1
|
Nowak J, Lenartowski R, Kalita K, Lehka L, Karatsai O, Lenartowska M, Rędowicz MJ. Myosin VI in the nucleolus of neurosecretory PC12 cells: its involvement in the maintenance of nucleolar structure and ribosome organization. Front Physiol 2024; 15:1368416. [PMID: 38774650 PMCID: PMC11106421 DOI: 10.3389/fphys.2024.1368416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/01/2024] [Indexed: 05/24/2024] Open
Abstract
We have previously shown that unconventional myosin VI (MVI), a unique actin-based motor protein, shuttles between the cytoplasm and nucleus in neurosecretory PC12 cells in a stimulation-dependent manner and interacts with numerous proteins involved in nuclear processes. Among the identified potential MVI partners was nucleolin, a major nucleolar protein implicated in rRNA processing and ribosome assembly. Several other nucleolar proteins such as fibrillarin, UBF (upstream binding factor), and B23 (also termed nucleophosmin) have been shown to interact with MVI. A bioinformatics tool predicted the presence of the nucleolar localization signal (NoLS) within the MVI globular tail domain, and immunostaining confirmed the presence of MVI within the nucleolus. Depletion of MVI, previously shown to impair PC12 cell proliferation and motility, caused disorganization of the nucleolus and rough endoplasmic reticulum (rER). However, lack of MVI does not affect nucleolar transcription. In light of these data, we propose that MVI is important for nucleolar and ribosome maintenance but not for RNA polymerase 1-related transcription.
Collapse
Affiliation(s)
- Jolanta Nowak
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Robert Lenartowski
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Katarzyna Kalita
- Laboratory of Neurobiology, Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders—BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Lilya Lehka
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Olena Karatsai
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Marta Lenartowska
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Maria Jolanta Rędowicz
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
2
|
Lacavalla MA, Cisterna B, Zancanaro C, Malatesta M. Ultrastructural immunocytochemistry shows impairment of RNA pathways in skeletal muscle nuclei of old mice: A link to sarcopenia? Eur J Histochem 2021; 65:3229. [PMID: 33764019 PMCID: PMC8033527 DOI: 10.4081/ejh.2021.3229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
During aging, skeletal muscle is affected by sarcopenia, a progressive decline in muscle mass, strength and endurance that leads to loss of function and disability. Cell nucleus dysfunction is a possible factor contributing to sarcopenia because aging-associated alterations in mRNA and rRNA transcription/maturation machinery have been shown in several cell types including muscle cells. In this study, the distribution and density of key molecular factors involved in RNA pathways namely, nuclear actin (a motor protein and regulator of RNA transcription), 5-methyl cytosine (an epigenetic regulator of gene transcription), and ribonuclease A (an RNA degrading enzyme) were compared in different nuclear compartments of late adult and old mice myonuclei by means of ultrastructural immunocytochemistry. In all nuclear compartments, an age-related decrease of nuclear actin suggested altered chromatin structuring and impaired nucleus-to-cytoplasm transport of both mRNA and ribosomal subunits, while a decrease of 5-methyl cytosine and ribonuclease A in the nucleoli of old mice indicated an age-dependent loss of rRNA genes. These findings provide novel experimental evidence that, in the aging skeletal muscle, nuclear RNA pathways undergo impairment, likely hindering protein synthesis and contributing to the onset and progression of sarcopenia.
Collapse
Affiliation(s)
| | - Barbara Cisterna
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona.
| | - Carlo Zancanaro
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona.
| | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona.
| |
Collapse
|
3
|
|
4
|
Volkman LE. Baculoviruses and nucleosome management. Virology 2015; 476:257-263. [PMID: 25569454 DOI: 10.1016/j.virol.2014.12.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 12/09/2014] [Accepted: 12/10/2014] [Indexed: 11/30/2022]
Abstract
Negatively-supercoiled-ds DNA molecules, including the genomes of baculoviruses, spontaneously wrap around cores of histones to form nucleosomes when present within eukaryotic nuclei. Hence, nucleosome management should be essential for baculovirus genome replication and temporal regulation of transcription, but this has not been documented. Nucleosome mobilization is the dominion of ATP-dependent chromatin-remodeling complexes. SWI/SNF and INO80, two of the best-studied complexes, as well as chromatin modifier TIP60, all contain actin as a subunit. Retrospective analysis of results of AcMNPV time course experiments wherein actin polymerization was blocked by cytochalasin D drug treatment implicate actin-containing chromatin modifying complexes in decatenating baculovirus genomes, shutting down host transcription, and regulating late and very late phases of viral transcription. Moreover, virus-mediated nuclear localization of actin early during infection may contribute to nucleosome management.
