1
|
Uehara K, Uehara A. Immunohistochemical study of dissociation and association of adherens junctions in splenic sinus endothelial cells. Cell Tissue Res 2021; 384:25-33. [PMID: 33660049 DOI: 10.1007/s00441-021-03426-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 01/25/2021] [Indexed: 11/26/2022]
Abstract
It is not yet clear whether cellular junctions between splenic sinus endothelial cells are open or closed. In order to clarify this, immunolocalization of thrombomodulin (TM), endothelial protein C receptor (EPCR), protease-activated receptor 1 (PAR1), sphingosine 1-phosphate receptor 1 (S1P1), β-catenin phosphorylated at Try142 (β-catenin Y142) and β-catenin phosphorylated at Try654 (β-catenin Y654), which are related proteins that regulate dissociation and association of the adherens junctions of endothelial cells, are examined in rats using laser microscopy and electron microscopy. TM, EPCR, PAR1 and S1P1 were colocalized in the entire circumference of the endothelial cells, as well as in the caveolar membranes and junctional membranes of adjacent endothelial cells. These molecules may protect the adherens junctions of the endothelial cells. On the other hand, β-catenin Y142 and β-catenin Y 654 colocalized with α-catenin and β-catenin, respectively and in addition, β-catenin Y142 and β-catenin Y 654 were localized in the vicinity of the adherens junctions of the endothelial cells from immunogold electron microcopy. The adherens junctions are considered to be partially dissociated at the site where β-catenin Y142 and β-catenin Y 654 are localized. Thus, the system that protects the adherens junctions and the system that dissociates them may concurrently coexist in the endothelial cells and dissociation and association of the adherens junctions may be constantly repeated at the cell boundary of the endothelial cells.
Collapse
Affiliation(s)
- Kiyoko Uehara
- Department of Cell Biology, Fukuoka University School of Medicine, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Akira Uehara
- Department of Physiology, Fukuoka University School of Medicine, Jonan-ku, Fukuoka, 814-0180, Japan
| |
Collapse
|
2
|
Cong X, Kong W. Endothelial tight junctions and their regulatory signaling pathways in vascular homeostasis and disease. Cell Signal 2019; 66:109485. [PMID: 31770579 DOI: 10.1016/j.cellsig.2019.109485] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022]
Abstract
Endothelial tight junctions (TJs) regulate the transport of water, ions, and molecules through the paracellular pathway, serving as an important barrier in blood vessels and maintaining vascular homeostasis. In endothelial cells (ECs), TJs are highly dynamic structures that respond to multiple external stimuli and pathological conditions. Alterations in the expression, distribution, and structure of endothelial TJs may lead to many related vascular diseases and pathologies. In this review, we provide an overview of the assessment methods used to evaluate endothelial TJ barrier function both in vitro and in vivo and describe the composition of endothelial TJs in diverse vascular systems and ECs. More importantly, the direct phosphorylation and dephosphorylation of TJ proteins by intracellular kinases and phosphatases, as well as the signaling pathways involved in the regulation of TJs, including and the protein kinase C (PKC), PKA, PKG, Ras homolog gene family member A (RhoA), mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K)/Akt, and Wnt/β-catenin pathways, are discussed. With great advances in this area, targeting endothelial TJs may provide novel treatment for TJ-related vascular pathologies.
Collapse
Affiliation(s)
- Xin Cong
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China.
| | - Wei Kong
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China.
