1
|
Kolliopoulos V, Mikos AG. Decellularized extracellular matrix as a drug delivery carrier. J Control Release 2025; 382:113661. [PMID: 40139392 DOI: 10.1016/j.jconrel.2025.113661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/18/2025] [Accepted: 03/22/2025] [Indexed: 03/29/2025]
Abstract
Tissue engineering and regenerative medicine approaches seek to enhance biomaterial mimicry with the goal of driving cell recruitment, proliferation, and differentiation. Decellularized extracellular matrix (dECM) biomaterials have emerged as a promising platform for biomaterials development as they capture the complexity of native tissues and offer a rich environment of signals to guide cellular responses. However, the decellularization process can affect both the structure and composition of the ECM. Recent efforts have focused on leveraging dECM as drug delivery carriers for controlled release of bioactive molecules. This review highlights current strategies for incorporating therapeutic agents into dECM which include encapsulation within hydrogel formulations, direct bulk absorption of biomolecules, and affinity-based binding and conjugation. Each method offers unique advantages for modulating release profiles, which can range from rapid initial burst to prolonged, sustained release, depending on factors such as crosslinking density, degradation rate, and specific interactions of biomolecules with dECM components such as glycosaminoglycans.
Collapse
Affiliation(s)
- Vasiliki Kolliopoulos
- Department of Bioengineering, Rice University, Houston, TX 77030, United States of America
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX 77030, United States of America.
| |
Collapse
|
2
|
Ji L, Yu Y, Zhu F, Huang D, Wang X, Wang J, Liu C. 2-N, 6-O sulfated chitosan evokes periosteal stem cells for bone regeneration. Bioact Mater 2024; 34:282-297. [PMID: 38261845 PMCID: PMC10796814 DOI: 10.1016/j.bioactmat.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024] Open
Abstract
Musculoskeletal injuries and bone defects represent a significant clinical challenge, necessitating innovative approaches for effective bone tissue regeneration. In this study, we investigated the potential of harnessing periosteal stem cells (PSCs) and glycosaminoglycan (GAG)-mimicking materials for in situ bone regeneration. Our findings demonstrated that the introduction of 2-N, 6-O sulfated chitosan (26SCS), a GAG-like polysaccharide, enriched PSCs and promoted robust osteogenesis at the defect area. Mechanistically, 26SCS amplifies the biological effect of endogenous platelet-derived growth factor-BB (PDGF-BB) through enhancing the interaction between PDGF-BB and its receptor PDGFRβ abundantly expressed on PSCs, resulting in strengthened PSC proliferation and osteogenic differentiation. As a result, 26SCS effectively improved bone defect repair, even in an osteoporotic mouse model with lowered PDGF-BB level and diminished regenerative potential. Our findings suggested the significant potential of GAG-like biomaterials in regulating PSC behavior, which holds great promise for addressing osteoporotic bone defect repair in future applications.
Collapse
Affiliation(s)
- Luli Ji
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yuanman Yu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Fuwei Zhu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Dongao Huang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Xiaogang Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Jing Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, PR China
| |
Collapse
|
3
|
Balamurugan K, Koehler L, Dürig JN, Hempel U, Rademann J, Hintze V, Pisabarro MT. Structural insights into the modulation of PDGF/PDGFR-β complexation by hyaluronan derivatives. Biol Chem 2021; 402:1441-1452. [PMID: 34280958 DOI: 10.1515/hsz-2021-0173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/18/2021] [Indexed: 12/25/2022]
Abstract
Angiogenesis is an important physiological process playing a crucial role in wound healing and cancer progression. Vascular endothelial growth factor (VEGF) and platelet derived growth factor (PDGF) are key players in angiogenesis. Based on previous findings regarding the modulation of VEGF activity by glycosaminoglycans (GAG), here we explore the interaction of hyaluronan (HA)-based GAG with PDGF and its receptor PDGFR-β by applying molecular modeling and dynamics simulations in combination with surface plasmon resonance (SPR). Computational analysis on the interaction of oligo-hyaluronan derivatives with different sulfation pattern and functionalization shows that these GAG interact with PDGF in relevant regions for receptor recognition, and that high sulfation as well as modification with the TAMRA group convey stronger binding. On the other hand, the studied oligo-hyaluronan derivatives are predicted to scarcely recognize PDGFR-β. SPR results are in line with the computational predictions regarding the binding pattern of HA tetrasaccharide (HA4) derivatives to PDGF and PDGFR-β. Furthermore, our experimental results also show that the complexation of PDGF to PDGFR-β can be modulated by HA4 derivatives. The results found open the path for considering HA4 derivatives as potential candidates to be exploited for modulation of the PDGF/PDGFR-β signaling system in angiogenesis and related disease conditions.
Collapse
Affiliation(s)
- Kanagasabai Balamurugan
- Structural Bioinformatics, BIOTEC Technische Universität Dresden, Tatzberg 47-51, D-01307Dresden, Germany
| | - Linda Koehler
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Str. 27, D-01069Dresden, Germany
| | - Jan-Niklas Dürig
- Medicinal Chemistry Department, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, D-14195Berlin, Germany
| | - Ute Hempel
- Institute of Physiological Chemistry, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fiedlerstraße 42, D-01307Dresden, Germany
| | - Jörg Rademann
- Medicinal Chemistry Department, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, D-14195Berlin, Germany
| | - Vera Hintze
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Str. 27, D-01069Dresden, Germany
| | - M Teresa Pisabarro
- Structural Bioinformatics, BIOTEC Technische Universität Dresden, Tatzberg 47-51, D-01307Dresden, Germany
| |
Collapse
|
4
|
Bissinger S, Hage C, Wagner V, Maser IP, Brand V, Schmittnaegel M, Jegg AM, Cannarile M, Watson C, Klaman I, Rieder N, González Loyola A, Petrova TV, Cassier PA, Gomez-Roca C, Sibaud V, De Palma M, Hoves S, Ries CH. Macrophage depletion induces edema through release of matrix-degrading proteases and proteoglycan deposition. Sci Transl Med 2021; 13:13/598/eabd4550. [PMID: 34135110 DOI: 10.1126/scitranslmed.abd4550] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 05/07/2021] [Indexed: 12/21/2022]
Abstract
Colony-stimulating factor 1 receptor (CSF1R) blockade abates tumor-associated macrophage (TAM) infiltrates and provides marked clinical benefits in diffuse-type tenosynovial giant cell tumors. However, facial edema is a common adverse event associated with TAM elimination in patients. In this study, we examined molecular and cellular events associated with edema formation in mice and human patients with cancer treated with a CSF1R blocking antibody. Extended antibody treatment of mice caused marked body weight gain, an indicator of enhanced body fluid retention. This was associated with an increase of extracellular matrix-remodeling metalloproteinases (MMPs), namely MMP2 and MMP3, and enhanced deposition of hyaluronan (HA) and proteoglycans, leading to skin thickening. Discontinuation of anti-CSF1R treatment or blockade of MMP activity restored unaltered body weight and normal skin morphology in the mice. In patients, edema developed at doses well below the established optimal biological dose for emactuzumab, a CSF1R dimerization inhibitor. Patients who developed edema in response to emactuzumab had elevated HA in peripheral blood. Our findings indicate that an early increase of peripheral HA can serve as a pharmacodynamic marker for edema development and suggest potential interventions based on MMP inhibition for relieving periorbital edema in patients treated with CSF1R inhibitors.
