1
|
Mechanical Cues: Bidirectional Reciprocity in the Extracellular Matrix Drives Mechano-Signalling in Articular Cartilage. Int J Mol Sci 2021; 22:ijms222413595. [PMID: 34948394 PMCID: PMC8707858 DOI: 10.3390/ijms222413595] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/08/2021] [Accepted: 12/15/2021] [Indexed: 12/29/2022] Open
Abstract
The composition and organisation of the extracellular matrix (ECM), particularly the pericellular matrix (PCM), in articular cartilage is critical to its biomechanical functionality; the presence of proteoglycans such as aggrecan, entrapped within a type II collagen fibrillar network, confers mechanical resilience underweight-bearing. Furthermore, components of the PCM including type VI collagen, perlecan, small leucine-rich proteoglycans—decorin and biglycan—and fibronectin facilitate the transduction of both biomechanical and biochemical signals to the residing chondrocytes, thereby regulating the process of mechanotransduction in cartilage. In this review, we summarise the literature reporting on the bidirectional reciprocity of the ECM in chondrocyte mechano-signalling and articular cartilage homeostasis. Specifically, we discuss studies that have characterised the response of articular cartilage to mechanical perturbations in the local tissue environment and how the magnitude or type of loading applied elicits cellular behaviours to effect change. In vivo, including transgenic approaches, and in vitro studies have illustrated how physiological loading maintains a homeostatic balance of anabolic and catabolic activities, involving the direct engagement of many PCM molecules in orchestrating this slow but consistent turnover of the cartilage matrix. Furthermore, we document studies characterising how abnormal, non-physiological loading including excessive loading or joint trauma negatively impacts matrix molecule biosynthesis and/or organisation, affecting PCM mechanical properties and reducing the tissue’s ability to withstand load. We present compelling evidence showing that reciprocal engagement of the cells with this altered ECM environment can thus impact tissue homeostasis and, if sustained, can result in cartilage degradation and onset of osteoarthritis pathology. Enhanced dysregulation of PCM/ECM turnover is partially driven by mechanically mediated proteolytic degradation of cartilage ECM components. This generates bioactive breakdown fragments such as fibronectin, biglycan and lumican fragments, which can subsequently activate or inhibit additional signalling pathways including those involved in inflammation. Finally, we discuss how bidirectionality within the ECM is critically important in enabling the chondrocytes to synthesise and release PCM/ECM molecules, growth factors, pro-inflammatory cytokines and proteolytic enzymes, under a specified load, to influence PCM/ECM composition and mechanical properties in cartilage health and disease.
Collapse
|
2
|
Trachana V, Mourmoura E, Papathanasiou I, Tsezou A. Understanding the role of chondrocytes in osteoarthritis: utilizing proteomics. Expert Rev Proteomics 2019; 16:201-213. [DOI: 10.1080/14789450.2019.1571918] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Varvara Trachana
- Laboratory of Biology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Evanthia Mourmoura
- Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Ioanna Papathanasiou
- Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Aspasia Tsezou
- Laboratory of Biology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
- Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| |
Collapse
|
3
|
Felka T, Rothdiener M, Bast S, Uynuk-Ool T, Zouhair S, Ochs BG, De Zwart P, Stoeckle U, Aicher WK, Hart ML, Shiozawa T, Grodzinsky AJ, Schenke-Layland K, Venkatesan JK, Cucchiarini M, Madry H, Kurz B, Rolauffs B. Loss of spatial organization and destruction of the pericellular matrix in early osteoarthritis in vivo and in a novel in vitro methodology. Osteoarthritis Cartilage 2016; 24:1200-9. [PMID: 26879798 PMCID: PMC4907798 DOI: 10.1016/j.joca.2016.02.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 01/26/2016] [Accepted: 02/07/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Current repair procedures for articular cartilage (AC) cannot restore the tissue's original form and function because neither changes in its architectural blueprint throughout life nor the respective biological understanding is fully available. We asked whether two unique elements of human cartilage architecture, the chondrocyte-surrounding pericellular matrix (PCM) and the superficial chondrocyte spatial organization (SCSO) beneath the articular surface (AS) are congenital, stable or dynamic throughout life. We hypothesized that inducing chondrocyte proliferation in vitro impairs organization and PCM and induces an advanced osteoarthritis (OA)-like structural phenotype of human cartilage. METHODS We recorded propidium-iodine-stained fetal and adult cartilage explants, arranged stages of organization into a sequence, and created a lifetime-summarizing SCSO model. To replicate the OA-associated dynamics revealed by our model, and to test our hypothesis, we transduced specifically early OA-explants with hFGF-2 for inducing proliferation. The PCM was examined using immuno- and auto-fluorescence, multiphoton second-harmonic-generation (SHG), and scanning electron microscopy (SEM). RESULTS Spatial organization evolved from fetal homogeneity, peaked with adult string-like arrangements, but was completely lost in OA. Loss of organization included PCM perforation (local micro-fibrillar collagen intensity decrease) and destruction [regional collagen type VI (CollVI) signal weakness or absence]. Importantly, both loss of organization and PCM destruction were successfully recapitulated in FGF-2-transduced explants. CONCLUSION Induced proliferation of spatially characterized early OA-chondrocytes within standardized explants recapitulated the full range of loss of SCSO and PCM destruction, introducing a novel in vitro methodology. This methodology induces a structural phenotype of human cartilage that is similar to advanced OA and potentially of significance and utility.
