1
|
Zwolanek D, Satué M, Proell V, Godoy JR, Odörfer KI, Flicker M, Hoffmann SC, Rülicke T, Erben RG. Tracking mesenchymal stem cell contributions to regeneration in an immunocompetent cartilage regeneration model. JCI Insight 2017; 2:87322. [PMID: 29046476 DOI: 10.1172/jci.insight.87322] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 09/20/2017] [Indexed: 01/22/2023] Open
Abstract
It is currently controversially discussed whether mesenchymal stem cells (MSC) facilitate cartilage regeneration in vivo by a progenitor- or a nonprogenitor-mediated mechanism. Here, we describe a potentially novel unbiased in vivo cell tracking system based on transgenic donor and corresponding immunocompetent marker-tolerant recipient mouse and rat lines in inbred genetic backgrounds. Tolerance of recipients was achieved by transgenic expression of an immunologically neutral but physicochemically distinguishable variant of the marker human placental alkaline phosphatase (ALPP). In this dual transgenic system, donor lines ubiquitously express WT, heat-resistant ALPP protein, whereas recipient lines express a heat-labile ALPP mutant (ALPPE451G) resulting from a single amino acid substitution. Tolerance of recipient lines to ALPP-expressing cells and tissues was verified by skin transplantation. Using this model, we show that intraarticularly injected MSC contribute to regeneration of articular cartilage in full-thickness cartilage defects mainly via a nonprogenitor-mediated mechanism.
Collapse
Affiliation(s)
- Daniela Zwolanek
- Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - María Satué
- Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Verena Proell
- Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - José R Godoy
- Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Kathrin I Odörfer
- Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Magdalena Flicker
- Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Sigrid C Hoffmann
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Thomas Rülicke
- Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Reinhold G Erben
- Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
2
|
Sensitive detection of alkaline phosphatase by switching on gold nanoclusters fluorescence quenched by pyridoxal phosphate. Biosens Bioelectron 2017; 95:8-14. [DOI: 10.1016/j.bios.2017.03.073] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/11/2017] [Accepted: 03/13/2017] [Indexed: 12/15/2022]
|
3
|
Streicher C, Heyny A, Andrukhova O, Haigl B, Slavic S, Schüler C, Kollmann K, Kantner I, Sexl V, Kleiter M, Hofbauer LC, Kostenuik PJ, Erben RG. Estrogen Regulates Bone Turnover by Targeting RANKL Expression in Bone Lining Cells. Sci Rep 2017; 7:6460. [PMID: 28744019 PMCID: PMC5527119 DOI: 10.1038/s41598-017-06614-0] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/14/2017] [Indexed: 12/21/2022] Open
Abstract
Estrogen is critical for skeletal homeostasis and regulates bone remodeling, in part, by modulating the expression of receptor activator of NF-κB ligand (RANKL), an essential cytokine for bone resorption by osteoclasts. RANKL can be produced by a variety of hematopoietic (e.g. T and B-cell) and mesenchymal (osteoblast lineage, chondrocyte) cell types. The cellular mechanisms by which estrogen acts on bone are still a matter of controversy. By using murine reconstitution models that allow for selective deletion of estrogen receptor-alpha (ERα) or selective inhibition of RANKL in hematopoietic vs. mesenchymal cells, in conjunction with in situ expression profiling in bone cells, we identified bone lining cells as important gatekeepers of estrogen-controlled bone resorption. Our data indicate that the increase in bone resorption observed in states of estrogen deficiency in mice is mainly caused by lack of ERα-mediated suppression of RANKL expression in bone lining cells.
Collapse
Affiliation(s)
- Carmen Streicher
- Department of Biomedical Research, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Alexandra Heyny
- Department of Biomedical Research, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Olena Andrukhova
- Department of Biomedical Research, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Barbara Haigl
- Department of Biomedical Research, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Svetlana Slavic
- Department of Biomedical Research, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Christiane Schüler
- Department of Biomedical Research, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Karoline Kollmann
- Department of Biomedical Research, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ingrid Kantner
- Department of Biomedical Research, University of Veterinary Medicine Vienna, Vienna, Austria
- UCB Pharma GmbH, Vienna, Austria
| | - Veronika Sexl
- Department of Biomedical Research, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Miriam Kleiter
- Department for Companion Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Lorenz C Hofbauer
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Paul J Kostenuik
- Amgen Inc., Thousand Oaks, CA, USA
- Phylon Pharma Services, Newbury Park, CA, USA
| | - Reinhold G Erben
- Department of Biomedical Research, University of Veterinary Medicine Vienna, Vienna, Austria.
