1
|
Nkrumah G, Mammen A, Jhanji V. Management of Corneal Neovascularization With Diathermy and Intrastromal Bevacizumab Injection. Eye Contact Lens 2025:00140068-990000000-00288. [PMID: 40434007 DOI: 10.1097/icl.0000000000001189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2025] [Indexed: 05/29/2025]
Abstract
PURPOSE To evaluate the outcomes of patients with corneal neovascularization treated with intrastromal injection of bevacizumab and corneal fine needle diathermy (FND). METHODS This is a retrospective case series of six patients with at least 6 months follow-up after intrastromal injection of bevacizumab and FND. The main outcome measures include change in best-corrected visual acuity (BCVA) and regression of corneal neovascularization at follow-up. Slitlamp photographs were taken pre and post procedure. RESULTS The mean age of the patients was 64.2 years, and the baseline BCVA ranged from 20/40 to 20/100. At postoperative months 1 and 6, all patients had improvement in corneal neovascularization, with 67% (4/6) showing total resolution while 33% (2/3) had residual deep fine vessels. Best-corrected visual acuity improved in two patients and remained stable in four patients. Two patients had improvement in lipid keratopathy at 6 months. CONCLUSIONS Combined intrastromal injection of bevacizumab and FND is an effective treatment for corneal neovascularization.
Collapse
Affiliation(s)
- Gideon Nkrumah
- Department of Ophthalmology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | | | | |
Collapse
|
2
|
Yoon CH, Ko JH, Lee HJ, Song HB, Oh JY. Subconjunctival aflibercept inhibits corneal angiogenesis and VEGFR-3 +CD11b + cells. Graefes Arch Clin Exp Ophthalmol 2024; 262:3881-3888. [PMID: 38980349 PMCID: PMC11608285 DOI: 10.1007/s00417-024-06560-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/21/2024] [Accepted: 06/18/2024] [Indexed: 07/10/2024] Open
Abstract
PURPOSE This study aimed to investigate the effects of subconjunctival injection of aflibercept, a soluble protein decoy for VEGFR-1 and VEGFR-2, on corneal angiogenesis and VEGFR-expressing CD11b+ cells in a mouse model of suture-induced corneal neovascularization. METHODS Corneal neovascularization was induced in BALB/c mice by placing three sutures on the cornea. Immediately after surgery, either 200 µg aflibercept (5 µL) or an equal volume of phosphate-buffered saline (PBS) was administered into the subconjunctival space. Seven days after later, corneal new vessels were quantified through clinical examination and measurement of the CD31-stained area in corneal flat mounts. The levels of pro-angiogenic and inflammatory markers in the cornea were evaluated using RT-qPCR. The percentages of VEGFR-2+CD11b+ cells and VEGFR-3+CD11b+ cells were analyzed in the cornea, blood, and draining cervical lymph nodes (DLNs) using flow cytometry. RESULTS Subconjunctival injection of aflibercept significantly reduced the growth of corneal new vessels compared to subconjunctival PBS injection. The mRNA levels of Cd31, vascular growth factors (Vegfc and Angpt1), and pro-angiogenic/inflammatory markers (Tek/Tie2, Mrc1, Mrc2, and Il6) in the cornea were downregulated by subconjunctival aflibercept. Also, the percentage of VEGFR-3+CD11b+ cells in the cornea, blood, and DLNs was decreased by aflibercept, whereas that of VEGFR-2+CD11b+ cells was unaffected. CONCLUSION Subconjunctival aflibercept administration inhibits inflammatory angiogenesis in the cornea and reduces the numbers of cornea-infiltrating and circulating VEGFR-3+CD11b+ cells.
Collapse
Affiliation(s)
- Chang Ho Yoon
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
- Department of Ophthalmology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno- gu, Seoul, 03080, Korea
| | - Jung Hwa Ko
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Hyun Ju Lee
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Hyun Beom Song
- Department of Tropical Medicine and Parasitology, Institute of Endemic Diseases, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Joo Youn Oh
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
- Department of Ophthalmology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno- gu, Seoul, 03080, Korea.
| |
Collapse
|
3
|
Heljak MK, Cesur S, Ilhan E, Swieszkowski W, Gunduz O, Kijeńska-Gawrońska E. In silico evaluation of corneal patch eluting anti-VEGF agents concept. Eur J Pharm Biopharm 2024; 204:114494. [PMID: 39255920 DOI: 10.1016/j.ejpb.2024.114494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
This study introduces a novel approach utilizing a temporary drug-eluting hydrogel corneal patch to prevent neovascularization, alongside a numerical predictive tool for assessing the release and transport kinetics of bevacizumab (BVZ) after the keratoplasty. A key focus was investigating the impact of tear film clearance on the release kinetics and drug transport from the designed corneal patch. The proposed tear drug clearance model incorporates the physiological mechanism of lacrimal flow (tear turnover), distinguishing itself from previous models. Validation against experimental data confirms the model's robustness, despite limitations such as a 2D axisymmetrical framework and omission of blink frequency and saccadic eye movements potential effects. Analysis highlights the significant influence of lacrimal flow on ocular drug transport, with the corneal patch extending BVZ residence time compared to topical administration. This research sets the stage for exploring multi-layer drug-eluting corneal patches as a promising therapeutic strategy in ocular health.
Collapse
Affiliation(s)
- Marcin K Heljak
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Poland.
| | - Sumeyye Cesur
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Turkiye; Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Turkiye
| | - Elif Ilhan
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Turkiye
| | - Wojciech Swieszkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Poland
| | - Oguzhan Gunduz
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Turkiye; Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Turkiye
| | - Ewa Kijeńska-Gawrońska
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poland.
| |
Collapse
|
4
|
Shen S, Zhang Y. Restoration of corneal epithelial barrier function: A possible target for corneal neovascularization. Ocul Surf 2024; 34:38-49. [PMID: 38901546 DOI: 10.1016/j.jtos.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Corneal neovascularization (CoNV) is the second leading common cause of vision impairment worldwide and is a blinding pathological alteration brought on by ocular trauma, infection, and other factors. There are some limitations in the treatment of CoNV, hence it's critical to look into novel therapeutic targets. The corneal epithelial barrier, which is the initial barrier of the ocular surface, is an important structure that shields the eye from changes in the internal environment or invasion by the external environment. This study sought to collate evidence on the regulation of corneal epithelial barrier injury on the activation of vascular endothelial cells (VECs), basement membrane (BM) degradation, differentiation, migration, and proliferation of VECs, vascular maturation and stability, and other key processes in CoNV, so as to provide a novel concept for CoNV therapy targeting corneal epithelial barrier repair.