Collapse
Affiliation(s)
- Loy E Volkman
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
5
|
Dzijak R, Yildirim S, Kahle M, Novák P, Hnilicová J, Venit T, Hozák P. Specific nuclear localizing sequence directs two myosin isoforms to the cell nucleus in calmodulin-sensitive manner. PLoS One 2012; 7:e30529. [PMID: 22295092 PMCID: PMC3266300 DOI: 10.1371/journal.pone.0030529] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 12/23/2011] [Indexed: 12/20/2022] Open
Abstract
Background Nuclear myosin I (NM1) was the first molecular motor identified in the cell nucleus. Together with nuclear actin, they participate in crucial nuclear events such as transcription, chromatin movements, and chromatin remodeling. NM1 is an isoform of myosin 1c (Myo1c) that was identified earlier and is known to act in the cytoplasm. NM1 differs from the “cytoplasmic” myosin 1c only by additional 16 amino acids at the N-terminus of the molecule. This amino acid stretch was therefore suggested to direct NM1 into the nucleus. Methodology/Principal Findings We investigated the mechanism of nuclear import of NM1 in detail. Using over-expressed GFP chimeras encoding for truncated NM1 mutants, we identified a specific sequence that is necessary for its import to the nucleus. This novel nuclear localization sequence is placed within calmodulin-binding motif of NM1, thus it is present also in the Myo1c. We confirmed the presence of both isoforms in the nucleus by transfection of tagged NM1 and Myo1c constructs into cultured cells, and also by showing the presence of the endogenous Myo1c in purified nuclei of cells derived from knock-out mice lacking NM1. Using pull-down and co-immunoprecipitation assays we identified importin beta, importin 5 and importin 7 as nuclear transport receptors that bind NM1. Since the NLS sequence of NM1 lies within the region that also binds calmodulin we tested the influence of calmodulin on the localization of NM1. The presence of elevated levels of calmodulin interfered with nuclear localization of tagged NM1. Conclusions/Significance We have shown that the novel specific NLS brings to the cell nucleus not only the “nuclear” isoform of myosin I (NM1 protein) but also its “cytoplasmic” isoform (Myo1c protein). This opens a new field for exploring functions of this molecular motor in nuclear processes, and for exploring the signals between cytoplasm and the nucleus.
Collapse
Affiliation(s)
- Rastislav Dzijak
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the ASCR, v.v.i., Prague, Czech Republic
| | - Sukriye Yildirim
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the ASCR, v.v.i., Prague, Czech Republic
| | - Michal Kahle
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the ASCR, v.v.i., Prague, Czech Republic
| | - Petr Novák
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the ASCR, v.v.i., Prague, Czech Republic
| | - Jarmila Hnilicová
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the ASCR, v.v.i., Prague, Czech Republic
| | - Tomáš Venit
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the ASCR, v.v.i., Prague, Czech Republic
| | - Pavel Hozák
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the ASCR, v.v.i., Prague, Czech Republic
- * E-mail:
| |
Collapse
|
6
|
Philimonenko VV, Janácek J, Harata M, Hozák P. Transcription-dependent rearrangements of actin and nuclear myosin I in the nucleolus. Histochem Cell Biol 2010; 134:243-9. [PMID: 20683608 DOI: 10.1007/s00418-010-0732-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2010] [Indexed: 10/19/2022]
Abstract
Nuclear actin and nuclear myosin I (NMI) are important players in transcription of ribosomal genes. Transcription of rDNA takes place in highly organized intranuclear compartment, the nucleolus. In this study, we characterized the localization of these two proteins within the nucleolus of HeLa cells with high structural resolution by means of electron microscopy and gold-immunolabeling. We demonstrate that both actin and NMI are localized in specific compartments within the nucleolus, and the distribution of NMI is transcription-dependent. Moreover, a pool of NMI is present in the foci containing nascent rRNA transcripts. Actin, in turn, is present both in transcriptionally active and inactive regions of the nucleolus and colocalizes with RNA polymerase I and UBF. Our data support the involvement of actin and NMI in rDNA transcription and point out to other functions of these proteins in the nucleolus, such as rRNA maturation and maintenance of nucleolar architecture.