| |
Collapse
|
4
|
Tan Y, Zhang L, Man KH, Peltier R, Chen G, Zhang H, Zhou L, Wang F, Ho D, Yao SQ, Hu Y, Sun H. Reaction-Based Off-On Near-infrared Fluorescent Probe for Imaging Alkaline Phosphatase Activity in Living Cells and Mice. ACS APPLIED MATERIALS & INTERFACES 2017; 9:6796-6803. [PMID: 28139117 DOI: 10.1021/acsami.6b14176] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Alkaline phosphatases are a group of enzymes that play important roles in regulating diverse cellular functions and disease pathogenesis. Hence, developing fluorescent probes for in vivo detection of alkaline phosphatase activity is highly desirable for studying the dynamic phosphorylation in living organisms. Here, we developed the very first reaction-based near-infrared (NIR) probe (DHXP) for sensitive detection of alkaline phosphatase activity both in vitro and in vivo. Our studies demonstrated that the probe displayed an up to 66-fold fluorescence increment upon incubation with alkaline phosphatases, and the detection limit of our probe was determined to be 0.07 U/L, which is lower than that of most of alkaline phosphatase probes reported in literature. Furthermore, we demonstrated that the probe can be applied to detecting alkaline phosphatase activity in cells and mice. In addition, our probe possesses excellent biocompatibility and rapid cell-internalization ability. In light of these prominent properties, we envision that DHXP will add useful tools for investigating alkaline phosphatase activity in biomedical research.
Collapse
Affiliation(s)
- Yi Tan
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong , Shenzhen 518057, P. R. China
| | - Ling Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University , Xuzhou 221002, P. R. China
| | | | - Raoul Peltier
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong , Shenzhen 518057, P. R. China
| | - Ganchao Chen
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong , Shenzhen 518057, P. R. China
| | - Huatang Zhang
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong , Shenzhen 518057, P. R. China
| | - Liyi Zhou
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong , Shenzhen 518057, P. R. China
| | | | | | - Shao Q Yao
- Department of Chemistry, National University of Singapore , Singapore 117543
| | - Yi Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS) , Beijing 100049, P. R. China
| | - Hongyan Sun
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong , Shenzhen 518057, P. R. China
| |
Collapse
|
5
|
Zwolanek D, Flicker M, Kirstätter E, Zaucke F, van Osch GJVM, Erben RG. β1 Integrins Mediate Attachment of Mesenchymal Stem Cells to Cartilage Lesions. Biores Open Access 2015; 4:39-53. [PMID: 26309781 PMCID: PMC4497673 DOI: 10.1089/biores.2014.0055] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mesenchymal stem cells (MSC) may have great potential for cell-based therapies of osteoarthritis. However, after injection in the joint, only few cells adhere to defective articular cartilage and contribute to cartilage regeneration. Little is known about the molecular mechanisms of MSC attachment to defective articular cartilage. Here, we developed an ex vivo attachment system, using rat osteochondral explants with artificially created full-thickness cartilage defects in combination with genetically labeled MSC isolated from bone marrow of human placental alkaline phosphatase transgenic rats. Binding of MSC to full-thickness cartilage lesions was improved by serum, but not hyaluronic acid, and was dependent on the presence of divalent cations. Additional in vitro tests showed that rat MSC attach, in a divalent cation-dependent manner, to collagen I, collagen II, and fibronectin, but not to collagen XXII or cartilage oligomeric matrix protein (COMP). RGD peptides partially blocked the adhesion of MSC to fibronectin in vitro and to cartilage lesions ex vivo. Furthermore, the attachment of MSC to collagen I and II in vitro and to cartilage lesions ex vivo was almost completely abolished in the presence of a β1 integrin blocking antibody. In conclusion, our data suggest that attachment of MSC to ex vivo full-thickness cartilage lesions is almost entirely β1 integrin-mediated, whereby both RGD- and collagen-binding integrins are involved. These findings suggest a key role of integrins during MSC attachment to defective cartilage and may pave the way for improved MSC-based therapies in the future.