| |
Collapse
|
3
|
Uehara K, Uehara A. Differentiated localizations of phosphorylated focal adhesion kinase in endothelial cells of rat splenic sinus. Cell Tissue Res 2016; 364:611-622. [PMID: 26846226 DOI: 10.1007/s00441-015-2350-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 12/16/2015] [Indexed: 01/03/2023]
Abstract
The splenic sinus endothelium adhering via adherens junctions and tight junctions regulates the passage of blood cells through the splenic cord. Focal adhesion kinase (FAK) regulates the focal adhesion complex in the basal part of endothelial cells and is an integrated component of cell-cell adhesion, depending on its phosphorylation status. The objectives of this study are to assess the localization of FAK phosphorylated at tyrosine residues and the related proteins of integrin β5, talin, paxillin, p130Cas, vinculin, RhoA, Rac1, Rac2, Cdc42 and VE-cadherin, in the sinus endothelial cells of rat spleen and to examine the roles of FAK in regulating endothelial adhesion and the passage of blood cells. Immunofluorescence microscopy of tissue cryosections revealed that FAK was localized in the entire circumference of sinus endothelial cells and FAK phosphorylated at Try397 residue (pFAKy397) and pFAKy576 were precisely localized in the adherens junctions of the endothelial cells, whereas pFAKy925 was localized in the basal part of the endothelial cells. Paxillin and vinculin were prominently localized in the basal part of the endothelial cells. Integrin β5, talin and p130Cas were colocalized with FAK in the entire circumference of sinus endothelial cells. RhoA, Rac2 and Cdc42 were localized in the entire circumference of sinus endothelial cells close to FAK, stress fibers and cortical actin filaments. Immunogold electron microscopy revealed that pFAKy397 and pFAKy576 were colocalized with VE-cadherin, RhoA, Rac2 and Cdc42 in the adherens junctions of the endothelial cells. Possible functional roles of FAK in splenic sinus endothelial cells are also discussed.
Collapse
Affiliation(s)
- Kiyoko Uehara
- Department of Cell Biology, Fukuoka University School of Medicine, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Akira Uehara
- Department of Physiology, Fukuoka University School of Medicine, Jonan-ku, Fukuoka, 814-0180, Japan
| |
Collapse
|
4
|
Uehara K, Uehara A. Integrin αvβ5 in endothelial cells of rat splenic sinus: an immunohistochemical and ultrastructural study. Cell Tissue Res 2014; 356:183-93. [PMID: 24556923 DOI: 10.1007/s00441-014-1796-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 01/08/2014] [Indexed: 11/28/2022]
Abstract
Localization of integrins β1-8, α1, α2, α3, α5, α6 and αv in sinus endothelial cells of the rat spleen was examined by immunofluorescence microscopy. Labeling for anti-integrin β5 and integrin αv was detected and colocalized in the entire circumference of endothelial cells. Labeling for integrin β5, vinculin and actin filaments demonstrated that they lay close to each other in the basal part of the endothelial cells. Although the other integrin βs, including integrin β1 and integrins α1, α2, α3, α5 and α6 in combination with integrin β1, were localized in leukocytes, slightly large cells, megakaryocytes and/or platelets in the sinus lumen and splenic cords, they were not detected in endothelial cells. Labeling for vitronectin, a component of the extracellular-matrix-binding integrin αvβ5, was strongly stained in the periphery of the wall of sinuses, as was collagen IV and, in addition, was localized in the cytoplasm of endothelial cells. Ultrastructural localization of integrin β5, vitronectin and clathrin was examined by immunogold electron microscopy to elucidate the involvement of integrin αvβ5 in the endocytosis of vitronectin in sinus endothelial cells. Electron microscopy with detergent extraction revealed abundant coated pits and coated vesicles in endothelial cells. Immunogold labeling for vitronectin was present in pits, vesicles and the stacked endoplasmic reticulum. Double-labeling for integrin β5 or integrin αv and clathrin revealed that they were colocalized in some vesicles in close proximity to the apical and lateral plasma membrane of the endothelial cells. The possible functional roles of integrin αvβ5 in endothelial cells of the splenic sinus are discussed.
Collapse
Affiliation(s)
- Kiyoko Uehara
- Department of Cell Biology, Fukuoka University School of Medicine, Jonan-ku, Fukuoka, 814-0180, Japan,
| | | |
Collapse
|
5
|
Uehara K, Uehara A. P2Y1, P2Y6, and P2Y12 receptors in rat splenic sinus endothelial cells: an immunohistochemical and ultrastructural study. Histochem Cell Biol 2011; 136:557-67. [PMID: 21879346 DOI: 10.1007/s00418-011-0859-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2011] [Indexed: 12/21/2022]
Abstract
Localization of three P2X and six P2Y receptors in sinus endothelial cells of the rat spleen was examined by immunofluorescent microscopy, and ultrastructural localization of the detected receptors was examined by immunogold electron microscopy. In immunofluorescent microscopy, labeling for anti-P2Y1, P2Y6, and P2Y12 receptors was detected in endothelial cells, but P2X1, P2X2, P2X4, P2Y2, P2Y4, and P2Y13 receptors was not detected. P2Y1 and P2Y12 receptors were prominently localized in the basal parts of endothelial cells. P2Y6 receptor was not only predominantly localized in the basal parts of endothelial cells, but also in the superficial layer. Triple immunofluorescent staining for a combination of two P2Y receptors and actin filaments showed that P2Y1, P2Y6, and P2Y12 receptors were individually localized in endothelial cells. Phospholipase C-β3, phospholipase C- γ2, and inositol-1,4,5-trisphosphate receptors, related to the release of the intracellular Ca(2+) from the endoplasmic reticulum, were also predominantly localized in the basal parts of endothelial cells. In immunogold electron microscopy, labeling for P2Y1, P2Y6, and P2Y12 receptors were predominantly localized in the basal part of endothelial cells and, in addition, in the junctional membrane, basal plasma membrane, and caveolae in the basal part of endothelial cells. Labeling for phospholipase C-β3 and phospholipase C-γ2 was dominantly localized in the basal parts and in close proximity to the plasma membranes of endothelial cells. The possible functional roles of these P2Y receptors in splenic sinus endothelial cells are discussed.