Collapse
Affiliation(s)
- Stefan Bissinger
- Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Munich, 82377 Penzberg, Germany.
| | - Carina Hage
- Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Munich, 82377 Penzberg, Germany
| | - Vinona Wagner
- Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Munich, 82377 Penzberg, Germany
| | - Ilona-Petra Maser
- Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Munich, 82377 Penzberg, Germany
| | - Verena Brand
- Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Munich, 82377 Penzberg, Germany
| | - Martina Schmittnaegel
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland.,Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Munich, 82377 Penzberg, Germany
| | - Anna-Maria Jegg
- Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Munich, 82377 Penzberg, Germany
| | - Michael Cannarile
- Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Munich, 82377 Penzberg, Germany
| | | | - Irina Klaman
- Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Munich, 82377 Penzberg, Germany
| | - Natascha Rieder
- Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Munich, 82377 Penzberg, Germany
| | - Alejandra González Loyola
- Department of Oncology, University of Lausanne (UNIL) and Ludwig Institute for Cancer Research Lausanne (LICR), 1066 Epalinges, Switzerland
| | - Tatiana V Petrova
- Department of Oncology, University of Lausanne (UNIL) and Ludwig Institute for Cancer Research Lausanne (LICR), 1066 Epalinges, Switzerland
| | | | - Carlos Gomez-Roca
- Institut Claudius Regaud/Institut Universitaire du Cancer, Toulouse Oncopole, 31300 Toulouse, France
| | - Vincent Sibaud
- Institut Claudius Regaud/Institut Universitaire du Cancer, Toulouse Oncopole, 31300 Toulouse, France
| | - Michele De Palma
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Sabine Hoves
- Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Munich, 82377 Penzberg, Germany
| | - Carola H Ries
- Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Munich, 82377 Penzberg, Germany.
| |
Collapse
|
5
|
Yang Y, Lu Y, Zeng K, Heinze T, Groth T, Zhang K. Recent Progress on Cellulose-Based Ionic Compounds for Biomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2000717. [PMID: 32270900 PMCID: PMC11469321 DOI: 10.1002/adma.202000717] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 05/06/2023]
Abstract
Glycans play important roles in all major kingdoms of organisms, such as archea, bacteria, fungi, plants, and animals. Cellulose, the most abundant polysaccharide on the Earth, plays a predominant role for mechanical stability in plants, and finds a plethora of applications by humans. Beyond traditional use, biomedical application of cellulose becomes feasible with advances of soluble cellulose derivatives with diverse functional moieties along the backbone and modified nanocellulose with versatile functional groups on the surface due to the native features of cellulose as both cellulose chains and supramolecular ordered domains as extractable nanocellulose. With the focus on ionic cellulose-based compounds involving both these groups primarily for biomedical applications, a brief introduction about glycoscience and especially native biologically active glycosaminoglycans with specific biomedical application areas on humans is given, which inspires further development of bioactive compounds from glycans. Then, both polymeric cellulose derivatives and nanocellulose-based compounds synthesized as versatile biomaterials for a large variety of biomedical applications, such as for wound dressings, controlled release, encapsulation of cells and enzymes, and tissue engineering, are separately described, regarding the diverse routes of synthesis and the established and suggested applications for these highly interesting materials.
Collapse
Affiliation(s)
- Yang Yang
- Wood Technology and Wood ChemistryUniversity of GoettingenBüsgenweg 4Göttingen37077Germany
- State Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyWushan Road 381Guangzhou510640P. R. China
| | - Yi‐Tung Lu
- Department Biomedical MaterialsInstitute of PharmacyMartin Luther University Halle‐WittenbergHeinrich‐Damerow‐Strasse 4Halle (Saale)06120Germany
| | - Kui Zeng
- Wood Technology and Wood ChemistryUniversity of GoettingenBüsgenweg 4Göttingen37077Germany
| | - Thomas Heinze
- Institute of Organic Chemistry and Macromolecular ChemistryFriedrich Schiller University of JenaCentre of Excellence for Polysaccharide ResearchHumboldt Straße 10JenaD‐07743Germany
| | - Thomas Groth
- Department Biomedical MaterialsInstitute of PharmacyMartin Luther University Halle‐WittenbergHeinrich‐Damerow‐Strasse 4Halle (Saale)06120Germany
- Interdisciplinary Center of Materials ScienceMartin Luther University Halle‐WittenbergHalle (Saale)06120Germany
- Laboratory of Biomedical NanotechnologiesInstitute of Bionic Technologies and EngineeringI. M. Sechenov First Moscow State UniversityTrubetskaya Street 8119991MoscowRussian Federation
| | - Kai Zhang
- Wood Technology and Wood ChemistryUniversity of GoettingenBüsgenweg 4Göttingen37077Germany
| |
Collapse
|
6
|
Liguori TTA, Liguori GR, van Dongen JA, Moreira LFP, Harmsen MC. Bioactive decellularized cardiac extracellular matrix-based hydrogel as a sustained-release platform for human adipose tissue-derived stromal cell-secreted factors. Biomed Mater 2021; 16:025022. [PMID: 33264764 DOI: 10.1088/1748-605x/abcff9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The administration of trophic factors (TFs) released by mesenchymal stromal cells (MSCs) as therapy for cardiovascular diseases requires a delivery vehicle capable of binding and releasing the TF in a sustained manner. We hypothesized that hydrogels derived from cardiac decellularized extracellular matrix (cardiac dECM) bind MSC secretome-derived TF and release these in a sustained fashion. Pig-derived ventricular tissue was decellularized, milled to powder, digested, and assembled as a hydrogel upon warming at 37 °C. The conditioned medium (CMed) of adipose tissue-derived stromal cells (ASC) was collected, concentrated, and incorporated into the hydrogel at 1×, 10×, and 100× the original concentration. The release of 11 ASC-secreted factors (angiopoietin-1, angiopoietin-2, fibroblast growth factor-1, hepatocyte growth factor, platelet-derived growth factor-AA, vascular endothelial growth factor, interleukin-1β, interleukin-6, interleukin-8, CCL2, and matrix metalloproteinase-1) from hydrogels was immune assessed. Bioactivity was determined by endothelial cell proliferation, function, and assessment of endothelial mesenchymal transition. We showed that dECM hydrogels could be loaded with human ASC-secreted TFs, which are released in a sustained manner for several days subsequently. Different trophic factors had different release kinetics, which correlates with the initial concentration of CMed in the hydrogel. We observed that the more concentrated was the hydrogel, the more inflammation-related cytokines, and the less pro-regenerative TFs were released. Finally, we showed that the factors secreted by the hydrogel are biologically active as these influence cell behavior. The use of dECM hydrogels as a platform to bind and release paracrine factors secreted by (mesenchymal) cells is a potential alternative in the context of cardiovascular regeneration.