Collapse
Affiliation(s)
- Daniela Zwolanek
- Department of Biomedical Sciences, University of Veterinary Medicine , Vienna, Austria
| | - Magdalena Flicker
- Department of Biomedical Sciences, University of Veterinary Medicine , Vienna, Austria
| | - Elisabeth Kirstätter
- Department of Biomedical Sciences, University of Veterinary Medicine , Vienna, Austria
| | - Frank Zaucke
- Center for Biochemistry and Cologne Center for Musculoskeletal Biomechanics, Medical Faculty, University of Cologne , Cologne, Germany
| | - Gerjo J V M van Osch
- Department of Orthopaedics and Otorhinolaryngology, Erasmus MC, University Medical Center Rotterdam , Rotterdam, The Netherlands
| | - Reinhold G Erben
- Department of Biomedical Sciences, University of Veterinary Medicine , Vienna, Austria
| |
Collapse
|
6
|
Balmayor ER, Flicker M, Käser T, Saalmüller A, Erben RG. Human placental alkaline phosphatase as a tracking marker for bone marrow mesenchymal stem cells. Biores Open Access 2013; 2:346-55. [PMID: 24083090 PMCID: PMC3776624 DOI: 10.1089/biores.2013.0027] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Currently, adult mesenchymal stem cells (MSCs) are being evaluated for a wide variety of therapeutic approaches. It has been suggested that MSCs possess regenerative properties when implanted or injected into damaged tissue. However, the efficacy of MSCs in several of the proposed treatments is still controversial. To further explore the therapeutic potential of these cells, it is necessary to trace the fate of individual donor or manipulated cells in the host organism. Recent studies from our lab showed that human placental alkaline phosphatase (hPLAP) is a marker with great potential for cell tracking. However, a potential concern related to this marker is its enzymatic activity, which might alter cell behavior and differentiation by hydrolyzing substrates in the extracellular space and thereby changing the cellular microenvironment. Therefore, the aim of this study was to characterize bone marrow MSCs (BMSCs) derived from hPLAP-transgenic inbred F344 rats (hPLAP-tg) in comparison to wild type (wt) BMSCs. Here, we show that BMSCs from wt and hPLAP-tg donors are indistinguishable in terms of cell morphology, viability, adhesion, immune phenotype, and proliferation as well as in their differentiation capacity over six passages. The expression of the hPLAP marker enzyme was not impaired by extensive in vitro cultivation, osteogenic, adipogenic, or chondrogenic differentiation, or seeding onto two- or three-dimensional biomaterials. Thus, our study underscores the utility of genetically labeled BMSCs isolated from hPLAP-tg donors for long-term tracking of the fate of transplanted MSCs in regenerative therapies.
Collapse
Affiliation(s)
| | - Magdalena Flicker
- Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Tobias Käser
- Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Armin Saalmüller
- Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Reinhold G. Erben
- Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
7
|
Odörfer KI, Egerbacher M, Unger NJ, Weber K, Jamnig A, Lepperdinger G, Kleiter M, Sandgren EP, Erben RG. Hematopoietic bone marrow cells participate in endothelial, but not epithelial or mesenchymal cell renewal in adult rats. J Cell Mol Med 2011; 15:2232-44. [PMID: 21091631 PMCID: PMC3229707 DOI: 10.1111/j.1582-4934.2010.01216.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The extent to which bone marrow (BM) contributes to physiological cell renewal is still controversial. Using the marker human placental alkaline phosphatase (ALPP) which can readily be detected in paraffin and plastic sections by histochemistry or immunohistochemistry, and in ultrathin sections by electron microscopy after pre-embedding staining, we examined the role of endogenous BM in physiological cell renewal by analysing tissues from lethally irradiated wild-type inbred Fischer 344 (F344) rats transplanted (BMT) with unfractionated BM from ALPP-transgenic F344 rats ubiquitously expressing the marker. Histochemical, immunohistochemical and immunoelectron microscopic analysis showed that the proportion of ALPP+ capillary endothelial cells (EC) profoundly increased from 1 until 6 months after BMT in all organs except brain and adrenal medulla. In contrast, pericytes and EC in large blood vessels were ALPP–. Epithelial cells in kidney, liver, pancreas, intestine and brain were recipient-derived at all time-points. Similarly, osteoblasts, chondrocytes, striated muscle and smooth muscle cells were exclusively of recipient origin. The lack of mesenchymal BM-derived cells in peripheral tissues prompted us to examine whether BMT resulted in engraftment of mesenchymal precursors. Four weeks after BMT, all haematopoietic BM cells were of donor origin by flow cytometric analysis, whereas isolation of BM mesenchymal stem cells (MSC) failed to show engraftment of donor MSC. In conclusion, our data show that BM is an important source of physiological renewal of EC in adult rats, but raise doubt whether reconstituted irradiated rats are an apt model for BM-derived regeneration of mesenchymal cells in peripheral tissues.
