue engineering has gained increasing interest in recent years, as it can bypass many complications of conventional corneal transplantation. The human cornea is an ideal organ for tissue engineering, as it is avascular and immune-privileged. Mimicking the complex mechanical properties, the surface curvature, and stromal cytoarchitecure of the in vivo corneal tissue remains a great challenge for tissue engineering approaches. For this reason, automated biofabrication strategies, such as bioprinting, may offer additional spatial control during the manufacturing process to generate full-thickness cell-laden 3D corneal constructs. In this review, we discuss recent advances in bioprinting and biomaterials used for in vitro and ex vivo corneal tissue engineering, corneal cell-biomaterial interactions after bioprinting, and future directions of corneal bioprinting aiming at engineering a full-thickness human cornea in the lab.
Collapse
Affiliation(s)
- Matthias Fuest
- Department of Ophthalmology, RWTH Aachen University, 52074 Aachen, Germany
- Correspondence: (M.F.); (D.F.D.C.)
| | - Gary Hin-Fai Yam
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15260, USA;
| | - Jodhbir S. Mehta
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore 169856, Singapore;
- Singapore National Eye Centre, Singapore 169856, Singapore
| | - Daniela F. Duarte Campos
- Institute of Applied Medical Engineering, RWTH Aachen University, 52074 Aachen, Germany
- DWI Leibniz Institute for Interactive Materials, 52074 Aachen, Germany
- Correspondence: (M.F.); (D.F.D.C.)
| |
Collapse
|
25
|
Fenner BJ, Yusoff NZBM, Fuest M, Zhou L, Bandeira F, Cajucom-Uy HY, Tan HK, Mehta JS, Yam GHF. A cellular and proteomic approach to assess proteins extracted from cryopreserved human amnion in the cultivation of corneal stromal keratocytes for stromal cell therapy. EYE AND VISION 2019; 6:30. [PMID: 31632999 PMCID: PMC6790058 DOI: 10.1186/s40662-019-0155-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022]
Abstract
Background Human corneal stromal keratocytes propagated in culture media supplemented with human amnion extract (AME) can correct early corneal haze in an animal model. Clinical application of cultivated keratocytes is limited by infectious disease screening before amnion products can be used in humans. It remains unclear if AME from cryopreserved versus fresh human amnion can support human keratocyte propagation, and which components of the extract promote keratocyte growth. Methods Three placentas were collected for the preparation of fresh and cryopreserved amnion tissues followed by homogenization and protein extraction. AME protein profiles were studied using isobaric tagging for relative and absolute quantitation (iTRAQ) proteomics. Enriched gene ontology (GO) terms and functional classes were identified. Primary human keratocytes from 4 donor corneas were cultured in media supplemented with fresh AME (F-AME) or cryopreserved AME (C-AME). Cell viability, proliferation and keratocyte marker expression were examined by confocal immunofluorescence and flow cytometry. Results AME proteomics revealed 1385 proteins with similar expression levels (between 0.5- and 2-fold) between F- and C-AME, while 286 proteins were reduced (less than 0.5-fold) in C-AME. Enriched GO term and biological pathway analysis showed that those proteins with comparable expression between F-AME and C-AME were involved in cell metabolism, epithelial-mesenchymal transition, focal adhesion, cell-extracellular matrix interaction, cell stress regulation and complement cascades. Human corneal stromal keratocytes cultured with F-AME or C-AME showed similar morphology and viability, while cell proliferation was mildly suppressed with C-AME (P > 0.05). Expression of aldehyde dehydrogenase 3A1 (ALDH3A1) and CD34 was similar in both cultures. Conclusion AME from cryopreserved amnion had limited influence on keratocyte culture. It is feasible to use protein extract from cryopreserved amnion to propagate human keratocytes for potential translational applications.
Collapse
Affiliation(s)
- Beau J Fenner
- 1Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, 20 College Road, The Academia, Discovery Tower Level 6, Singapore, 169856 Singapore.,2Singapore National Eye Centre, Singapore, Singapore
| | - Nur Zahirah B M Yusoff
- 1Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, 20 College Road, The Academia, Discovery Tower Level 6, Singapore, 169856 Singapore
| | - Matthias Fuest
- 1Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, 20 College Road, The Academia, Discovery Tower Level 6, Singapore, 169856 Singapore.,3Department of Ophthalmology, RWTH Aachen University, Aachen, Germany
| | - Lei Zhou
- 4Eye-Academic Clinical Programme, Duke-NUS Graduate Medical School, Singapore, Singapore.,5Proteomics Platform, Singapore Eye Research Institute, Singapore, Singapore
| | - Francisco Bandeira
- 1Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, 20 College Road, The Academia, Discovery Tower Level 6, Singapore, 169856 Singapore.,6Federal University of São Paulo, Sao Paulo, Brazil
| | | | - H K Tan
- 8Department of Obstetrics and Gynaecology, Singapore General Hospital, Singapore, Singapore
| | - Jodhbir S Mehta
- 1Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, 20 College Road, The Academia, Discovery Tower Level 6, Singapore, 169856 Singapore.,2Singapore National Eye Centre, Singapore, Singapore.,4Eye-Academic Clinical Programme, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Gary H F Yam
- 1Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, 20 College Road, The Academia, Discovery Tower Level 6, Singapore, 169856 Singapore.,4Eye-Academic Clinical Programme, Duke-NUS Graduate Medical School, Singapore, Singapore
| |
Collapse
|
26
|
Cardoso LMF, Alves LA. Comparative Physiology as an Idea Factory for Preserving and Freezing Organs and Cells for Transplantation. Bioessays 2018; 40:e1800144. [PMID: 30168861 DOI: 10.1002/bies.201800144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Liana M F Cardoso
- Laboratório de Comunicação Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21045-900, Brazil
| | - Luiz A Alves
- Laboratório de Comunicação Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21045-900, Brazil
| |
Collapse
|