Collapse
Affiliation(s)
- Tácia Tavares Aquinas Liguori
- Instituto do Coração (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil. University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands. These authors equally contributed to the manuscript
| | | | | | | | | |
Collapse
|
7
|
Chondroitin sulfate synthase 1 enhances proliferation of glioblastoma by modulating PDGFRA stability. Oncogenesis 2020; 9:9. [PMID: 32019907 PMCID: PMC7000683 DOI: 10.1038/s41389-020-0197-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/13/2019] [Accepted: 01/16/2020] [Indexed: 11/13/2022] Open
Abstract
Chondroitin sulfate synthases, a family of enzyme involved in chondroitin sulfate (CS) polymerization, are dysregulated in various human malignancies, but their roles in glioma remain unclear. We performed database analysis and immunohistochemistry on human glioma tissue, to demonstrate that the expression of CHSY1 was frequently upregulated in glioma, and that it was associated with adverse clinicopathologic features, including high tumor grade and poor survival. Using a chondroitin sulfate-specific antibody, we showed that the expression of CHSY1 was significantly associated with CS formation in glioma tissue and cells. In addition, overexpression of CHSY1 in glioma cells enhanced cell viability and orthotopic tumor growth, whereas CHSY1 silencing suppressed malignant growth. Mechanistic investigations revealed that CHSY1 selectively regulates PDGFRA activation and PDGF-induced signaling in glioma cells by stabilizing PDGFRA protein levels. Inhibiting PDGFR activity with crenolanib decreased CHSY1-induced malignant characteristics of GL261 cells and prolonged survival in an orthotopic mouse model of glioma, which underlines the critical role of PDGFRA in mediating the effects of CHSY1. Taken together, these results provide information on CHSY1 expression and its role in glioma progression, and highlight novel insights into the significance of CHSY1 in PDGFRA signaling. Thus, our findings point to new molecular targets for glioma treatment.
Collapse
|
8
|
Qian H, Appiah-Kubi K, Wang Y, Wu M, Tao Y, Wu Y, Chen Y. The clinical significance of platelet-derived growth factors (PDGFs) and their receptors (PDGFRs) in gastric cancer: A systematic review and meta-analysis. Crit Rev Oncol Hematol 2018; 127:15-28. [PMID: 29891108 DOI: 10.1016/j.critrevonc.2018.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 03/25/2018] [Accepted: 05/07/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The overexpression and mutation of platelet-derived growth factors (PDGFs) and their receptors (PDGFRs) are widespread in cancers and have been recognized as attractive oncologic targets with diverse therapeutic targets. Reports of the overexpression of genes, proteins and mutations of PDGFs/PDGFRs in gastric cancer and their associations with clinicopathological features, Western and Asian patients, as well as prognostic role have shown variable outcomes. This study sought to employ meta-analysis to evaluate PDGFs/PDGFRs status prognostic significance and their association with clinicopathological features of gastric cancer. METHOD A comprehensive search of PubMed database for studies that investigated the overexpression of mRNA/Protein and mutation of PDGFs/PDGFRs in gastric cancer of Western and Asian patients, their prognostic significance and association with clinicopathological characteristics in May, 2017 or earlier was carried out by two reviewers independently. Pooled odd ratios and hazard ratios at 95% confidence intervals were estimated and summarized using fixed-effect and random-effect Mantel-Haenszel models and Inverse Variance models in Review Manager software version 5.3. RESULTS Fourteen studies with 16 datasets of 1178 patients were included in meta-analysis. Fourteen studies of 1178 patients with 1446 cases and 7 studies of 1076 patients with 1280 cases were included in meta-analysis of clinicopathological and prognostic significance of high or positive PDGF/PDGFR status respectively. Odd ratio at 95% confidence intervals for different groups of analysis are as follows: males versus females(OR = 1.38, 95% CI: 1.04-1.83, POR = 0.03); ≥T2 stage versus T1 stage(OR = 2.06, 95% CI: 1.22-3.49, POR = 0.007); nodal metastasis versus no nodal metastasis(OR = 2.78, 95% CI: 1.48-5.22, POR = 0.002); TNM stage ≥II versus TNM stage I(OR = 3.55, 95% CI: 1.89-6.69, POR<0.0001). Subgroup analysis of the association of PDGF/PDGFR among Western patients(OR = 0.24 95% CI: 0.10-0.58, POR = 0.002) and association of PDGFs/PDGFRs gene mutation among gastric cancer patients(OR = 0.15, 95% CI: 0.05-0.45, POR = 0.0008) were significant. The association of PDGFs/PDGFRs in young and middle age versus elderly aged, undifferentiated versus well differentiated tumors, large tumor size group(>6 cm) versus small tumor size group(≤6 cm) were insignificant. Subgroup analysis of the association of PDGFs/PDGFRs among Western Asian patients; PDGF/PDGFR mRNA expression and protein expression among gastric cancer patients were insignificant. In addition, PDGF/PDGFR status among gastric cancer patients was insignificant in overall effect analysis PDGF/PDGFR status has shown to predict reduced overall survival(HR = 1.25, 95% CI: 0.49-3.22, PHR = 0.64) and relapse free survival(HR = 0.93, 95% CI: 0.36-2.41, PHR = 0.88) insignificantly. Also, overall prognostic effect analysis(HR = 1.07, 95% CI: 0.58-1.96, PHR = 0.84) was insignificant. CONCLUSION PDGFs/PDGFRs status amongst gastric cancer patients plays a key role in clinical variables and nodal metastasis. These insights might be helpful in providing guidelines for diagnosis, molecular target therapy, and prognosis of gastric cancer.