Collapse
Affiliation(s)
- V V Philimonenko
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the AS CR, v.v.i., Vídenská 1083, 142 20 Prague 4, Czech Republic
| | | | | | | |
Collapse
|
7
|
Abstract
Actin participates in several essential processes in the cell nucleus. Even though the presence of actin in the nucleus was proposed more than 30 years ago, nuclear processes that require actin have been only recently identified. Actin is part of chromatin remodeling complexes; it is associated with the transcription machineries; it becomes incorporated into newly synthesized ribonucleoproteins; and it influences long-range chromatin organization. As in the cytoplasm, nuclear actin works in conjunction with different types of actin-binding proteins that regulate actin function and bridge interactions between actin and other nuclear components.
Collapse
|
8
|
Cisterna B, Biggiogera M. Ribosome biogenesis: from structure to dynamics. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 284:67-111. [PMID: 20875629 DOI: 10.1016/s1937-6448(10)84002-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this chapter we describe the status of the research concerning the nucleolus, the major nuclear body. The nucleolus has been recognized as a dynamic organelle with many more functions than one could imagine. In fact, in addition to its fundamental role in the biogenesis of preribosomes, the nucleolus takes part in many other cellular processes and functions, such as the cell-cycle control and the p53 pathway: the direct or indirect involvement of the nucleolus in these various processes makes it sensitive to their alteration. Moreover, it is worth noting that the different nucleolar factors participating to independent mechanisms show different dynamics of association/disassociation with the nucleolar body.
Collapse
Affiliation(s)
- Barbara Cisterna
- Laboratory of Cell Biology and Neurobiology, Department of Animal Biology, University of Pavia, Pavia, Italy
| | | |
Collapse
|
9
|
Extending the knowledge in histochemistry and cell biology. Histochem Cell Biol 2009; 133:1-40. [PMID: 19946696 DOI: 10.1007/s00418-009-0665-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2009] [Indexed: 01/21/2023]
Abstract
Central to modern Histochemistry and Cell Biology stands the need for visualization of cellular and molecular processes. In the past several years, a variety of techniques has been achieved bridging traditional light microscopy, fluorescence microscopy and electron microscopy with powerful software-based post-processing and computer modeling. Researchers now have various tools available to investigate problems of interest from bird's- up to worm's-eye of view, focusing on tissues, cells, proteins or finally single molecules. Applications of new approaches in combination with well-established traditional techniques of mRNA, DNA or protein analysis have led to enlightening and prudent studies which have paved the way toward a better understanding of not only physiological but also pathological processes in the field of cell biology. This review is intended to summarize articles standing for the progress made in "histo-biochemical" techniques and their manifold applications.
Collapse
|
10
|
Obrdlik A, Louvet E, Kukalev A, Naschekin D, Kiseleva E, Fahrenkrog B, Percipalle P. Nuclear myosin 1 is in complex with mature rRNA transcripts and associates with the nuclear pore basket. FASEB J 2009; 24:146-57. [PMID: 19729515 DOI: 10.1096/fj.09-135863] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In rRNA biogenesis, nuclear myosin 1 (NM1) and actin synergize to activate rRNA gene transcription. Evidence that actin is in preribosomal subunits and NM1 may control rRNA biogenesis post-transcriptionally prompted us to investigate whether NM1 associates with and accompanies rRNA to nuclear pores (NPC). Ultracentrifugation on HeLa nucleolar extracts showed RNA-dependent NM1 coelution with preribosomal subunits. In RNA immunoprecipitations (RIPs), NM1 coprecipitated with pre-rRNAs and 18S, 5.8S, and 28S rRNAs, but failed to precipitate 5S rRNA and 7SL RNA. In isolated nuclei and living HeLa cells, NM1 or actin inhibition and selective alterations in actin polymerization impaired 36S pre-rRNA processing. Immunoelectron microscopy (IEM) on sections of manually isolated Xenopus oocyte nuclei showed NM1 localization at the NPC basket. Field emission scanning IEM on isolated nuclear envelopes and intranuclear content confirmed basket localization and showed that NM1 decorates actin-rich pore-linked filaments. Finally, RIP and successive RIPs (reRIPs) on cross-linked HeLa cells demonstrated that NM1, CRM1, and Nup153 precipitate same 18S and 28S rRNAs but not 5S rRNA. We conclude that NM1 facilitates maturation and accompanies export-competent preribosomal subunits to the NPC, thus modulating export.
Collapse
Affiliation(s)
- Ales Obrdlik
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|