Collapse
Affiliation(s)
- Kathrin I Odörfer
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Farrell E, Both SK, Odörfer KI, Koevoet W, Kops N, O'Brien FJ, Baatenburg de Jong RJ, Verhaar JA, Cuijpers V, Jansen J, Erben RG, van Osch GJVM. In-vivo generation of bone via endochondral ossification by in-vitro chondrogenic priming of adult human and rat mesenchymal stem cells. BMC Musculoskelet Disord 2011; 12:31. [PMID: 21281488 PMCID: PMC3045394 DOI: 10.1186/1471-2474-12-31] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 01/31/2011] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Bone grafts are required to repair large bone defects after tumour resection or large trauma. The availability of patients' own bone tissue that can be used for these procedures is limited. Thus far bone tissue engineering has not lead to an implant which could be used as alternative in bone replacement surgery. This is mainly due to problems of vascularisation of the implanted tissues leading to core necrosis and implant failure. Recently it was discovered that embryonic stem cells can form bone via the endochondral pathway, thereby turning in-vitro created cartilage into bone in-vivo. In this study we investigated the potential of human adult mesenchymal stem cells to form bone via the endochondral pathway. METHODS MSCs were cultured for 28 days in chondrogenic, osteogenic or control medium prior to implantation. To further optimise this process we induced mineralisation in the chondrogenic constructs before implantation by changing to osteogenic medium during the last 7 days of culture. RESULTS After 8 weeks of subcutaneous implantation in mice, bone and bone marrow formation was observed in 8 of 9 constructs cultured in chondrogenic medium. No bone was observed in any samples cultured in osteogenic medium. Switch to osteogenic medium for 7 days prevented formation of bone in-vivo. Addition of β-glycerophosphate to chondrogenic medium during the last 7 days in culture induced mineralisation of the matrix and still enabled formation of bone and marrow in both human and rat MSC cultures. To determine whether bone was formed by the host or by the implanted tissue we used an immunocompetent transgenic rat model. Thereby we found that osteoblasts in the bone were almost entirely of host origin but the osteocytes are of both host and donor origin. CONCLUSIONS The preliminary data presented in this manuscript demonstrates that chondrogenic priming of MSCs leads to bone formation in vivo using both human and rat cells. Furthermore, addition of β-glycerophosphate to the chondrogenic medium did not hamper this process. Using transgenic animals we also demonstrated that both host and donor cells played a role in bone formation. In conclusion these data indicate that in-vitro chondrogenic differentiation of human MSCs could lead to an alternative and superior approach for bone tissue engineering.
Collapse
Affiliation(s)
- Eric Farrell
- Department of Orthopaedics, Erasmus MC University Medical Centre Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Tsilenko O, Astachova V, Malanchuk V, Carinci F. Morphological cell typing of osteoid clones derived from human bone marrow. J Maxillofac Oral Surg 2009; 8:114-20. [PMID: 23139487 DOI: 10.1007/s12663-009-0029-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Accepted: 06/01/2009] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Bone Marrow Stem Cells (BMSC) are a 'reservoir' for bone regeneration. BMSC can be studied in vitro by cloning cells which are improperly named colonyforming units of fibroblasts (CFU-f). Thus we decided to study CFU-f organization and morphology to have (A) a parameter by which to compare normal and pathologic conditions and (B) to potentially select the most osteogenic clones. METHODS Two hundred and forty bone samples were collected from 109 patients and primary cultures performed. RESULTS After two weeks 9 cell types and 6 well organized types of colonies were detectable. Some have alkaline phosphatase (AP) activity. CONCLUSION These data could be relevant to estimate the potential regeneration of bone.