Collapse
Affiliation(s)
- Hai Qian
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, People's Republic of China
| | - Kwaku Appiah-Kubi
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, People's Republic of China; Department of Applied Biology, University for Development Studies, Navrongo, Ghana.
| | - Ying Wang
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, People's Republic of China
| | - Min Wu
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, People's Republic of China
| | - Yan Tao
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, People's Republic of China
| | - Yan Wu
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, People's Republic of China
| | - Yongchang Chen
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, People's Republic of China.
| |
Collapse
|
9
|
Das S, Majid M, Baker AB. Syndecan-4 enhances PDGF-BB activity in diabetic wound healing. Acta Biomater 2016; 42:56-65. [PMID: 27381525 DOI: 10.1016/j.actbio.2016.07.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 06/28/2016] [Accepted: 07/01/2016] [Indexed: 01/13/2023]
Abstract
UNLABELLED Non-healing ulcers are a common consequence of long-term diabetes and severe peripheral vascular disease. These non-healing wounds are a major source of morbidity in patients with diabetes and place a heavy financial burden on the healthcare system. Growth factor therapies are an attractive strategy for enhancing wound closure in non-healing wounds but have only achieved mixed results in clinical trials. Platelet derived growth factor-BB (PDGF-BB) is the only currently approved growth factor therapy for non-healing wounds. However, PDGF-BB therapy is not effective in many patients and requires high doses that increase the potential for side effects. In this work, we demonstrate that syndecan-4 delivered in a proteoliposomal formulation enhances PDGF-BB activity in diabetic wound healing. In particular, syndecan-4 proteoliposomes enhance the migration of keratinocytes derived from patients with diabetes. In addition, syndecan-4 proteoliposomes sensitize keratinocytes to PDGF-BB stimulation, enhancing the intracellular signaling response to PDGF-BB. We further demonstrated that co-therapy with syndecan-4 proteoliposomes enhanced wound closure in diabetic, hyperlipidemic ob/ob mice. Wounds treated with both syndecan-4 proteoliposomes and PDGF-BB had increased re-epithelization and angiogenesis in comparison to wounds treated with PDGF-BB alone. Moreover, the wounds treated with syndecan-4 proteoliposomes and PDGF-BB also had increased M2 macrophages and reduced M1 macrophages, suggesting syndecan-4 delivery induces immunomodulation within the healing wounds. Together our findings support that syndecan-4 proteoliposomes markedly improve PDGF-BB efficacy for wound healing and may be useful in enhancing treatments for non-healing wounds. STATEMENT OF SIGNIFICANCE Non-healing wounds are major healthcare issue for patients with diabetes and peripheral vascular disease. Growth factor therapies have potential for healing chronic wounds but have not been effective for many patients. PDGF-BB is currently the only approved growth factor for enhancing wound healing. However, it has not seen widespread adoption due to limited efficacy and high cost. In this work, we have developed an enhancing agent that improves the activity of PDGF-BB in promoting wound healing in animals with diabetes. This co-therapy may be useful in improving the efficacy of PDGFBB and enhance its safety through lowering the dose of growth factor needed to improve wound healing.
Collapse
Affiliation(s)
- Subhamoy Das
- Department of Biomedical Engineering, University of Texas, Austin, TX, United States
| | - Marjan Majid
- Department of Biomedical Engineering, University of Texas, Austin, TX, United States
| | - Aaron B Baker
- Department of Biomedical Engineering, University of Texas, Austin, TX, United States; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, United States; Institute for Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX, United States; Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
10
|
Reine TM, Vuong TT, Rutkovskiy A, Meen AJ, Vaage J, Jenssen TG, Kolset SO. Serglycin in Quiescent and Proliferating Primary Endothelial Cells. PLoS One 2015; 10:e0145584. [PMID: 26694746 PMCID: PMC4687888 DOI: 10.1371/journal.pone.0145584] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/04/2015] [Indexed: 01/04/2023] Open
Abstract
Proteoglycans are fundamental components of the endothelial barrier, but the functions of the proteoglycan serglycin in endothelium are less described. Our aim was to describe the roles of serglycin in processes relevant for endothelial dysfunction. Primary human umbilical vein endothelial cells (HUVEC) were cultured in vitro and the expression of proteoglycans was investigated. Dense cell cultures representing the quiescent endothelium coating the vasculature was compared to sparse activated cell cultures, relevant for diabetes, cancer and cardiovascular disease. Secretion of 35S- proteoglycans increased in sparse cultures, and we showed that serglycin is a major component of the cell-density sensitive proteoglycan population. In contrast to the other proteoglycans, serglycin expression and secretion was higher in proliferating compared to quiescent HUVEC. RNAi silencing of serglycin inhibited proliferation and wound healing, and serglycin expression and secretion was augmented by hypoxia, mechanical strain and IL-1β induced inflammation. Notably, the secretion of the angiogenic chemokine CCL2 resulting from IL-1β activation, was increased in serglycin knockdown cells, while angiopoietin was not affected. Both serglycin and CCL2 were secreted predominantly to the apical side of polarized HUVEC, and serglycin and CCL2 co-localized both in perinuclear areas and in vesicles. These results suggest functions for serglycin in endothelial cells trough interactions with partner molecules, in biological processes with relevance for diabetic complications, cardiovascular disease and cancer development.
Collapse
Affiliation(s)
- Trine M Reine
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Box 1046, Blindern, 0316 Oslo, Norway.,Section of Renal Diseases, Department of Organ Transplantation, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Tram T Vuong
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Box 1046, Blindern, 0316 Oslo, Norway
| | - Arkady Rutkovskiy
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Department of Emergency and Intensive Care, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Astri J Meen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Box 1046, Blindern, 0316 Oslo, Norway
| | - Jarle Vaage
- Department of Emergency and Intensive Care, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Trond G Jenssen
- Section of Renal Diseases, Department of Organ Transplantation, Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Metabolic and Renal Research Group, UiT The Arctic University of Norway, Tromsø, Norway
| | - Svein O Kolset
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Box 1046, Blindern, 0316 Oslo, Norway
| |
Collapse
|
11
|
Mechanistic and therapeutic overview of glycosaminoglycans: the unsung heroes of biomolecular signaling. Glycoconj J 2015; 33:1-17. [DOI: 10.1007/s10719-015-9642-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 12/28/2022]
|
12
|
Heparin/Heparan sulfate proteoglycans glycomic interactome in angiogenesis: biological implications and therapeutical use. Molecules 2015; 20:6342-88. [PMID: 25867824 PMCID: PMC6272510 DOI: 10.3390/molecules20046342] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 12/20/2022] Open
Abstract
Angiogenesis, the process of formation of new blood vessel from pre-existing ones, is involved in various intertwined pathological processes including virus infection, inflammation and oncogenesis, making it a promising target for the development of novel strategies for various interventions. To induce angiogenesis, angiogenic growth factors (AGFs) must interact with pro-angiogenic receptors to induce proliferation, protease production and migration of endothelial cells (ECs). The action of AGFs is counteracted by antiangiogenic modulators whose main mechanism of action is to bind (thus sequestering or masking) AGFs or their receptors. Many sugars, either free or associated to proteins, are involved in these interactions, thus exerting a tight regulation of the neovascularization process. Heparin and heparan sulfate proteoglycans undoubtedly play a pivotal role in this context since they bind to almost all the known AGFs, to several pro-angiogenic receptors and even to angiogenic inhibitors, originating an intricate network of interaction, the so called "angiogenesis glycomic interactome". The decoding of the angiogenesis glycomic interactome, achievable by a systematic study of the interactions occurring among angiogenic modulators and sugars, may help to design novel antiangiogenic therapies with implications in the cure of angiogenesis-dependent diseases.