Collapse
Affiliation(s)
- Sitong Shen
- Department of Ophthalmology, The Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan District, Changchun, Jilin Province, 130041, China
| | - Yan Zhang
- Department of Ophthalmology, The Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan District, Changchun, Jilin Province, 130041, China; Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
5
|
Xie M, Wang L, Deng Y, Ma K, Yin H, Zhang X, Xiang X, Tang J. Sustained and Efficient Delivery of Antivascular Endothelial Growth Factor by the Adeno-associated Virus for the Treatment of Corneal Neovascularization: An Outlook for Its Clinical Translation. J Ophthalmol 2024; 2024:5487973. [PMID: 39286553 PMCID: PMC11405113 DOI: 10.1155/2024/5487973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 06/16/2024] [Accepted: 08/17/2024] [Indexed: 09/19/2024] Open
Abstract
Corneal diseases represent 5.1% of all eye defects and are the fourth leading cause of blindness globally. Corneal neovascularization can arise from all conditions of chronic irritation or hypoxia, which disrupts the immune-privileged state of the healthy cornea, increases the risk of rejection after keratoplasty, and leads to opacity. In the past decades, significant progress has been made for neovascular diseases of the retina and choroid, with plenty of drugs getting commercialized. In addition, to overcome the barriers of the short duration and inadequate penetration of conventional formulations of antivascular endothelial growth factor (VEGF), multiple novel drug delivery systems, including adeno-associated virus (AAV)-mediated transfer have gone through the full process of bench-to-bedside translation. Like retina neovascular diseases, corneal neovascularization also suffers from chronicity and a high risk of recurrence, necessitating sustained and efficient delivery across the epithelial barrier to reach deep layers of the corneal stroma. Among the explored methods, adeno-associated virus-mediated delivery of anti-VEGF to treat corneal neovascularization is the most extensively researched and most promising strategy for clinical translation although currently although, it remains predominantly at the preclinical stage. This review comprehensively examines the necessity, benefits, and risks of applying AAV vectors for anti-VEGF drug delivery in corneal vascularization, including its current progress and challenges in clinical translation.
Collapse
Affiliation(s)
- Mengzhen Xie
- Department of Ophthalmology West China Hospital Sichuan University, Chengdu 610041, China
- Beijing Institute of Ophthalmology Beijing Tongren Eye Center Beijing Tongren Hospital Capital Medical University Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| | - Lixiang Wang
- Department of Ophthalmology West China Hospital Sichuan University, Chengdu 610041, China
| | - Yingping Deng
- Department of Ophthalmology West China Hospital Sichuan University, Chengdu 610041, China
| | - Ke Ma
- Department of Ophthalmology West China Hospital Sichuan University, Chengdu 610041, China
| | - Hongbo Yin
- Department of Ophthalmology West China Hospital Sichuan University, Chengdu 610041, China
| | - Xiaolan Zhang
- Department of Ophthalmology West China Hospital Sichuan University, Chengdu 610041, China
| | - Xingye Xiang
- School of Life Science and Engineering Southwest Jiaotong University, Chengdu, Sichuan, China
- Georgia State University, Atlanta, GA 30302, USA
| | - Jing Tang
- Department of Ophthalmology West China Hospital Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Rangu N, Dang DH, Riaz KM. Current trends in the management of corneal neovascularization. Curr Opin Ophthalmol 2024; 35:329-342. [PMID: 38813739 DOI: 10.1097/icu.0000000000001049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
PURPOSE OF REVIEW The aim of this study was to highlight recent developments in the medical and surgical management of corneal neovascularization (NV). RECENT FINDINGS Improved understanding and diagnostic criteria among clinicians have led to advancements in the characterization of corneal NV and objective assessment of treatment response through ancillary imaging devices. Developments in corneal NV treatments, such as antivascular endothelial growth factor, fine needle diathermy, and photodynamic therapy, have improved treatment success rates and visual outcomes. More recent surgical treatment advancements include corneal cross-linking, endothelial keratoplasty, and mitomycin intravascular chemoembolization. Finally, a greater appreciation of the molecular pathogenesis and angiogenic factors involved in corneal NV has identified numerous potential targeted therapies in the future. SUMMARY The management of corneal NV has evolved to include several standalone and combination medical and surgical options. Additionally, improvements in quantifying corneal NV and understanding its molecular basis have contributed to new management strategies with improved outcomes.
Collapse
Affiliation(s)
- Neal Rangu
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center
- College of Medicine, University of Oklahoma, Oklahoma City, Oklahoma, USA
| | - Deanna H Dang
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center
| | - Kamran M Riaz
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center
| |
Collapse
|
7
|
Wu D, Chan KE, Lim BXH, Lim DKA, Wong WM, Chai C, Manotosh R, Lim CHL. Management of corneal neovascularization: Current and emerging therapeutic approaches. Indian J Ophthalmol 2024; 72:S354-S371. [PMID: 38648452 PMCID: PMC467007 DOI: 10.4103/ijo.ijo_3043_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/16/2023] [Accepted: 12/25/2023] [Indexed: 04/25/2024] Open
Abstract
Corneal neovascularization (CoNV) is a sight-threatening condition affecting an estimated 1.4 million people per year, and the incidence is expected to rise. It is a complication of corneal pathological diseases such as infective keratitis, chemical burn, corneal limbal stem cell deficiency, mechanical trauma, and immunological rejection after keratoplasties. CoNV occurs due to a disequilibrium in proangiogenic and antiangiogenic mediators, involving a complex system of molecular interactions. Treatment of CoNV is challenging, and no therapy thus far has been curative. Anti-inflammatory agents such as corticosteroids are the mainstay of treatment due to their accessibility and well-studied safety profile. However, they have limited effectiveness and are unable to regress more mature neovascularization. With the advent of advanced imaging modalities and an expanding understanding of its pathogenesis, contemporary treatments targeting a wide array of molecular mechanisms and surgical options are gaining traction. This review aims to summarize evidence regarding conventional and emerging therapeutic options for CoNV.
