1
|
Abstract
Worldwide, increasing numbers of patients are developing end-stage renal disease, and at present, the only treatment options are dialysis or kidney transplantation. Dialysis is associated with increased morbidity and mortality, poor life quality and high economic costs. Transplantation is by far the better option, but there are insufficient numbers of donor kidneys available. Therefore, there is an urgent need to explore alternative approaches. In this review, we discuss how this problem could potentially be addressed by using autologous cells and appropriate scaffolds to develop 'bioengineered' kidneys for transplantation. In particular, we will highlight recent breakthroughs in pluripotent stem cell biology that have led to the development of autologous renal progenitor cells capable of differentiating to all renal cell types and will discuss how these cells could be combined with appropriate scaffolds to develop a bioengineered kidney.
Collapse
Affiliation(s)
- Bettina Wilm
- Institute of Translational Medicine, Centre for Preclinical Imaging, University of Liverpool, Crown Street, Liverpool, L69 3BX UK
| | - Riccardo Tamburrini
- Department of Surgery, Section of Transplantation, Wake Forest School of Medicine,Wake Forest Baptist Hospital, Medical Center Blvd, Winston Salem, NC 27157 USA
| | - Giuseppe Orlando
- Department of Surgery, Section of Transplantation, Wake Forest School of Medicine,Wake Forest Baptist Hospital, Medical Center Blvd, Winston Salem, NC 27157 USA
| | - Patricia Murray
- Institute of Translational Medicine, Centre for Preclinical Imaging, University of Liverpool, Crown Street, Liverpool, L69 3BX UK
| |
Collapse
|
2
|
The progression of the tubulointerstitial fibrosis driven by stress-induced “proliferation–death” vicious circle. Med Hypotheses 2014; 82:643-7. [DOI: 10.1016/j.mehy.2014.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 01/05/2014] [Accepted: 01/13/2014] [Indexed: 12/26/2022]
|
3
|
Epithelial–mesenchymal transition of renal tubules: Divergent processes of repairing in acute or chronic injury? Med Hypotheses 2013; 81:73-5. [DOI: 10.1016/j.mehy.2013.03.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 03/09/2013] [Indexed: 11/18/2022]
|
4
|
Wang WW, Wang W, Jiang Y, Han GF, Lu S, Li G, Zhang J. Reprogramming of mouse renal tubular epithelial cells to induced pluripotent stem cells. Cytotherapy 2013; 15:578-85. [PMID: 23415920 DOI: 10.1016/j.jcyt.2013.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 01/05/2013] [Accepted: 01/07/2013] [Indexed: 02/07/2023]
Abstract
Kidney disease has reached epidemic proportions and is associated with high mortality and morbidity rates. Stem cell-based therapy may effectively treat kidney damage by cell transplantation. The breakthrough discovery using a combination of four transcription factors to reprogram genetically somatic cells into induced pluripotent stem (iPS) cells was a milestone in stem cell therapy. The lentivirus was packaged containing OCT4, SOX2, c-MYC and KLF4 transcription factors and then transfected mouse renal tubular epithelial cells (RTECs). The colonies were picked up at 21 days and were tested by cytochemistry, immunofluorescence assay and quantitative real-time polymerase chain reaction. Viral transgene expression levels were also assessed by quantitative analysis. Additionally, embryoid bodies from iPS cells were formed, and immunofluorescence and teratoma assays were performed. Karyotype analysis of mouse RTEC-derived iPS cells was also performed. The iPS cells were indistinguishable from mouse embryonic stem cells with respect to colony morphology, the expression of pluripotency-associated transcription factors and surface markers, embryoid body-mediated differentiation potential and teratoma assays. Quantitative polymerase chain reaction demonstrated that the lentiviral transgenes were largely silenced. The mouse RTEC-derived iPS cells exhibited a normal karyotype of 40,XY. iPS cells can be produced using mouse RTECs, which would be helpful in investigations to ameliorate the symptoms of kidney disease and to slow the progression of kidney disease by in vitro and in vivo animal studies.
Collapse
Affiliation(s)
- Wei-Wei Wang
- Department of Nephrology, Jimin Hospital, Shanghai, PR China
| | | | | | | | | | | | | |
Collapse
|
5
|
Simic D, Simutis F, Euler C, Thurby C, Peden WM, Bunch RT, Pilcher G, Sanderson T, Van Vleet T. Determination of relative Notch1 and gamma-secretase-related gene expression in puromycin-treated microdissected rat kidneys. Gene Expr 2013; 16:39-47. [PMID: 24397211 PMCID: PMC8750201 DOI: 10.3727/105221613x13806435102312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Notch signaling pathways are involved in the regulation of cell differentiation and are highly conserved across species. Notch ligand binding leads to gamma-secretase-mediated proteolytic cleavage of the Notch receptor releasing the Notch intracellular domain, resulting in its subsequent translocation into the nucleus and gene expression regulation. To investigate the level of expression of Notch signaling pathway components in microanatomic regions following renal injury, kidneys from untreated, vehicle control, and puromycin aminonucleoside (PA, 150 mg/kg)-treated rats were evaluated. Frozen tissue sections from rats were microdissected using laser capture microdissection (LCM) to obtain glomeruli, cortical (proximal) tubules, and collecting ducts, and relative gene expression levels of Presenilin1, Notch1 and Hes1 were determined. In untreated rats, the Notch1 expression in glomeruli was higher than in the proximal tubules and similar to that in collecting ducts, whereas Presenilin1 and Hes1 expressions were highest in the collecting ducts, followed by cortical tubules and glomeruli. Following PA-induced renal injury, Hes1 gene expression increased significantly in the glomeruli and tubules compared to the collecting ducts where no injury was observed microscopically. Although these data present some evidence of change in Notch signaling related to injury, the expression of Presenilin1, Notch1, and Hes1 in the microanatomic regions of the kidney following PA treatment were not significantly different when compared to controls. These results demonstrate that there are differences in Notch-related gene expression in the different microanatomic regions of the kidneys in rats and suggest a minimal role for Notch in renal injury induced by PA. In addition, this work shows that LCM coupled with the RT-PCR can be used to determine the relative differences in target gene expression within regions of a complex organ.