Collapse
|
13
|
Murine neural stem cells model Hunter disease in vitro: glial cell-mediated neurodegeneration as a possible mechanism involved. Cell Death Dis 2013; 4:e906. [PMID: 24201805 PMCID: PMC3847312 DOI: 10.1038/cddis.2013.430] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 09/06/2013] [Accepted: 09/23/2013] [Indexed: 11/09/2022]
Abstract
Mucopolysaccharidosis type II (MPSII or Hunter Syndrome) is a lysosomal storage disorder caused by the deficit of iduronate 2-sulfatase (IDS) activity and characterized by progressive systemic and neurological impairment. As the early mechanisms leading to neuronal degeneration remain elusive, we chose to examine the properties of neural stem cells (NSCs) isolated from an animal model of the disease in order to evaluate whether their neurogenic potential could be used to recapitulate the early phases of neurogenesis in the brain of Hunter disease patients. Experiments here reported show that NSCs derived from the subventricular zone (SVZ) of early symptomatic IDS-knockout (IDS-ko) mouse retained self-renewal capacity in vitro, but differentiated earlier than wild-type (wt) cells, displaying an evident lysosomal aggregation in oligodendroglial and astroglial cells. Consistently, the SVZ of IDS-ko mice appeared similar to the wt SVZ, whereas the cortex and striatum presented a disorganized neuronal pattern together with a significant increase of glial apoptotic cells, suggesting that glial degeneration likely precedes neuronal demise. Interestingly, a very similar pattern was observed in the brain cortex of a Hunter patient. These observations both in vitro, in our model, and in vivo suggest that IDS deficit seems to affect the late phases of neurogenesis and/or the survival of mature cells rather than NSC self-renewal. In particular, platelet-derived growth factor receptor-α-positive (PDGFR-α+) glial progenitors appeared reduced in both the IDS-ko NSCs and in the IDS-ko mouse and human Hunter brains, compared with the respective healthy controls. Treatment of mutant NSCs with IDS or PDGF throughout differentiation was able to increase the number of PDGFR-α+ cells and to reduce that of apoptotic cells to levels comparable to wt. This evidence supports IDS-ko NSCs as a reliable in vitro model of the disease, and suggests the rescue of PDGFR-α+ glial cells as a therapeutic strategy to prevent neuronal degeneration.
Collapse
|
14
|
Wilson SE. Corneal myofibroblast biology and pathobiology: generation, persistence, and transparency. Exp Eye Res 2012; 99:78-88. [PMID: 22542905 DOI: 10.1016/j.exer.2012.03.018] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 03/12/2012] [Accepted: 03/28/2012] [Indexed: 02/06/2023]
Abstract
Important advances have led to a better understanding of the biology and pathobiology of corneal myofibroblasts and their generation after surgery, injury, infection and disease. Transforming growth factor (TGF) beta, along with platelet-derived growth factor (PDGF) and interleukin (IL)-1, has been shown to regulate myofibroblast development and death in in-vitro and in-situ animal models. The myofibroblast precursor cells regulated by these cytokines include both keratocyte-derived and bone marrow-derived cells. Cytokines that promote and maintain myofibroblasts associated with late haze after photorefractive keratectomy are modulated in part by the epithelial basement membrane functioning as barrier between the epithelium and stroma. Structural and functional defects in the basement membrane likely lead to prolonged elevation of TGFβ, and perhaps other cytokine, levels in the stroma necessary to promote differentiation of myofibroblasts. Conversely, repair of the epithelial basement membrane likely leads to a decrease in stromal TGFβ levels and apoptosis of myofibroblasts. Repopulating keratocytes subsequently reorganize the associated fibrotic extracellular matrix deposited in the anterior stroma by the myofibroblasts. Investigations of myofibroblast biology are likely to lead to safer pharmacological modulators of corneal wound healing and transparency.
Collapse
Affiliation(s)
- Steven E Wilson
- The Cole Eye Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| |
Collapse
|
15
|
Schultz GS, Davidson JM, Kirsner RS, Bornstein P, Herman IM. Dynamic reciprocity in the wound microenvironment. Wound Repair Regen 2011; 19:134-48. [PMID: 21362080 DOI: 10.1111/j.1524-475x.2011.00673.x] [Citation(s) in RCA: 328] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Here, we define dynamic reciprocity (DR) as an ongoing, bidirectional interaction among cells and their surrounding microenvironment. In this review, we posit that DR is especially meaningful during wound healing as the DR-driven biochemical, biophysical, and cellular responses to injury play pivotal roles in regulating tissue regenerative responses. Such cell-extracellular matrix interactions not only guide and regulate cellular morphology, but also cellular differentiation, migration, proliferation, and survival during tissue development, including, e.g., embryogenesis, angiogenesis, as well as during pathologic processes including cancer, diabetes, hypertension, and chronic wound healing. Herein, we examine DR within the wound microenvironment while considering specific examples across acute and chronic wound healing. This review also considers how a number of hypotheses that attempt to explain chronic wound pathophysiology may be understood within the DR framework. The implications of applying the principles of DR to optimize wound care practice and future development of innovative wound healing therapeutics are also briefly considered.