Collapse
Affiliation(s)
- Duoduo Wu
- Department of Ophthalmology, National University Hospital, Singapore
| | - Kai En Chan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Blanche Xiao Hong Lim
- Department of Ophthalmology, National University Hospital, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Dawn Ka-Ann Lim
- Department of Ophthalmology, National University Hospital, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wendy Meihua Wong
- Department of Ophthalmology, National University Hospital, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Charmaine Chai
- Department of Ophthalmology, National University Hospital, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ray Manotosh
- Department of Ophthalmology, National University Hospital, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chris Hong Long Lim
- Department of Ophthalmology, National University Hospital, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
- Singapore Eye Research Institute, Singapore
| |
Collapse
|
8
|
Lu F, Wu Q, Lei J, Zhou Y, Liu Y, Zhu N, Yu Y, Lin L, Hu M. Zeaxanthin impairs angiogenesis and tumor growth of glioblastoma: An in vitro and in vivo study. Arch Biochem Biophys 2024; 754:109957. [PMID: 38467357 DOI: 10.1016/j.abb.2024.109957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/04/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
OBJECTIVES To investigate the therapeutic effects of Zeaxanthin (Zea), one of the oxidized xanthophyll carotenoids belonging to the isoprenoids, on inhibiting the angiogenesis and tumor growth of glioblastoma (GBM) via an in vitro and in vivo study. METHODS The effects of Zea on the proliferation, adhesion, migration and invasion of human GBM cell lines were detected by cell proliferation assay, cell adhesion assay and Transwell assay. The effect of Zea on angiogenesis was detected by rat aortic ring assay and human umbilical vein endothelial cells (HUVEC) in vitro tube formation assay. The effects of Zea on PARP, Caspase 3 and VEGFR2 phosphorylation as well as VEGFR2's downstream signaling pathway were detected by Western blot. The in vivo human GBM xenograft mouse model was employed to study the therapeutic efficacy of Zea. RESULTS Zea impaired the proliferation, adhesion, migration and invasion of U87 and U251 cells as well as HUVECs. Rat aortic ring experiments displayed Zea significantly inhibited angiogenesis during VEGF-induced microvascular germination. In vitro and in vivo vascular experiments verified that Zea inhibited VEGF-induced HUVEC proliferation and capillary-like tube formation. Additionally, Zea induced GBM cells apoptosis via increasing the expression of cleaved PARP and Caspase 3. In HUVECs and U251 GBM cells, Zea down-regulated VEGF-induced activation of the VEGFR2 kinase pathway. Meanwhile the expression of p-AKT, p-ERK, p-STAT3 and FAK were all attenuated in U251 cells. Moreover, the effects of Zea on GBM cells proliferation could be blocked by VEGFR2 kinase inhibitor SU5408. These results suggest that Zea may hinder GBM angiogenesis and tumor growth through down-regulating a cascade of oncogenic signaling pathways, both through the inhibition of angiogenesis and the anti-tumor mechanism of a direct cytotoxic effect. Besides, Zea inhibits GBM angiogenesis and tumor growth exemplified through a xenograft mouse model in vivo. CONCLUSION Zea impairs angiogenesis and tumor growth of GBM both in vitro and in vivo. It can be declared that Zea is a potential valuable anticancer candidate for the future treatment strategy of GBM.
Collapse
Affiliation(s)
- Feifei Lu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China; Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Qing Wu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China; Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Jiaming Lei
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China; Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Yanhong Zhou
- Department of Medical School of Facial Features, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Yifei Liu
- School of Biomedical Engineering, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Ni Zhu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - You Yu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Li Lin
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China.
| | - Meichun Hu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China.
| |
Collapse
|
9
|
Musa M, Enaholo E, Aluyi-Osa G, Atuanya GN, Spadea L, Salati C, Zeppieri M. Herpes simplex keratitis: A brief clinical overview. World J Virol 2024; 13:89934. [PMID: 38616855 PMCID: PMC11008405 DOI: 10.5501/wjv.v13.i1.89934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/28/2023] [Accepted: 01/22/2024] [Indexed: 03/11/2024] Open
Abstract
The aim of our minireview is to provide a brief overview of the diagnosis, clinical aspects, treatment options, management, and current literature available regarding herpes simplex keratitis (HSK). This type of corneal viral infection is caused by the herpes simplex virus (HSV), which can affect several tissues, including the cornea. One significant aspect of HSK is its potential to cause recurrent episodes of inflammation and damage to the cornea. After the initial infection, the HSV can establish a latent infection in the trigeminal ganglion, a nerve cluster near the eye. The virus may remain dormant for extended periods. Periodic reactivation of the virus can occur, leading to recurrent episodes of HSK. Factors triggering reactivation include stress, illness, immunosuppression, or trauma. Recurrent episodes can manifest in different clinical patterns, ranging from mild epithelial involvement to more severe stromal or endothelial disease. The severity and frequency of recurrences vary among individuals. Severe cases of HSK, especially those involving the stroma and leading to scarring, can result in vision impairment or even blindness in extreme cases. The cornea's clarity is crucial for good vision, and scarring can compromise this, potentially leading to visual impairment. The management of HSK involves not only treating acute episodes but also implementing long-term strategies to prevent recurrences and attempt repairs of corneal nerve endings via neurotization. Antiviral medications, such as oral Acyclovir or topical Ganciclovir, may be prescribed for prophylaxis. The immune response to the virus can contribute to corneal damage. Inflammation, caused by the body's attempt to control the infection, may inadvertently harm the corneal tissues. Clinicians should be informed about triggers and advised on measures to minimize the risk of reactivation. In summary, the recurrent nature of HSK underscores the importance of both acute and long-term management strategies to preserve corneal health and maintain optimal visual function.
Collapse
Affiliation(s)
- Mutali Musa
- Department of Optometry, University of Benin, Benin 300283, Nigeria
- Department of Ophthalmology, Africa Eye Laser Centre, Km 7, Benin 300105, Nigeria
| | - Ehimare Enaholo
- Department of Ophthalmology, Africa Eye Laser Centre, Km 7, Benin 300105, Nigeria
- Department of Ophthalmology, Centre for Sight Africa, Nkpor 434101, Nigeria
| | - Gladness Aluyi-Osa
- Department of Ophthalmology, Africa Eye Laser Centre, Km 7, Benin 300105, Nigeria
| | | | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I, "Sapienza" University of Rome, Rome 00142, Italy
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| |
Collapse
|
10
|
Uday S, Modak D, Sanjay S. Corneal epithelial and fibrovascular downgrowth postcataract surgery with intrastromal bleed: a rare case study with multimodal imaging. BMJ Case Rep 2024; 17:e253299. [PMID: 38479826 PMCID: PMC10941121 DOI: 10.1136/bcr-2022-253299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024] Open
Abstract
A woman in her 60s presented with diminution of vision and redness in her right eye (OD) 1.5 months duration, 10 months post cataract surgery. The best-corrected visual acuity (BCVA) on the OD was fingers counting at 0.5 m. The anterior section of the OD demonstrated superior pre-Descemet's intrastromal bleeding, superior dense fibrovascular growth in the corneal mid-stroma and superior fibrovascular downgrowth measuring 5×5 mm in the anterior chamber. Along with topical prednisolone acetate (1%) suspension 4 times per day on a tapering dose, antivascular endothelial growth factor therapy was administered intrastromally and subconjunctivally in the superior bulbar conjunctiva near limbus (0.05 mL of 2.5 mg/0.1 mL at each site). Over the course of a week, the intrastromal bleed had completely stopped. Three months later, at the final follow-up, the BCVA had marginally improved to fingers counting 2 m, with a lingering 4×4 mm nebulomacular scar.