Collapse
Affiliation(s)
- Kiyoko Uehara
- Department of Cell Biology, Fukuoka University School of Medicine, Jonan-ku, Japan.
| | | |
Collapse
|
6
|
Rizzolo LJ, Peng S, Luo Y, Xiao W. Integration of tight junctions and claudins with the barrier functions of the retinal pigment epithelium. Prog Retin Eye Res 2011; 30:296-323. [PMID: 21704180 DOI: 10.1016/j.preteyeres.2011.06.002] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 06/01/2011] [Accepted: 06/06/2011] [Indexed: 02/02/2023]
Abstract
The retinal pigment epithelium (RPE) forms the outer blood-retinal barrier by regulating the movement of solutes between the fenestrated capillaries of the choroid and the photoreceptor layer of the retina. Blood-tissue barriers use various mechanisms to accomplish their tasks including membrane pumps, transporters, and channels, transcytosis, metabolic alteration of solutes in transit, and passive but selective diffusion. The last category includes tight junctions, which regulate transepithelial diffusion through the spaces between neighboring cells of the monolayer. Tight junctions are extraordinarily complex structures that are dynamically regulated. Claudins are a family of tight junctional proteins that lend tissue specificity and selectivity to tight junctions. This review discusses how the claudins and tight junctions of the RPE differ from other epithelia and how its functions are modulated by the neural retina. Studies of RPE-retinal interactions during development lend insight into this modulation. Notably, the characteristics of RPE junctions, such as claudin composition, vary among species, which suggests the physiology of the outer retina may also vary. Comparative studies of barrier functions among species should deepen our understanding of how homeostasis is maintained in the outer retina. Stem cells provide a way to extend these studies of RPE-retinal interactions to human RPE.
Collapse
Affiliation(s)
- Lawrence J Rizzolo
- Department of Surgery and Department of Ophthalmology and Visual Science, Yale University School of Medicine, PO Box 208062, New Haven, CT 06520-8062, USA.
| | | | | | | |
Collapse
|
7
|
Uehara K, Uehara A. Vimentin intermediate filaments: the central base in sinus endothelial cells of the rat spleen. Anat Rec (Hoboken) 2011; 293:2034-43. [PMID: 21089144 DOI: 10.1002/ar.21210] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The ultrastructural distribution of vimentin intermediate filaments (IFs) and localizations of the related proteins in sinus endothelial cells of the rat spleen was examined by confocal laser scanning and electron microscopy with detergent extraction, myosin-fragment 1 decoration, and immunogold labeling to elucidate their functions in endothelial cells. Vimentin IFs were extremely abundant over stress fibers in the basal part of the endothelial cells. Some of them were intermingled with actin filaments in stress fibers, and were associated with coated vesicles. Plectin was predominantly localized in the layers of vimentin and stress fibers of the endothelial cells, but rarely in the vicinity of adherens junctions in the lateral part and focal adhesions in the basal part of the cells. Neither plakoglobin nor desmoplakin, which is coupled VE-cadherin to vimentin IFs, was detected in sinus endothelial cells. Vinculin was localized in the basal membranes of the endothelial cells. These data suggest that abundant vimentin IFs are associated with stress fibers by plectin in the basal part of the cells and form cytoskeletal cores of sinus endothelial cells only partially supported by the ring-shaped basal lamina to have roles in scaffolding and the mechanical stabilization of the endothelial cells. Furthermore, taken in connection with recently revealed functions of vimentin and plectin, vimentin might play a cytoskeletal core of sinus endothelial cells.