Collapse
Affiliation(s)
- Gregory S Schultz
- Department of Obstetrics and Gynecology, University of Florida, Gainesville, Florida, USA
| | | | | | | | | |
Collapse
|
16
|
Deng C, Zhang P, Vulesevic B, Kuraitis D, Li F, Yang AF, Griffith M, Ruel M, Suuronen EJ. A collagen–chitosan hydrogel for endothelial differentiation and angiogenesis. Tissue Eng Part A 2011; 16:3099-109. [PMID: 20586613 DOI: 10.1089/ten.tea.2009.0504] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Cell therapy for the treatment of cardiovascular disease has been hindered by low cell engraftment, poor survival, and inadequate phenotype and function. In this study, we added chitosan to a previously developed injectable collagen matrix, with the aim of improving its properties for cell therapy and neovascularization. Different ratios of collagen and chitosan were mixed and chemically crosslinked to produce hydrogels. Swell and degradation assays showed that chitosan improved the stability of the collagen hydrogel. In culture, endothelial cells formed significantly more vascular-like structures on collagen–chitosan than collagen-only matrix. While the differentiation of circulating progenitor cells to CD31+ cells was equal on all matrices, vascular endothelial-cadherin expression was increased on the collagen–chitosan matrix, suggesting greater maturation of the endothelial cells. In addition, the collagen–chitosan matrix supported a significantly greater number of CD133+ progenitor cells than the collagen-only matrix. In vivo, subcutaneously implanted collagen–chitosan matrices stimulated greater vascular growth and recruited more von Willebrand factor (vWF+) and CXCR4+ endothelial/angiogenic cells than the collagen-only matrix. These results indicate that the addition of chitosan can improve the physical properties of collagen matrices, and enhance their ability to support endothelial cells and angiogenesis for use in cardiovascular tissue engineering applications.
Collapse
Affiliation(s)
- Chao Deng
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Stem cells have emerged as a key element of regenerative medicine therapies due to their inherent ability to differentiate into a variety of cell phenotypes, thereby providing numerous potential cell therapies to treat an array of degenerative diseases and traumatic injuries. A recent paradigm shift has emerged suggesting that the beneficial effects of stem cells may not be restricted to cell restoration alone, but also due to their transient paracrine actions. Stem cells can secrete potent combinations of trophic factors that modulate the molecular composition of the environment to evoke responses from resident cells. Based on this new insight, current research directions include efforts to elucidate, augment and harness stem cell paracrine mechanisms for tissue regeneration. This article discusses the existing studies on stem/progenitor cell trophic factor production, implications for tissue regeneration and cancer therapies, and development of novel strategies to use stem cell paracrine delivery for regenerative medicine.
Collapse
Affiliation(s)
- Priya R Baraniak
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | | |
Collapse
|
18
|
Gutiérrez J, Brandan E. A novel mechanism of sequestering fibroblast growth factor 2 by glypican in lipid rafts, allowing skeletal muscle differentiation. Mol Cell Biol 2010; 30:1634-49. [PMID: 20100867 PMCID: PMC2838066 DOI: 10.1128/mcb.01164-09] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 09/25/2009] [Accepted: 01/14/2010] [Indexed: 12/14/2022] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) are critical modulators of growth factor activities. Skeletal muscle differentiation is strongly inhibited by fibroblast growth factor 2 (FGF-2). We have shown that HSPGs present at the plasma membrane are expressed in myoblasts and are downregulated during muscle differentiation. An exception is glypican-1, which is present throughout the myogenic process. Myoblasts that do not express glypican-1 exhibit defective differentiation, with an increase in the receptor binding of FGF-2, concomitant with increased signaling. Glypican-1-deficient myoblasts show decreased expression of myogenin, the master gene that controls myogenesis, myosin, and the myoblast fusion index. Reversion of these defects was induced by expression of rat glypican-1. Glypican-1 is the only HSPG localized in lipid raft domains in myoblasts, resulting in the sequestration of FGF-2 away from FGF-2 receptors (FGFRs) located in nonraft domains. A chimeric glypican-1, containing syndecan-1 transmembrane and cytoplasmic domains, is located in nonraft domains interacting with FGFR-IV- and enhanced FGF-2-dependent signaling. Thus, glypican-1 acts as a positive regulator of muscle differentiation by sequestering FGF-2 in lipid rafts and preventing its binding and dependent signaling.
Collapse
Affiliation(s)
- Jaime Gutiérrez
- Centro de Regulación Celular y Patología (CRCP), Centro de Regeneración y Envejecimiento (CARE), Departamento de Biología Celular y Molecular, MIFAB, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Enrique Brandan
- Centro de Regulación Celular y Patología (CRCP), Centro de Regeneración y Envejecimiento (CARE), Departamento de Biología Celular y Molecular, MIFAB, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
19
|
Koźma EM, Wisowski G, Olczyk K. Platelet derived growth factor BB is a ligand for dermatan sulfate chain(s) of small matrix proteoglycans from normal and fibrosis affected fascia. Biochimie 2009; 91:1394-404. [DOI: 10.1016/j.biochi.2009.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Accepted: 07/16/2009] [Indexed: 11/28/2022]
|
20
|
Rusnati M, Bugatti A, Mitola S, Leali D, Bergese P, Depero LE, Presta M. Exploiting Surface Plasmon Resonance (SPR) Technology for the Identification of Fibroblast Growth Factor-2 (FGF2) Antagonists Endowed with Antiangiogenic Activity. SENSORS (BASEL, SWITZERLAND) 2009; 9:6471-503. [PMID: 22454596 PMCID: PMC3312455 DOI: 10.3390/s90806471] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 08/17/2009] [Accepted: 08/19/2009] [Indexed: 12/31/2022]
Abstract
Angiogenesis, the process of new blood vessel formation, is implicated in various physiological/pathological conditions, including embryonic development, inflammation and tumor growth. Fibroblast growth factor-2 (FGF2) is a heparin-binding angiogenic growth factor involved in various physiopathological processes, including tumor neovascularization. Accordingly, FGF2 is considered a target for antiangiogenic therapies. Thus, numerous natural/synthetic compounds have been tested for their capacity to bind and sequester FGF2 in the extracellular environment preventing its interaction with cellular receptors. We have exploited surface plasmon resonance (SPR) technique in search for antiangiogenic FGF2 binders/antagonists. In this review we will summarize our experience in SPR-based angiogenesis research, with the aim to validate SPR as a first line screening for the identification of antiangiogenic compounds.