Collapse
Affiliation(s)
- Shylaja Uday
- Cornea, Narayana Nethralaya, Bangalore, Karnataka, India
| | - Durgalaxmi Modak
- Cornea and Refractive Surgery, Narayana Nethralaya, Bangalore, Karnataka, India
| | - Srinivasan Sanjay
- Uveitis and Ocular Immunology, Narayana Nethralaya, Bangalore, Karnataka, India
| |
Collapse
|
11
|
Mc Lean K, Bignotti S, Callea M, Cammarata-Scalisi F, Steger B, Armstrong D, Lagan M, Sinton J, Semeraro F, Kaye SB, Romano V, Willoughby CE. Ocular phenotype and therapeutic interventions in keratitis-ichthyosis-deafness (KID) syndrome. Ophthalmic Genet 2024; 45:16-22. [PMID: 37755702 DOI: 10.1080/13816810.2023.2258218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND To report ocular manifestations, clinical course, and therapeutic management of patients with molecular genetically confirmed keratitis-ichthyosis-deafness syndrome. METHODS Four patients, aged 19 to 46, with keratitis-ichthyosis-deafness syndrome from across the UK were recruited for a general and ocular examination and GJB2 (Cx26) mutational analysis. The ocular examination included best-corrected visual acuity, slit-lamp bio-microscopy, and ocular surface assessment. Mutational analysis of the coding region of GJB2 (Cx26) was performed by bidirectional Sanger sequencing. RESULTS All four individuals had the characteristic systemic features of keratitis-ichthyosis-deafness syndrome. Each patient was found to have a missense mutation, resulting in the substitution of aspartic acid with asparagine at codon 50 (p.D50N). Main ophthalmic features were vascularizing keratopathy, ocular surface disease, hyperkeratotic lid lesions, recurrent epithelial defects, and corneal stromal scarring. One patient had multiple surgical procedures, including superficial keratectomies and lamellar keratoplasty, which failed to prevent severe visual loss. In contrast, oral therapy with ketoconazole stabilized the corneal and skin disease in two other patients with keratitis-ichthyosis-deafness syndrome. The patient who underwent intracorneal bevacizumab injection showed a marked reduction in corneal vascularization following a single application. CONCLUSIONS Keratitis-ichthyosis-deafness syndrome is a rare ectodermal dysplasia caused by heterozygous mutations in GJB2 (Cx26) with a severe, progressive vascularizing keratopathy. Oral ketoconazole therapy may offer benefit in stabilizing the corneal and skin disease.
Collapse
Affiliation(s)
- Keri Mc Lean
- Department of Corneal and External Eye Diseases, St. Paul's Eye Unit, Royal Liverpool University Hospital, Liverpool, UK
- Department of Eye and Vision Science, Institute of Life Course and Medical Science, University of Liverpool, Liverpool, UK
| | - Stefano Bignotti
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, Ophthalmology Clinic, University of Brescia, Brescia, Italy
| | - Michele Callea
- Pediatric Dentistry and Special Dental Care Unit, Meyer Children's University Hospital IRCCS, Florence, Italy
| | | | - Bernhard Steger
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria
| | - David Armstrong
- Department of Ophthalmology, Royal Victoria Hospital, Belfast, UK
| | - Maeve Lagan
- Department of Ophthalmology, Royal Victoria Hospital, Belfast, UK
| | - Janet Sinton
- Department of Ophthalmology, Altnagelvin Area Hospital, Londonderry, UK
| | - Francesco Semeraro
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, Ophthalmology Clinic, University of Brescia, Brescia, Italy
| | - Stephen B Kaye
- Department of Corneal and External Eye Diseases, St. Paul's Eye Unit, Royal Liverpool University Hospital, Liverpool, UK
- Department of Eye and Vision Science, Institute of Life Course and Medical Science, University of Liverpool, Liverpool, UK
| | - Vito Romano
- Department of Corneal and External Eye Diseases, St. Paul's Eye Unit, Royal Liverpool University Hospital, Liverpool, UK
- Department of Eye and Vision Science, Institute of Life Course and Medical Science, University of Liverpool, Liverpool, UK
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, Ophthalmology Clinic, University of Brescia, Brescia, Italy
| | - Colin E Willoughby
- Department of Corneal and External Eye Diseases, St. Paul's Eye Unit, Royal Liverpool University Hospital, Liverpool, UK
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria
- Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, UK
| |
Collapse
|
12
|
Wang R, Li Y, Gao S, Zhang Y, He Z, Ji J, Yang X, Ye L, Zhao L, Liu A, Zhai G. An active transport dual adaptive nanocarrier designed to overcome the corneal microenvironment for neovascularization therapy. Biomater Sci 2024; 12:361-374. [PMID: 37982147 DOI: 10.1039/d3bm01349a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The eyes have a complicated microenvironment with many clearance mechanisms, making it challenging for effective drug delivery to the targeted areas of the eyes. Substrate transport mediated by active transporters is an important way to change drug metabolism in the ocular microenvironment. We designed multifunctional, dual-adaptive nanomicelles (GSCQ@NTB) which could overcome multiple physiological barriers by acting on both the efflux transporter and influx transporter to achieve deep delivery of the P-gp substrate in the cornea. Specifically, an effective "triple" antiangiogenic agent, nintedanib (NTB), was loaded into the biocompatible micelles. The expression of the efflux transporter was reversed by grafting quercetin. The peptide (glycylsarcosine, GS) was modified to target the influx transporter "Peptide Transporter-1" (PepT-1). Quercetin (QRT) and nintedanib (NTB) were transported to the cornea cooperatively, achieving long retention on the ocular surface and high compatibility. In a New Zealand rabbit model, within 8 hours after local administration, GSCQ@NTB was enriched in corneal stromal neovascularization and effectively inhibited the progress of neovascularization. Its effectiveness is slightly better than that in the first-line clinical application of steroids. In this study, we introduce the preparation of a dual adaptive nano-micelle system, which may provide an effective non-invasive treatment for corneal neovascularization.