Collapse
Affiliation(s)
- Tino Felka
- Siegfried Weller Institute for Trauma Research, BG Trauma Clinic Tuebingen, University of Tuebingen, Tuebingen, Germany
| | - Miriam Rothdiener
- Siegfried Weller Institute for Trauma Research, BG Trauma Clinic Tuebingen, University of Tuebingen, Tuebingen, Germany
| | - Sina Bast
- Siegfried Weller Institute for Trauma Research, BG Trauma Clinic Tuebingen, University of Tuebingen, Tuebingen, Germany
| | - Tatiana Uynuk-Ool
- Siegfried Weller Institute for Trauma Research, BG Trauma Clinic Tuebingen, University of Tuebingen, Tuebingen, Germany
| | - Sabra Zouhair
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua, Italy
| | - Björn Gunnar Ochs
- Clinic for Trauma and Restorative Surgery, BG Trauma Clinic Tuebingen, University of Tuebingen, Tuebingen, Germany
| | - Peter De Zwart
- Clinic for Trauma and Restorative Surgery, BG Trauma Clinic Tuebingen, University of Tuebingen, Tuebingen, Germany
| | - Ulrich Stoeckle
- Clinic for Trauma and Restorative Surgery, BG Trauma Clinic Tuebingen, University of Tuebingen, Tuebingen, Germany
| | - Wilhelm K Aicher
- Department of Urology, University of Tuebingen, Tuebingen, Germany
| | - Melanie L Hart
- Department of Urology, University of Tuebingen, Tuebingen, Germany
| | - Thomas Shiozawa
- Institute of Clinical Anatomy and Cell Analysis, University of Tuebingen, Tuebingen, Germany
| | - Alan J Grodzinsky
- Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, USA
| | - Katja Schenke-Layland
- Department of Women’s Health, Research Institute for Women’s Health, University of Tuebingen, Tuebingen, Germany,Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Stuttgart, Germany
| | - Jagadeesh K Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| | - Bodo Kurz
- Anatomical Institute, Christian-Albrecht-University Kiel, Kiel, Germany
| | - Bernd Rolauffs
- Siegfried Weller Institute for Trauma Research, BG Trauma Clinic Tuebingen, University of Tuebingen, Tuebingen, Germany,Clinic for Trauma and Restorative Surgery, BG Trauma Clinic Tuebingen, University of Tuebingen, Tuebingen, Germany,Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, USA,Corresponding Author: Bernd Rolauffs, Siegfried Weller Institute for Trauma Research, BG Trauma Clinic Tuebingen, University of Tuebingen, ZMF, Waldhoernlestr. 22, 72074 Tuebingen, Germany,
| |
Collapse
|
4
|
Hsueh MF, Khabut A, Kjellström S, Önnerfjord P, Kraus VB. Elucidating the Molecular Composition of Cartilage by Proteomics. J Proteome Res 2016; 15:374-88. [PMID: 26632656 DOI: 10.1021/acs.jproteome.5b00946] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Articular cartilage consists of chondrocytes and two major components, a collagen-rich framework and highly abundant proteoglycans. Most prior studies defining the zonal distribution of cartilage have extracted proteins with guanidine-HCl. However, an unextracted collagen-rich residual is left after extraction. In addition, the high abundance of anionic polysaccharide molecules extracted from cartilage adversely affects the chromatographic separation. In this study, we established a method for removing chondrocytes from cartilage sections with minimal extracellular matrix protein loss. The addition of surfactant to guanidine-HCl extraction buffer improved protein solubility. Ultrafiltration removed interference from polysaccharides and salts. Almost four-times more collagen peptides were extracted by the in situ trypsin digestion method. However, as expected, proteoglycans were more abundant within the guanidine-HCl extraction. These different methods were used to extract cartilage sections from different cartilage layers (superficial, intermediate, and deep), joint types (knee and hip), and disease states (healthy and osteoarthritic), and the extractions were evaluated by quantitative and qualitative proteomic analyses. The results of this study led to the identifications of the potential biomarkers of osteoarthritis (OA), OA progression, and the joint specific biomarkers.