Collapse
Affiliation(s)
- Marco Rusnati
- Unit of General Pathology and Immunology, Department of Biomedical Sciences and Biotechnology, School of Medicine, University of Brescia, Brescia, 25123, Italy; E-Mails: (M.R.); (A.B.); (S.M.); (D.L.)
| | - Antonella Bugatti
- Unit of General Pathology and Immunology, Department of Biomedical Sciences and Biotechnology, School of Medicine, University of Brescia, Brescia, 25123, Italy; E-Mails: (M.R.); (A.B.); (S.M.); (D.L.)
| | - Stefania Mitola
- Unit of General Pathology and Immunology, Department of Biomedical Sciences and Biotechnology, School of Medicine, University of Brescia, Brescia, 25123, Italy; E-Mails: (M.R.); (A.B.); (S.M.); (D.L.)
| | - Daria Leali
- Unit of General Pathology and Immunology, Department of Biomedical Sciences and Biotechnology, School of Medicine, University of Brescia, Brescia, 25123, Italy; E-Mails: (M.R.); (A.B.); (S.M.); (D.L.)
| | - Paolo Bergese
- Chemistry for Technologies Laboratory and Department of Mechanical and Industrial Engineering, School of Engineering, University of Brescia, Brescia, 25123, Italy; E-Mails: (P.B.); (L.E.D.)
| | - Laura E. Depero
- Chemistry for Technologies Laboratory and Department of Mechanical and Industrial Engineering, School of Engineering, University of Brescia, Brescia, 25123, Italy; E-Mails: (P.B.); (L.E.D.)
| | - Marco Presta
- Unit of General Pathology and Immunology, Department of Biomedical Sciences and Biotechnology, School of Medicine, University of Brescia, Brescia, 25123, Italy; E-Mails: (M.R.); (A.B.); (S.M.); (D.L.)
| |
Collapse
|
21
|
Vercoutter-Edouart AS, Dubreucq G, Vanhoecke B, Rigaut C, Renaux F, Dahri-Correia L, Lemoine J, Bracke M, Michalski JC, Correia J. Enhancement of PDGF-BB mitogenic activity on human dermal fibroblasts by biospecific dextran derivatives. Biomaterials 2008; 29:2280-92. [DOI: 10.1016/j.biomaterials.2008.01.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Accepted: 01/27/2008] [Indexed: 01/22/2023]
|
22
|
Fthenou E, Zafiropoulos A, Katonis P, Tsatsakis A, Karamanos N, Tzanakakis G. Chondroitin sulfate prevents platelet derived growth factor-mediated phosphorylation of PDGF-Rβ in normal human fibroblasts severely impairing mitogenic responses. J Cell Biochem 2008; 103:1866-76. [DOI: 10.1002/jcb.21570] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Zafiropoulos A, Fthenou E, Chatzinikolaou G, Tzanakakis GN. Glycosaminoglycans and PDGF signaling in mesenchymal cells. Connect Tissue Res 2008; 49:153-6. [PMID: 18661332 DOI: 10.1080/03008200802148702] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Platelet derived growth factor (PDGF) is involved in the autocrine growth stimulation of normal and malignant cells, the stimulation of angiogenesis, and the recruitment and regulation of tumor fibroblasts. PDGF has been shown to physically interact with glycosaminoglycans which are abundant in the extracellular microenvironment. The present review discusses the effects of glycosaminoglycans on the functions mediated by the PDGF on cells of mesenchymal origin. Recent studies have demonstrated that both soluble and surface bound glycosaminoglycan chains can modulate PDGF-BB isoform signaling depending on the cell type. These data demonstrated that the microenvironment rich in GAGs/PGs is able to significantly modify the cellular response to PDGF-BB signaling in a critical way for cell growth and differentiation.
Collapse
|
24
|
Oliveira FORD, Alves CR, Calvet CM, Toma L, Bouças RI, Nader HB, Castro Côrtes LMD, Krieger MA, Meirelles MDNSL, Souza Pereira MCD. Trypanosoma cruzi heparin-binding proteins and the nature of the host cell heparan sulfate-binding domain. Microb Pathog 2007; 44:329-38. [PMID: 18037261 DOI: 10.1016/j.micpath.2007.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 10/15/2007] [Accepted: 10/16/2007] [Indexed: 10/22/2022]
Abstract
Trypanosoma cruzi invasion is mediated by receptor-ligand recognition between the surfaces of both parasite and target cell. We have previously demonstrated the role of heparan sulfate proteoglycan in the attachment and invasion of T. cruzi in cardiomyocytes. Herein, we have isolated the T. cruzi heparin-binding proteins (HBP-Tc) and investigated the nature of cardiomyocyte heparan sulfate (HS)-binding site to the parasite surface ligand. Two major heparin-binding proteins with molecular masses of 65.8 and 59 kDa were observed in total extract of amastigote and trypomastigote forms of T. cruzi. Hydrophobic [S(35)]methionine labeled proteins eluted from heparin-sepharose affinity chromatography also revealed both proteins in trypomastigotes but only the 59 kDa is strongly recognized by biotin-conjugated glycosaminoglycans. Competition assays were performed to analyze the role of sulfated proteoglycans, including heparin, keratan sulfate and both acetylated and highly sulfated domains of heparan sulfate, in the recognition and invasion process of T. cruzi. Significant inhibitions of 84% and 35% in the percentage of infection were revealed after treatment of the parasites with heparin and the N-acetylated/ N-sulfated heparan sulfate domain, respectively, suggesting the important role of the glycuronic acid and NS glucosamine domain of the HS chain in the recognition of the HBP-Tc during the T. cruzi-cardiomyocyte interaction.
Collapse
|
25
|
Fthenou E, Zafiropoulos A, Tsatsakis A, Stathopoulos A, Karamanos NK, Tzanakakis GN. Chondroitin sulfate A chains enhance platelet derived growth factor-mediated signalling in fibrosarcoma cells. Int J Biochem Cell Biol 2006; 38:2141-50. [PMID: 16945567 DOI: 10.1016/j.biocel.2006.06.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Revised: 06/07/2006] [Accepted: 06/09/2006] [Indexed: 02/07/2023]
Abstract
Platelet derived growth factor is involved in the autocrine growth stimulation of malignant cells, the stimulation of angiogenesis and the recruitment and regulation of tumor fibroblasts. PDGF has been shown to physically interact with glycosaminoglycans which are abundant in the fibrosarcoma cell microenvironment. Aim of the present study was to examine the effects of glycosaminoglycans on the mitogenic function of platelet derived growth factor in two human fibrosarcoma cell lines (B6FS, HT1080). For this purpose exogenously added glycosaminoglycans, regulators of endogenous glycosaminoglycan synthesis (sodium chlorate as selective inhibitor and beta-D-xyloside as a stimulator) and specific glycosidases to cleave cell-associated glycosaminoglycans, were utilized. Platelet derived growth factor demonstrated a growth stimulating effect on B6FS, whereas no effect was evident on HT1080 fibrosarcoma cells. Beta-D-xyloside had no effect on the basal level or the platelet derived growth factor-induced cell proliferation, whereas sodium chlorate severely reduced the basal level of proliferation in both cell lines. Significant co-stimulatory effects of chondroitin sulfate A in combination with platelet derived growth factor BB on the growth of HT1080 and B6FS cells were found. The co-stimulatory effect of chondroitin sulfate A was not due to transcriptional up regulation of platelet derived growth factor receptors genes, but rather to more efficient signalling of tyrosine kinase receptors. In conclusion, this study shows that chondroitin sulfate A can enhance the mitogenic activity of platelet-derived growth factor in fibrosarcoma cells utilizing a pathway which involves tyrosine kinases. This result introduces a new modulating role for chondroitin sulfate in signalling pathways critical for cancer growth.