Collapse
Affiliation(s)
- Rui Wang
- Department of Pharmacy, Qilu Hospital of Shandong University, 107 Wenhua Xilu, Jinan 250012, P.R. China.
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China.
- Department of Pharmacy, Qilu Hospital of Shandong University (Qingdao), No. 758 Hefei Road, Qingdao, 266035, P.R. China
| | - Yingying Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China.
| | - Shan Gao
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China.
| | - Yu Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China.
| | - Zhijing He
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China.
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China.
| | - Xiaoye Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China.
| | - Lei Ye
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China.
| | - Lixia Zhao
- Department of Pharmacy, Qilu Hospital of Shandong University, 107 Wenhua Xilu, Jinan 250012, P.R. China.
| | - Anchang Liu
- Department of Pharmacy, Qilu Hospital of Shandong University, 107 Wenhua Xilu, Jinan 250012, P.R. China.
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China.
- Department of Pharmacy, Qilu Hospital of Shandong University (Qingdao), No. 758 Hefei Road, Qingdao, 266035, P.R. China
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Shandong University, 44 Wenhua Xilu, Jinan 250012, P.R. China
| | - Guangxi Zhai
- Department of Pharmacy, Qilu Hospital of Shandong University, 107 Wenhua Xilu, Jinan 250012, P.R. China.
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China.
| |
Collapse
|
13
|
Clahsen T, Hadrian K, Notara M, Schlereth SL, Howaldt A, Prokosch V, Volatier T, Hos D, Schroedl F, Kaser-Eichberger A, Heindl LM, Steven P, Bosch JJ, Steinkasserer A, Rokohl AC, Liu H, Mestanoglu M, Kashkar H, Schumacher B, Kiefer F, Schulte-Merker S, Matthaei M, Hou Y, Fassbender S, Jantsch J, Zhang W, Enders P, Bachmann B, Bock F, Cursiefen C. The novel role of lymphatic vessels in the pathogenesis of ocular diseases. Prog Retin Eye Res 2023; 96:101157. [PMID: 36759312 DOI: 10.1016/j.preteyeres.2022.101157] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 02/10/2023]
Abstract
Historically, the eye has been considered as an organ free of lymphatic vessels. In recent years, however, it became evident, that lymphatic vessels or lymphatic-like vessels contribute to several ocular pathologies at various peri- and intraocular locations. The aim of this review is to outline the pathogenetic role of ocular lymphatics, the respective molecular mechanisms and to discuss current and future therapeutic options based thereon. We will give an overview on the vascular anatomy of the healthy ocular surface and the molecular mechanisms contributing to corneal (lymph)angiogenic privilege. In addition, we present (i) current insights into the cellular and molecular mechanisms occurring during pathological neovascularization of the cornea triggered e.g. by inflammation or trauma, (ii) the role of lymphatic vessels in different ocular surface pathologies such as dry eye disease, corneal graft rejection, ocular graft versus host disease, allergy, and pterygium, (iii) the involvement of lymphatic vessels in ocular tumors and metastasis, and (iv) the novel role of the lymphatic-like structure of Schlemm's canal in glaucoma. Identification of the underlying molecular mechanisms and of novel modulators of lymphangiogenesis will contribute to the development of new therapeutic targets for the treatment of ocular diseases associated with pathological lymphangiogenesis in the future. The preclinical data presented here outline novel therapeutic concepts for promoting transplant survival, inhibiting metastasis of ocular tumors, reducing inflammation of the ocular surface, and treating glaucoma. Initial data from clinical trials suggest first success of novel treatment strategies to promote transplant survival based on pretransplant corneal lymphangioregression.
Collapse
Affiliation(s)
- Thomas Clahsen
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Karina Hadrian
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Maria Notara
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Simona L Schlereth
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Antonia Howaldt
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Verena Prokosch
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Volatier
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Deniz Hos
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Falk Schroedl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Alexandra Kaser-Eichberger
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Ludwig M Heindl
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Philipp Steven
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Cluster of Excellence: Cellular Stress Responses in Ageing-Associated Diseases, CECAD, University of Cologne, Cologne, Germany
| | - Jacobus J Bosch
- Centre for Human Drug Research and Leiden University Medical Center, Leiden, the Netherlands
| | | | - Alexander C Rokohl
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hanhan Liu
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Mert Mestanoglu
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hamid Kashkar
- Institute for Molecular Immunology, Center for Molecular Medicine Cologne (CMMC), CECAD Research Center, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Björn Schumacher
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany; Cluster of Excellence: Cellular Stress Responses in Ageing-Associated Diseases, CECAD, University of Cologne, Cologne, Germany
| | - Friedemann Kiefer
- European Institute for Molecular Imaging (EIMI), University of Münster, 48149, Münster, Germany
| | - Stefan Schulte-Merker
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Münster, Germany
| | - Mario Matthaei
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Yanhong Hou
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Xuhui District, Shanghai, China
| | - Sonja Fassbender
- IUF‒Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany; Immunology and Environment, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Jonathan Jantsch
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Wei Zhang
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Philip Enders
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Björn Bachmann
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Felix Bock
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Claus Cursiefen
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany; Cluster of Excellence: Cellular Stress Responses in Ageing-Associated Diseases, CECAD, University of Cologne, Cologne, Germany.