Collapse
Affiliation(s)
- Olga Tsilenko
- Dept. of Oro-maxillofacial and Plastic Surgery, National Medical University, Kiev, Ukraine
| | | | | | | |
Collapse
|
10
|
van Osch GJVM, Brittberg M, Dennis JE, Bastiaansen-Jenniskens YM, Erben RG, Konttinen YT, Luyten FP. Cartilage repair: past and future--lessons for regenerative medicine. J Cell Mol Med 2009; 13:792-810. [PMID: 19453519 PMCID: PMC3823400 DOI: 10.1111/j.1582-4934.2009.00789.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Since the first cell therapeutic study to repair articular cartilage defects in the knee in 1994, several clinical studies have been reported. An overview of the results of clinical studies did not conclusively show improvement over conventional methods, mainly because few studies reach level I of evidence for effects on middle or long term. However, these explorative trials have provided valuable information about study design, mechanisms of repair and clinical outcome and have revealed that much is still unknown and further improvements are required. Furthermore, cellular and molecular studies using new technologies such as cell tracking, gene arrays and proteomics have provided more insight in the cell biology and mechanisms of joint surface regeneration. Besides articular cartilage, cartilage of other anatomical locations as well as progenitor cells are now considered as alternative cell sources. Growth Factor research has revealed some information on optimal conditions to support cartilage repair. Thus, there is hope for improvement. In order to obtain more robust and reproducible results, more detailed information is needed on many aspects including the fate of the cells, choice of cell type and culture parameters. As for the clinical aspects, it becomes clear that careful selection of patient groups is an important input parameter that should be optimized for each application. In addition, the study outcome parameters should be improved. Although reduced pain and improved function are, from the patient's perspective, the most important outcomes, there is a need for more structure/tissue-related outcome measures. Ideally, criteria and/or markers to identify patients at risk and responders to treatment are the ultimate goal for these more sophisticated regenerative approaches in joint surface repair in particular, and regenerative medicine in general.
Collapse
Affiliation(s)
- Gerjo J V M van Osch
- Department of Orthopaedics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands.
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
The progress in discerning the structure and function of cells and tissues in health and disease has been achieved to a large extent by the continued development of new reagents for histochemistry, the improvement of existing techniques and new imaging techniques. This review will highlight some advancements made in these fields.
Collapse
|
12
|
Marker tolerant, immunocompetent animals as a new tool for regenerative medicine and long-term cell tracking. BMC Biotechnol 2007; 7:30. [PMID: 17559647 PMCID: PMC1899491 DOI: 10.1186/1472-6750-7-30] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Accepted: 06/08/2007] [Indexed: 01/21/2023] Open
Abstract
Background Immune-mediated rejection of labeled cells is a general problem in transplantation studies using cells labeled with any immunogenic marker, and also in gene therapy protocols. The aim of this study was to establish a syngeneic model for long-term histological cell tracking in the absence of immune-mediated rejection of labeled cells in immunocompetent animals. We used inbred transgenic Fischer 344 rats expressing human placental alkaline phosphatase (hPLAP) under the control of the ubiquitous R26 promoter for this study. hPLAP is an excellent marker enzyme, providing superb histological detection quality in paraffin and plastic sections. Results Transplantation of cells from hPLAP transgenic (hPLAP-tg) F344 rats into wild-type (WT) F344 recipients failed because of immune-mediated rejection. Here we show that this problem can be overcome by inducing tolerance to the marker gene by transplantation of bone marrow from hPLAP-tg F344 rats into WT F344 hosts after lethal irradiation, or by neonatal exposure of WT F344 rats to hPLAP-tg F344 cells. As proof-of-principle, we injected bone marrow cells (BMC) from hPLAP-tg rats into the knee joint of marker tolerant, bone marrow-transplanted WT rats, and found successful engraftment and differentiation of donor cells. In addition, hPLAP-tg BMC injected intravenously in neonatally tolerized WT F344 hosts could be traced in lymph nodes, 2 months post-injection. Conclusion In combination with the excellent marker hPLAP, marker tolerant animals may open up new perspectives for all experiments requiring long-term histological tracking of genetically labeled cells.
Collapse
|