Collapse
Affiliation(s)
- Ming-Feng Hsueh
- Duke Molecular Physiology Institute, ‡Departments of Medicine, and §Pathology, Duke University School of Medicine, Duke University , Durham, North Carolina 27701, United States.,Department of Clinical Sciences Lund, Section of Rheumatology and Molecular Skeletal Biology and ¶Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University , SE 22184 Lund, Sweden
| | - Areej Khabut
- Duke Molecular Physiology Institute, ‡Departments of Medicine, and §Pathology, Duke University School of Medicine, Duke University , Durham, North Carolina 27701, United States.,Department of Clinical Sciences Lund, Section of Rheumatology and Molecular Skeletal Biology and ¶Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University , SE 22184 Lund, Sweden
| | - Sven Kjellström
- Duke Molecular Physiology Institute, ‡Departments of Medicine, and §Pathology, Duke University School of Medicine, Duke University , Durham, North Carolina 27701, United States.,Department of Clinical Sciences Lund, Section of Rheumatology and Molecular Skeletal Biology and ¶Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University , SE 22184 Lund, Sweden
| | - Patrik Önnerfjord
- Duke Molecular Physiology Institute, ‡Departments of Medicine, and §Pathology, Duke University School of Medicine, Duke University , Durham, North Carolina 27701, United States.,Department of Clinical Sciences Lund, Section of Rheumatology and Molecular Skeletal Biology and ¶Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University , SE 22184 Lund, Sweden
| | - Virginia Byers Kraus
- Duke Molecular Physiology Institute, ‡Departments of Medicine, and §Pathology, Duke University School of Medicine, Duke University , Durham, North Carolina 27701, United States.,Department of Clinical Sciences Lund, Section of Rheumatology and Molecular Skeletal Biology and ¶Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University , SE 22184 Lund, Sweden
| |
Collapse
|
5
|
Rukov JL, Gravesen E, Mace ML, Hofman-Bang J, Vinther J, Andersen CB, Lewin E, Olgaard K. Effect of chronic uremia on the transcriptional profile of the calcified aorta analyzed by RNA sequencing. Am J Physiol Renal Physiol 2016; 310:F477-91. [PMID: 26739890 DOI: 10.1152/ajprenal.00472.2015] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 01/05/2016] [Indexed: 12/12/2022] Open
Abstract
The development of vascular calcification (VC) in chronic uremia (CU) is a tightly regulated process controlled by factors promoting and inhibiting mineralization. Next-generation high-throughput RNA sequencing (RNA-seq) is a powerful and sensitive tool for quantitative gene expression profiling and the detection of differentially expressed genes. In the present study, we, for the first time, used RNA-seq to examine rat aorta transcriptomes from CU rats compared with control rats. Severe VC was induced in CU rats, which lead to extensive changes in the transcriptional profile. Among the 10,153 genes with an expression level of >1 reads/kilobase transcript/million mapped reads, 2,663 genes were differentially expressed with 47% upregulated genes and 53% downregulated genes in uremic rats. Significantly deregulated genes were enriched for ontologies related to the extracellular matrix, response to wounding, organic substance, and ossification. The individually affected genes were of relevance to osteogenic transformation, tissue calcification, and Wnt modulation. Downregulation of the Klotho gene in uremia is believed to be involved in the development of VC, but it is debated whether the effect is caused by circulating Klotho only or if Klotho is produced locally in the vasculature. We found that Klotho was neither expressed in the normal aorta nor calcified aorta by RNA-seq. In conclusion, we demonstrated extensive changes in the transcriptional profile of the uremic calcified aorta, which were consistent with a shift in phenotype from vascular tissue toward an osteochondrocytic transcriptome profile. Moreover, neither the normal vasculature nor calcified vasculature in CU expresses Klotho.