Collapse
Affiliation(s)
- Kiyoko Uehara
- Department of Cell Biology, Fukuoka University School of Medicine, Jonan-ku, Fukuoka, Japan.
| | | |
Collapse
|
8
|
Claudin 13, a member of the claudin family regulated in mouse stress induced erythropoiesis. PLoS One 2010; 5. [PMID: 20844758 PMCID: PMC2937028 DOI: 10.1371/journal.pone.0012667] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 08/15/2010] [Indexed: 11/19/2022] Open
Abstract
Mammals are able to rapidly produce red blood cells in response to stress. The molecular pathways used in this process are important in understanding responses to anaemia in multiple biological settings. Here we characterise the novel gene Claudin 13 (Cldn13), a member of the Claudin family of tight junction proteins using RNA expression, microarray and phylogenetic analysis. We present evidence that Cldn13 appears to be co-ordinately regulated as part of a stress induced erythropoiesis pathway and is a mouse-specific gene mainly expressed in tissues associated with haematopoietic function. CLDN13 phylogenetically groups with its genomic neighbour CLDN4, a conserved tight junction protein with a putative role in epithelial to mesenchymal transition, suggesting a recent duplication event. Mechanisms of mammalian stress erythropoiesis are of importance in anaemic responses and expression microarray analyses demonstrate that Cldn13 is the most abundant Claudin in spleen from mice infected with Trypanosoma congolense. In mice prone to anaemia (C57BL/6), its expression is reduced compared to strains which display a less severe anaemic response (A/J and BALB/c) and is differentially regulated in spleen during disease progression. Genes clustering with Cldn13 on microarrays are key regulators of erythropoiesis (Tal1, Trim10, E2f2), erythrocyte membrane proteins (Rhd and Gypa), associated with red cell volume (Tmcc2) and indirectly associated with erythropoietic pathways (Cdca8, Cdkn2d, Cenpk). Relationships between genes appearing co-ordinately regulated with Cldn13 post-infection suggest new insights into the molecular regulation and pathways involved in stress induced erythropoiesis and suggest a novel, previously unreported role for claudins in correct cell polarisation and protein partitioning prior to erythroblast enucleation.
Collapse
|
9
|
Extending the knowledge in histochemistry and cell biology. Histochem Cell Biol 2009; 133:1-40. [PMID: 19946696 DOI: 10.1007/s00418-009-0665-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2009] [Indexed: 01/21/2023]
Abstract
Central to modern Histochemistry and Cell Biology stands the need for visualization of cellular and molecular processes. In the past several years, a variety of techniques has been achieved bridging traditional light microscopy, fluorescence microscopy and electron microscopy with powerful software-based post-processing and computer modeling. Researchers now have various tools available to investigate problems of interest from bird's- up to worm's-eye of view, focusing on tissues, cells, proteins or finally single molecules. Applications of new approaches in combination with well-established traditional techniques of mRNA, DNA or protein analysis have led to enlightening and prudent studies which have paved the way toward a better understanding of not only physiological but also pathological processes in the field of cell biology. This review is intended to summarize articles standing for the progress made in "histo-biochemical" techniques and their manifold applications.
Collapse
|
10
|
State-of-the-art technologies, current opinions and developments, and novel findings: news from the field of histochemistry and cell biology. Histochem Cell Biol 2008; 130:1205-51. [PMID: 18985372 DOI: 10.1007/s00418-008-0535-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2008] [Indexed: 10/25/2022]
Abstract
Investigations of cell and tissue structure and function using innovative methods and approaches have again yielded numerous exciting findings in recent months and have added important data to current knowledge, inspiring new ideas and hypotheses in various fields of modern life sciences. Topics and contents of comprehensive expert reviews covering different aspects in methodological advances, cell biology, tissue function and morphology, and novel findings reported in original papers are summarized in the present review.
Collapse
|
11
|
Abstract
The progress in discerning the structure and function of cells and tissues in health and disease has been achieved to a large extent by the continued development of new reagents for histochemistry, the improvement of existing techniques and new imaging techniques. This review will highlight some advancements made in these fields.
Collapse
|