| |
Collapse
|
14
|
Salubrinal Ameliorates Inflammation and Neovascularization via the Caspase 3/Enos Signaling in an Alkaline-Induced Rat Corneal Neovascularization Model. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020323. [PMID: 36837524 PMCID: PMC9961429 DOI: 10.3390/medicina59020323] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
Background and Objectives: Ocular alkaline burn is a clinical emergency that can cause permanent vision loss due to limbal stem cell deficiency and corneal neovascularization (CNV). Although the basic pathogenetic mechanisms are considered to be acute oxidative stress and corneal neovascularization triggered by inflammation, the underlying intracellular mechanisms have not been clearly elucidated. The aim of this study was to investigate the role of endoplasmic reticulum (ER) stress on inflammation and neovascularization, and the effect of the ER stress inhibitor salubrinal (SLB), as a novel treatment in a corneal alkaline burn model in rats. Methods: Chemical burns were created by cautery for 4 s using a rod coated with 75% silver nitrate and 25% potassium nitrate in the corneal center for the corneal neovascularization (CNV) model. Twenty-eight Wistar albino rats were divided into four groups: SHAM, CNV, CNV + SLB, and CNV + bevacizumab (BVC). After the CNV model was applied to the right eye, a single subconjunctival dose (0.05 mL) of 1 mg/kg salubrinal was injected into both eyes in the CNV + SLB group. A total of 1.25 mg/mL of subconjunctival BVC was administered to the CNV + BVC group. Fourteen days after experimental modeling and drug administration, half of the globes were placed in liquid nitrogen and stored at -20 °C until biochemical analysis. The remaining tissues were collected and fixed in 10% buffered formalin for histopathological and immunohistochemical analysis. Three qualitative agents from three different pathways were chosen: TNFR for inflammation, endothelial nitric oxide synthase (e-NOS) for vascular endothelial growth factor (VEGF)-mediated vascular permeability, and caspase-3 for cellular apoptosis. Results: Significantly lower caspase-3 and eNOS levels were detected in the CNV + SLB and CNV + BVC groups than in the CNV group. Additionally, histopathological evaluation revealed a significant decrease in neovascularization, inflammatory cell infiltration, and fibroblast activity in the CNV + SLB and CNV + BVC groups. The endoplasmic reticulum stress inhibitor, salubrinal, administered to the treatment group, attenuated apoptosis (caspase-3) and inflammation (e-NOS). In the control group (left eyes of the SLB group), salubrinal did not have a toxic effect on the healthy corneas. Conclusion: The ER stress pathway plays an important role in angiogenesis after alkaline corneal burns, and treatment with SLB modulates this pathway, reducing caspase-3 and eNOS levels. Further studies are needed to understand the molecular mechanisms altered by SLB-mediated therapy. The fact that more than one mechanism plays a role in the pathogenesis of CNV may require the use of more than one molecule in treatment. SLB has the potential to affect multiple steps in CNV pathogenesis, both in terms of reducing ER stress and regulating cellular homeostasis by inhibiting the core event of integrated stress response (ISR). Therefore, it can be used as a new treatment option and as a strengthening agent for existing treatments. Although blockade of intracellular organelle stress pathways has shown promising results in experimental studies, more in-depth research is needed before it can be used in routine practice. To the best of our knowledge, this study is the first to report the role of ER stress in corneal injury.
Collapse
|
15
|
Di Girolamo N, Park M. Cell identity changes in ocular surface Epithelia. Prog Retin Eye Res 2022:101148. [DOI: 10.1016/j.preteyeres.2022.101148] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/13/2022] [Accepted: 11/09/2022] [Indexed: 11/21/2022]
|
16
|
Sun KJ, Jun AS, Bohm K, Daroszewski D, Jabbour S. Corneal thinning following bevacizumab intrastromal injection for the treatment of idiopathic lipid keratopathy. Am J Ophthalmol Case Rep 2022; 27:101618. [PMID: 35800403 PMCID: PMC9253579 DOI: 10.1016/j.ajoc.2022.101618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 06/09/2022] [Accepted: 06/12/2022] [Indexed: 11/08/2022] Open
Abstract
Purpose To describe the occurrence of corneal thinning in a patient following intrastromal injection of bevacizumab to treat lipid keratopathy. Observations A 36-year-old female presented with decreased vision in her right eye with central posterior corneal haze and underwent a treatment regimen including artificial tears, cyclosporine 0.05% drops, prednisolone 1% and oral Valacyclovir 1g with no improvement. Neovascularization was noted at 18 months follow up and treated with intrastromal bevacizumab injections at 24 months. The feeder vessel was attenuated at 3- and 6-months post-injection, but tomography indicated sustained thinning and flattening of the cornea at the injection site contributing to the development of irregular astigmatism. Conclusions and Importance Corneal thinning is an uncommon potential side effect of intrastromal bevacizumab injection that may affect postoperative visual acuity.
Collapse
|
17
|
Lim YJ, Cho CH. A Case of Iris Neovascularization in Severe Fungal Keratitis Treated with Intracameral Bevacizumab. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2022. [DOI: 10.3341/jkos.2022.63.5.472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Purpose: We report a case in which iris neovascularization (NVI) improved after intracameral bevacizumab injection in a patient who exhibited fungal keratitis with NVI.Case summary: A 47-year-old man experienced a tree branch-induced injury to his right eye and was treated for keratitis for 1 month. However, his condition deteriorated and he was referred to our hospital. Initial slit lamp biomicroscopy findings showed a large, thick central deep stromal infiltration with a concentric circle shaped feathery-like margin, epithelial defect, satellite lesion, fungal ball, hypopyon, and NVI. Aspergíllus fumigatus was isolated in the corneal scraping culture. Amphotericin B, voriconazole, and natamycin were administered as topical treatment along with systemic amphotericin B. After treatment, the corneal lesions gradually improved, but NVI worsened. After the 5th week, total hyphema occurred; anterior chamber irrigation and intracameral bevacizumab injection were performed. Two weeks postoperatively, the NVI exhibited complete regression; corneal stromal melting with descemetocele appeared after 8 weeks. Penetrating keratoplasty was performed and NVI was no longer observed at 6 months after surgery.Conclusions: For the treatment of iris neovascularization in patients with infectious keratitis, intracameral bevacizumab injection at an appropriate time may be effective.