Collapse
Affiliation(s)
- Damir Simic
- Bristol-Myers Squibb Co., Drug Safety Evaluation, Mt. Vernon, IN, 47620, USA.
| | - Frank Simutis
- Bristol-Myers Squibb Co., Drug Safety Evaluation, Mt. Vernon, IN, 47620, USA
| | - Catherine Euler
- Bristol-Myers Squibb Co., Drug Safety Evaluation, Mt. Vernon, IN, 47620, USA
| | - Christina Thurby
- Bristol-Myers Squibb Co., Drug Safety Evaluation, Mt. Vernon, IN, 47620, USA
| | - W Mike Peden
- Bristol-Myers Squibb Co., Drug Safety Evaluation, Mt. Vernon, IN, 47620, USA
| | - R Todd Bunch
- Bristol-Myers Squibb Co., Drug Safety Evaluation, Mt. Vernon, IN, 47620, USA
| | - Gary Pilcher
- Bristol-Myers Squibb Co., Drug Safety Evaluation, Mt. Vernon, IN, 47620, USA
| | - Thomas Sanderson
- Bristol-Myers Squibb Co., Drug Safety Evaluation, Mt. Vernon, IN, 47620, USA
| | - Terry Van Vleet
- Bristol-Myers Squibb Co., Drug Safety Evaluation, Mt. Vernon, IN, 47620, USA
| |
Collapse
|
6
|
Hübner S, Efthymiadis A. Histochemistry and cell biology: the annual review 2010. Histochem Cell Biol 2011; 135:111-40. [PMID: 21279376 DOI: 10.1007/s00418-011-0781-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2011] [Indexed: 10/18/2022]
Abstract
This review summarizes recent advances in histochemistry and cell biology which complement and extend our knowledge regarding various aspects of protein functions, cell and tissue biology, employing appropriate in vivo model systems in conjunction with established and novel approaches. In this context several non-expected results and discoveries were obtained which paved the way of research into new directions. Once the reader embarks on reading this review, it quickly becomes quite obvious that the studies contribute not only to a better understanding of fundamental biological processes but also provide use-oriented aspects that can be derived therefrom.
Collapse
Affiliation(s)
- Stefan Hübner
- Institute of Anatomy and Cell Biology, University of Würzburg, Koellikerstrasse 6, 97070 Würzburg, Germany.
| | | |
Collapse
|
7
|
Ward HH, Romero E, Welford A, Pickett G, Bacallao R, Gattone VH, Ness SA, Wandinger-Ness A, Roitbak T. Adult human CD133/1(+) kidney cells isolated from papilla integrate into developing kidney tubules. Biochim Biophys Acta Mol Basis Dis 2011; 1812:1344-57. [PMID: 21255643 DOI: 10.1016/j.bbadis.2011.01.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 12/09/2010] [Accepted: 01/11/2011] [Indexed: 01/19/2023]
Abstract
Approximately 60,000 patients in the United States are waiting for a kidney transplant due to genetic, immunologic and environmentally caused kidney failure. Adult human renal stem cells could offer opportunities for autologous transplant and repair of damaged organs. Current data suggest that there are multiple progenitor types in the kidney with distinct localizations. In the present study, we characterize cells derived from human kidney papilla and show their capacity for tubulogenesis. In situ, nestin(+) and CD133/1(+) cells were found extensively intercalated between tubular epithelia in the loops of Henle of renal papilla, but not of the cortex. Populations of primary cells from the renal cortex and renal papilla were isolated by enzymatic digestion from human kidneys unsuited for transplant and immuno-enriched for CD133/1(+) cells. Isolated CD133/1(+) papillary cells were positive for nestin, as well as several human embryonic stem cell markers (SSEA4, Nanog, SOX2, and OCT4/POU5F1) and could be triggered to adopt tubular epithelial and neuronal-like phenotypes. Isolated papillary cells exhibited morphologic plasticity upon modulation of culture conditions and inhibition of asymmetric cell division. Labeled papillary cells readily associated with cortical tubular epithelia in co-culture and 3-dimensional collagen gel cultures. Heterologous organ culture demonstrated that CD133/1(+) progenitors from the papilla and cortex became integrated into developing kidney tubules. Tubular epithelia did not participate in tubulogenesis. Human renal papilla harbor cells with the hallmarks of adult kidney stem/progenitor cells that can be amplified and phenotypically modulated in culture while retaining the capacity to form new kidney tubules. This article is part of a Special Issue entitled: Polycystic Kidney Disease.
Collapse
Affiliation(s)
- Heather H Ward
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|