Collapse
Affiliation(s)
- E Fthenou
- Department of Histology, Division of Morphology, School of Medicine, University of Crete, 71110 Heraklion, Greece
| | | | | | | | | | | |
Collapse
|
26
|
Prabhakar V, Sasisekharan R. The biosynthesis and catabolism of galactosaminoglycans. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2006; 53:69-115. [PMID: 17239763 DOI: 10.1016/s1054-3589(05)53005-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Vikas Prabhakar
- Division of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
27
|
Abstract
In the year 2003 there was a 17% increase in the number of publications citing work performed using optical biosensor technology compared with the previous year. We collated the 962 total papers for 2003, identified the geographical regions where the work was performed, highlighted the instrument types on which it was carried out, and segregated the papers by biological system. In this overview, we spotlight 13 papers that should be on everyone's 'must read' list for 2003 and provide examples of how to identify and interpret high-quality biosensor data. Although we still find that the literature is replete with poorly performed experiments, over-interpreted results and a general lack of understanding of data analysis, we are optimistic that these shortcomings will be addressed as biosensor technology continues to mature.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
28
|
Pankonin MS, Gallagher JT, Loeb JA. Specific structural features of heparan sulfate proteoglycans potentiate neuregulin-1 signaling. J Biol Chem 2004; 280:383-8. [PMID: 15528194 DOI: 10.1074/jbc.m402645200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Neuregulins are a family of growth and differentiation factors that act through activation of cell-surface erbB receptor tyrosine kinases and have essential functions both during development and on the growth of cancer cells. One alternatively spliced neuregulin-1 form has a distinct heparin-binding immunoglobulin-like domain that enables it to adhere to heparan sulfate proteoglycans at key locations during development and substantially potentiates its activity. We examined the structural specificity needed for neuregulin-1-heparin interactions using a gel mobility shift assay together with an assay that measures the ability of specific oligosaccharides to block erbB receptor phosphorylation in L6 muscle cells. Whereas the N-sulfate group of heparin was most important, the 2-O-sulfate and 6-O-sulfate groups also contributed to neuregulin-1 binding in these two assays. Optimal binding to neuregulin-1 required eight or more heparin disaccharides; however, as few as two disaccharides were still able to bind neuregulin-1 to a lesser extent. The physiological importance of this specificity was shown both by chemical and siRNA treatment of cultured muscle cells. Pretreatment of muscle cells with chlorate that blocks all sulfation or with an siRNA that selectively blocks N-sulfation significantly reduced erbB receptor activation by neuregulin-1 but had no effect on the activity of neuregulin-1 that lacks the heparin-binding domain. These results suggest that the regulation of glycosaminoglycan sulfation is an important biological mechanism that can modulate both the localization and potentiation of neuregulin-1 signaling.
Collapse
Affiliation(s)
- Mark S Pankonin
- Department of Neurology, Wayne State University, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|
29
|
Ostergren-Lundén G, Olivas RG, Eftekhari P, Krettek A, Sanjuan X, Fager G, Vilaró S, Lustig F, Hoebeke J. Characterisation and application of antibodies specific for the long platelet-derived growth factor A and B chains. Int J Biochem Cell Biol 2004; 36:2226-41. [PMID: 15313468 DOI: 10.1016/j.biocel.2004.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2003] [Revised: 04/27/2004] [Accepted: 05/04/2004] [Indexed: 11/26/2022]
Abstract
The platelet-derived growth factor (PDGF) family comprises important mitogens for mesenchymal cells. The active dimeric form of PDGF consists of four structurally related A, B, C, and D chains. All PDGF-variants bind to PDGF-receptors. The A and B chains occur with and without basic C-terminal amino acid extensions as long (A(L) and B(L)) and short (A(S) and B(S)) isoforms. PDGF-A and -B form homo- or heterodimers. The biological relevance of short and long isoforms is unknown, although it may relate to different affinities for glycosaminoglycans of the cell glycocalix and intercellular matrix. Commercially available anti-PDGF-A and anti-PDGF-B antibodies cannot discriminate between the short and the long isoforms. Thus, to investigate the function of the long and short isoforms, we raised antibodies specific for the long A and B chain isoforms. The antibodies were affinity-purified and their properties analysed by surface plasmon resonance. Inhibition studies with different PDGF homodimers and dot-blot studies proved their high specificity for the respective isoforms. Both antibodies recognised the target PDGF homodimers complexed to the glycocalix of human arterial smooth muscle cells and human monocyte-derived macrophages. By using these specific antibodies, we were able to confirm at the protein level the synthesis of PDGF-A and -B during differentiation of human monocyte-derived macrophages and to demonstrate the presence of the PDGF-A(L) and PDGF-B(L) isoforms in human arterial tissue.
Collapse
Affiliation(s)
- Gunnel Ostergren-Lundén
- Wallenberg Laboratory for Cardiovascular Research, The Sahlgrenska Academy at Göteborg University, Göteborg, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Asan E. Innovative techniques and applications in histochemistry and cell biology. Histochem Cell Biol 2003; 120:523-48. [PMID: 14648132 DOI: 10.1007/s00418-003-0604-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2003] [Indexed: 10/26/2022]
Abstract
Recent studies documenting novel histochemical methods and applications in cell biology and in other areas of the life sciences have again rendered insights into structure and functions of tissues, cells, and cellular components to the level of proteins and genes. Particularly, sophisticated microscopic techniques have proved to be able to significantly advance our knowledge. Findings of recent investigations representing this progress are summarized in the present review.
Collapse
Affiliation(s)
- Esther Asan
- Department of Anatomy and Cell Biology, University of Wuerzburg, Koellikerstrasse 6, 97070 Wuerzburg, Germany.
| |
Collapse
|