Collapse
|
18
|
Hu H, Wang S, He Y, Shen S, Yao B, Xu D, Liu X, Zhang Y. The role of bone morphogenetic protein 4 in corneal injury repair. Exp Eye Res 2021; 212:108769. [PMID: 34537186 DOI: 10.1016/j.exer.2021.108769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/30/2021] [Accepted: 09/14/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE Corneal injury may cause neovascularization and lymphangiogenesis in cornea which have a detrimental effect to vision and even lead to blindness. Bone morphogenetic protein 4 (BMP4) regulates a variety of biological processes, which is closely relevant to the regulation of corneal epithelium and angiogenesis. Herein, we aimed to evaluate the effect of BMP4 on corneal neovascularization (CNV), corneal lymphangiogenesis (CL), corneal epithelial repair, and the role of BMP4/Smad pathway in these processes. METHODS We used MTT assay to determine the optimal concentration of BMP4. The suture method was performed to induce rat CNV and CL. We used ink perfusion and HE staining to visualize the morphological change of CNV, and utilized RT-qPCR and ELISA to investigate the expression of angiogenic factors and lymphangiogenic factors. The effects of BMP4 and anti-VEGF antibody on migration, proliferation and adhesion of corneal epithelium were determined by scratch test, MTT assay and cell adhesion test. RESULTS BMP4 significantly inhibited CNV and possibly CL. Topical BMP4 resulted in increased expression of endogenous BMP4, and decreased expression of angiogenic factors and lymphangiogenic factors. Compared with anti-VEGF antibody, BMP4 enhanced corneal epithelium migration, proliferation and adhesion, which facilitated corneal epithelial injury repair. Simultaneously, these processes could be regulated by BMP4/Smad pathway. CONCLUSIONS Our results demonstrated unreported effects of BMP4 on CNV, CL, and corneal epithelial repair, suggesting that BMP4 may represent a potential therapeutic target in corneal injury repair.
Collapse
Affiliation(s)
- Huicong Hu
- Eye Center, The Second Hospital of Jilin University, Changchun, 130041, China.
| | - Shurong Wang
- Eye Center, The Second Hospital of Jilin University, Changchun, 130041, China.
| | - Yuxi He
- Eye Center, The Second Hospital of Jilin University, Changchun, 130041, China.
| | - Sitong Shen
- Eye Center, The Second Hospital of Jilin University, Changchun, 130041, China.
| | - Boyuan Yao
- Eye Center, The Second Hospital of Jilin University, Changchun, 130041, China.
| | - Duo Xu
- Eye Center, The Second Hospital of Jilin University, Changchun, 130041, China.
| | - Xin Liu
- Eye Center, The Second Hospital of Jilin University, Changchun, 130041, China.
| | - Yan Zhang
- Eye Center, The Second Hospital of Jilin University, Changchun, 130041, China.
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Immune rejection after corneal transplantation is a major risk for graft failure. We aim to summarize recent advances in the understanding and management of graft rejection. RECENT FINDINGS Immune rejection remains the leading cause of graft failure in penetrating keratoplasty (PKP). While ABO blood type and sex match between donor and recipient may reduce rejection, human leucocyte antigens class II matching in a randomized study did not reduce the risk of rejection in high-risk PKP. Compared with PKP, deep anterior lamellar keratoplasty, descemet stripping automated endothelial keratoplasty, and descemet membrane endothelial keratoplasty have lower immune rejection rates of 1.7-13%, 5-11.4%, and 1.7-2.8%, respectively, based on long-term (5 years and more) studies. Whether immune rejection is a major risk factor for graft failure in these lamellar keratoplasties is unclear. While there have not been major advances in the systemic management of graft rejection, topical nonsteroid agents such as tacrolimus and anti-vascular endothelial growth factor have shown promise in high-risk cases. SUMMARY Immune rejection remains the leading cause of graft failure in PKP. Lamellar keratoplasties have significantly lower rejection rates compared with PKP. The significance of rejection in the failure of lamellar grafts warrants further investigation.
Collapse
Affiliation(s)
- Jia Yin
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
20
|
Zhi D, Yang T, Zhang T, Yang M, Zhang S, Donnelly RF. Microneedles for gene and drug delivery in skin cancer therapy. J Control Release 2021; 335:158-177. [DOI: 10.1016/j.jconrel.2021.05.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/14/2022]
|
21
|
Liu X, Xu S, Wang Y, Jin X, Shi Y, Zhang H. Bilateral Limbal Stem Cell Alterations in Patients With Unilateral Herpes Simplex Keratitis and Herpes Zoster Ophthalmicus as Shown by In Vivo Confocal Microscopy. Invest Ophthalmol Vis Sci 2021; 62:12. [PMID: 33974047 PMCID: PMC8114006 DOI: 10.1167/iovs.62.6.12] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Purpose The purpose of this study was to investigate the limbal changes in the palisades of Vogt (POV) in patients with herpes simplex keratitis (HSK) and herpes zoster ophthalmicus (HZO) with the application of in vivo confocal microscopy (IVCM). Methods We enrolled 35 eyes of 35 consecutive patients with HSK and 4 patients with HZO in this observational study. Thirty-five participants were also recruited from a healthy population as the control group. All subjects were examined by IVCM in addition to routine slit-lamp biomicroscopy. The IVCM images of the corneal basal epithelial cells, corneal nerve, and the corneoscleral limbus were acquired and then were analyzed semiquantitatively. Results The rate of absent and atypical POV was significantly higher in the affected eyes of patients with HSK than in the contralateral eyes and eyes of controls (88.57% vs. 65.71% vs. 17.14%, P < 0.01). In the HZO group, the rate of absent and atypical POV was 100% in the affected eyes and 50% in the contralateral eyes. When compared to the contralateral unaffected eyes and control eyes, the average density of the central basal epithelial cells and the sub-basal nerve plexus density and the total number of nerves in the central area of the affected eyes were significantly lower in the HSK group (1541 ± 704.4 vs. 2510 ± 746.8 vs. 3650 ± 746.1 cells/mm2, P < 0.0001). Spearman's rank correlation showed that the presence of absent and atypical POV had a significant negative correlation with central corneal basal epithelial cells (rs = −0.44979, P < 0.0001), the density of total nerves (rs = −0.49742, P < 0.0001), and the total nerve numbers (rs = −0.48437, P < 0.0001). A significant positive correlation was established between the presence of absent and atypical POV and HSK severity in affected eyes in the superior, inferior, nasal, and temporal quadrants (rs = 0.68940, rs = 0.78715, rs = 0.65591, and rs = 0.75481, respectively, P < 0.0001) and the contralateral eyes (rs = 0.51636, rs = 0.36207, rs = 0.36990, rs = 0.51241, correspondingly, P < 0.0001). Conclusions Both eyes of patients with unilateral HSK and HZO demonstrated a profound and significant loss of limbal stem cells, which may explain the fact that HSK and HZO are risk factors for limbal stem cell deficiency (LSCD) in both eyes. The loss of LSCs was strongly correlated with the sub-basal nerve plexus and central basal epithelial cell alterations as shown by IVCM.