Collapse
Affiliation(s)
- Jakob L Rukov
- Faculty of Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Eva Gravesen
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Nephrological Department P, Rigshospitalet, Copenhagen, Denmark
| | - Maria L Mace
- Nephrological Department P, Rigshospitalet, Copenhagen, Denmark; Nephrological Department B, Herlev Hospital, Copenhagen, Denmark
| | | | - Jeppe Vinther
- Faculty of Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Ewa Lewin
- Nephrological Department P, Rigshospitalet, Copenhagen, Denmark; Nephrological Department B, Herlev Hospital, Copenhagen, Denmark
| | - Klaus Olgaard
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Nephrological Department P, Rigshospitalet, Copenhagen, Denmark;
| |
Collapse
|
6
|
Zhang Z. Chondrons and the pericellular matrix of chondrocytes. TISSUE ENGINEERING PART B-REVIEWS 2014; 21:267-77. [PMID: 25366980 DOI: 10.1089/ten.teb.2014.0286] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In cartilage, chondrocytes are embedded within an abundant extracellular matrix (ECM). A typical chondron consists of a chondrocyte and the immediate surrounding pericellular matrix (PCM). The PCM has a patent structure, defined molecular composition, and unique physical properties that support the chondrocyte. Given this spatial position, the PCM is pivotal in mediating communication between chondrocytes and the ECM and, thus, plays a critical role in cartilage homeostasis. The biological function and mechanical properties of the PCM have been extensively studied, mostly in the form of chondrons. This review intends to summarize recent progress in chondron and chondrocyte PCM research, with emphasis on the re-establishment of the PCM by isolated chondrocytes or mesenchymal stem cells during chondrogenic differentiation, and the effects of the PCM on cartilage tissue formation.
Collapse
Affiliation(s)
- Zijun Zhang
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, Maryland
| |
Collapse
|
7
|
Quantitative proteomics at different depths in human articular cartilage reveals unique patterns of protein distribution. Matrix Biol 2014; 40:34-45. [PMID: 25193283 DOI: 10.1016/j.matbio.2014.08.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/20/2014] [Accepted: 08/22/2014] [Indexed: 11/23/2022]
Abstract
The articular cartilage of synovial joints ensures friction-free mobility and attenuates mechanical impact on the joint during movement. These functions are mediated by the complex network of extracellular molecules characteristic for articular cartilage. Zonal differences in the extracellular matrix (ECM) are well recognized. However, knowledge about the precise molecular composition in the different zones remains limited. In the present study, we investigated the distribution of ECM molecules along the surface-to-bone axis, using quantitative non-targeted as well as targeted proteomics.\ In a discovery approach, iTRAQ mass spectrometry was used to identify all extractable ECM proteins in the different layers of a human lateral tibial plateau full thickness cartilage sample. A targeted MRM mass spectrometry approach was then applied to verify these findings and to extend the analysis to four medial tibial plateau samples. In the lateral tibial plateau sample, the unique distribution patterns of 70 ECM proteins were identified, revealing groups of proteins with a preferential distribution to the superficial, intermediate or deep regions of articular cartilage. The detailed analysis of selected 29 proteins confirmed these findings and revealed similar distribution patterns in the four medial tibial plateau samples. The results of this study allow, for the first time, an overview of the zonal distribution of a broad range of cartilage ECM proteins and open up further investigations of the functional roles of matrix proteins in the different zones of articular cartilage in health and disease.
Collapse
|
8
|
Musumeci G, Trovato FM, Pichler K, Weinberg AM, Loreto C, Castrogiovanni P. Extra-virgin olive oil diet and mild physical activity prevent cartilage degeneration in an osteoarthritis model: an in vivo and in vitro study on lubricin expression. J Nutr Biochem 2014; 24:2064-75. [PMID: 24369033 DOI: 10.1016/j.jnutbio.2013.07.007] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mediterranean diet includes a relatively high fat consumption mostly from monounsaturated fatty acids mainly provided by olive oil, the principal source of culinary and dressing fat. The beneficial effects of olive oil have been widely studied and could be due to its phytochemicals, which have been shown to possess anti-inflammatory properties. Lubricin is a chondroprotective glycoprotein and it serves as a critical boundary lubricant between opposing cartilage surfaces. A joint injury causes an initial flare of cytokines, which decreases lubricin expression and predisposes to cartilage degeneration such as osteoarthritis. The aim of this study was to evaluate the role of extra-virgin olive oil diet and physical activity on inflammation and expression of lubricin in articular cartilage of rats after injury. In this study we used histomorphometric, histological, immunocytochemical, immunohistochemical, western blot and biochemical analysis for lubricin and interleukin-1 evaluations in the cartilage and in the synovial fluid. We report the beneficial effect of physical activity (treadmill training) and extra-virgin olive oil supplementation, on the articular cartilage. The effects of anterior cruciate ligament transection decrease drastically the expression of lubricin and increase the expression of interleukin-1 in rats, while after physical activity and extra-virgin olive oil supplemented diet, the values return to a normal level compared to the control group. With our results we can confirm the importance of the physical activity in conjunction with extra-virgin olive oil diet in medical therapy to prevent osteoarthritis disease in order to preserve the articular cartilage and then the entire joint.