Collapse
Affiliation(s)
- Xintian Liu
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, No.143, Yiman Street, Harbin City, Nangang District, Heilongjiang Province, China
| | - Shuo Xu
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, No.143, Yiman Street, Harbin City, Nangang District, Heilongjiang Province, China
| | - Yingbin Wang
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, No.143, Yiman Street, Harbin City, Nangang District, Heilongjiang Province, China
| | - Xin Jin
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, No.143, Yiman Street, Harbin City, Nangang District, Heilongjiang Province, China
| | - Yan Shi
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, No.143, Yiman Street, Harbin City, Nangang District, Heilongjiang Province, China
| | - Hong Zhang
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, No.143, Yiman Street, Harbin City, Nangang District, Heilongjiang Province, China
| |
Collapse
|
22
|
Comparison of the effect of teicoplanin and vancomycin on experimental methicillin-resistant staphylococcus aureus keratitis. Int Ophthalmol 2021; 41:1395-1402. [PMID: 33506369 DOI: 10.1007/s10792-021-01696-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 01/08/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE To evaluate the early efficacy and safety of intrastromal injection of teicoplanin as the alternative treatment for the methicillin-resistant Staphylococcus aureus (MRSA) keratitis by comparing it with vancomycin. MATERIALS AND METHODS Twenty-four eyes of 24 New Zealand white rabbits were included in the study. MRSA keratitis was induced in the right eye of each rabbit by injecting 0.1 mL MRSA suspension containing 1000 colony-forming units (CFU) intrastromally to the central cornea. The rabbits were divided into three treatment groups 24 h after the inoculation of MRSA. Eight rabbits received intrastromal teicoplanin therapy, eight received intrastromal vancomycin therapy, and eight received balanced salt solution and served as the control group. Nine hours after the treatment, all rabbits were sacrificed and corneal tissues were collected for microbiological analysis. We also examined and scored all the rabbits clinically before and after the treatment. RESULTS The control group scored higher with regard to conjunctival injection, iritis, fibrin, hypopyon, epithelial erosion, and corneal infiltrate than the vancomycin and teicoplanin groups (p = 0.031, 0.010, < 0.001, 0.029, 0.009, and < 0.001, respectively). Chemosis and corneal oedema were similar in all groups (p = 0.731 and 0.075, respectively). The severity of all clinical parameters was similar in both the vancomycin and teicoplanin groups after the treatment. The bacterial load was the highest (7.83 ± 0.71 log10 CFU/g) in the control group. The eyes treated with vancomycin and teicoplanin had similar bacterial loads (6.40 ± 0.69 vs. 6.31 ± 0.75 log10 CFU/g, p = 0.809). CONCLUSION The efficiency of teicoplanin seems to be comparable to that of vancomycin when administered intrastromally in the early treatment of MRSA keratitis. The former may be preferred in the treatment of selected cases with vancomycin hypersensitivity or resistance.
Collapse
|
23
|
Intrastromal versus subconjunctival anti-VEGF agents for treatment of corneal neovascularization: a rabbit study. Eye (Lond) 2021; 35:3123-3130. [PMID: 33469129 DOI: 10.1038/s41433-020-01347-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/14/2020] [Accepted: 11/26/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE To determine whether subconjunctival or intrastromal administration of anti-VEGF agents is more effective on suture-induced corneal neovascularization (CoNV) in rabbits. METHODS CoNV was induced in 48 eyes of 24 New Zealand white rabbits by using an 8/0 silk suture. On the 7th day after suturing, the rabbits were divided into four treatment groups as follows: six rabbits received subconjunctival bevacizumab (group 1), six rabbits received subconjunctival aflibercept (group 2), six rabbits received intrastromal bevacizumab (group 3) and six rabbits received intrastromal aflibercept (group 4). On the 7th and 14th days after suturing, the CoNV area was calculated by standardised analysis of photographs using the Image-J program. On the 14th day after suturing, all rabbits were sacrificed and then corneal tissue was harvested for the analysis of vascular endothelial growth factor (VEGF)-A, VEGF-B and placental growth factor (PIGF) levels. RESULTS On the 7th day after suturing, CoNV areas were 17.10 ± 2.98, 18.88 ± 3.78, 17.36 ± 4.52, 18.57 ± 4.16 and 17.31 ± 2.81 mm2 in the groups 1-4 and control group, respectively. On the 7th day after intervention and removal of suture, CoNV areas were 4.85 ± 1.99, 6.66 ± 1.73, 2.83 ± 1.08, 2.63 ± 1.16 and 11.93 ± 2.64 mm2 in the group 1-4 and control group, respectively. CoNV area was reduced by 88.1% and 82.5% in eyes receiving intrastromal aflibercept and bevacizumab, respectively (both p < 0.001), and by 64.5% and 69.9% in eyes receiving subconjunctival aflibercept and bevacizumab, respectively (both p = 0.001). CONCLUSION Intrastromal anti-VEGF therapy regressed CoNV more effectively than subconjunctival therapy regardless of the type of anti-VEGF agent.
Collapse
|
24
|
Role of Endogenous Regulators of Hem- And Lymphangiogenesis in Corneal Transplantation. J Clin Med 2020; 9:jcm9020479. [PMID: 32050484 PMCID: PMC7073692 DOI: 10.3390/jcm9020479] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/03/2020] [Accepted: 02/07/2020] [Indexed: 12/11/2022] Open
Abstract
Under normal conditions, the cornea, being the transparent “windscreen” of the eye, is free of both blood and lymphatic vessels. However, various diseases of the eye, like infections, can interfere with the balance between promoting and inhibiting factors, which leads to ingrowth of blood and lymphatic vessels. The newly formed lymphatic vessels increase the risk of graft rejection after subsequent corneal transplantation. Corneal transplantation is one of the most commonly performed transplantations worldwide, with more than 40,000 surgeries per year in Europe. To date, various anti-hem- and anti-lymphangiogenic treatment strategies have been developed specifically for the corneal vascular endothelial growth factor (VEGF) pathway. Currently, however, no treatment strategies are clinically available to specifically modulate lymphangiogenesis. In this review, we will give an overview about endogenous regulators of hem- and lymphangiogenesis and discuss potential new strategies for targeting pathological lymphangiogenesis. Furthermore, we will review recently identified modulators and demonstrate that the cornea is a suitable model for the identification of novel endogenous modulators of lymphangiogenesis. The identification of novel modulators of lymphangiogenesis and a better understanding of the signaling pathways involved will contribute to the development of new therapeutic targets for the treatment of pathological lymphangiogenesis. This, in turn, will improve graft rejection, not only for the cornea.
Collapse
|