Collapse
|
9
|
Vincent TL. Targeting mechanotransduction pathways in osteoarthritis: a focus on the pericellular matrix. Curr Opin Pharmacol 2013; 13:449-54. [DOI: 10.1016/j.coph.2013.01.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/17/2013] [Accepted: 01/26/2013] [Indexed: 01/27/2023]
|
10
|
Musumeci G, Loreto C, Leonardi R, Castorina S, Giunta S, Carnazza ML, Trovato FM, Pichler K, Weinberg AM. The effects of physical activity on apoptosis and lubricin expression in articular cartilage in rats with glucocorticoid-induced osteoporosis. J Bone Miner Metab 2013; 31:274-84. [PMID: 23263781 DOI: 10.1007/s00774-012-0414-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 11/28/2012] [Indexed: 12/26/2022]
Abstract
Glucocorticoids are considered the most powerful anti-inflammatory and immunomodulating drugs. However, a number of side-effects are well documented in different diseases, including articular cartilage, where increases or decreases in the synthesis of hormone-dependent extracellular matrix components are seen. The objective of this study has been to test the effects of procedures or drugs affecting bone metabolism on articular cartilage in rats with prednisolone-induced osteoporosis and to evaluate the outcomes of physical activity with treadmill and vibration platform training on articular cartilage. The animals were divided into 5 groups, and bone and cartilage evaluations were performed using whole-body scans and histomorphometric analysis. Lubricin and caspase-3 expression were evaluated by immunohistochemistry, Western blot analysis and biochemical analysis. These results confirm the beneficial effect of physical activity on the articular cartilage. The effects of drug therapy with glucocorticoids decrease the expression of lubricin and increase the expression of caspase-3 in the rats, while after physical activity the values return to normal compared to the control group. Our findings suggest that it might be possible that mechanical stimulation in the articular cartilage could induce the expression of lubricin, which is capable of inhibiting caspase-3 activity, preventing chondrocyte death. We can assume that the physiologic balance between lubricin and caspase-3 could maintain the integrity of cartilage. Therefore, in certain diseases such as osteoporosis, mechanical stimulation could be a possible therapeutic treatment. With our results we can propose the hypothesis that physical activity could also be used as a therapeutic treatment for cartilage disease such as osteoarthritis.
Collapse
Affiliation(s)
- Giuseppe Musumeci
- Department of Bio-Medical Sciences, Human Anatomy and Histology Section, University of Catania, Catania, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Wu P, DeLassus E, Patra D, Liao W, Sandell LJ. Effects of serum and compressive loading on the cartilage matrix synthesis and spatiotemporal deposition around chondrocytes in 3D culture. Tissue Eng Part A 2013; 19:1199-208. [PMID: 23410025 DOI: 10.1089/ten.tea.2012.0559] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The aim of this study was to investigate the effects of serum and compressive dynamic loading on the cartilaginous matrix spatiotemporal distribution around chondrocytes in vitro. Murine chondrocytes suspended in agarose were cultured in serum-free media or in varying concentrations of serum with or without compressive dynamic loading. Gene expression was assayed by quantitative polymerase chain reaction. Immunohistochemistry was performed for type II collagen and type VI collagen, aggrecan, or cartilage oligomeric matrix protein (COMP) to study the effect of serum and dynamic loading on the spatiotemporal distribution of cartilage matrix components. Chondrocytes in serum-free culture exhibited negligible differences in type II collagen, aggrecan, and COMP mRNA expression levels over 15 days of cultivation. However, higher serum concentrations decreased matrix gene expression. Expression of the matrix metalloproteinases (MMP)-3 and MMP-13 mRNA increased over time in serum-free or reduced serum levels, but was significantly suppressed in 10% fetal bovine serum (FBS). Compressive loading significantly stimulated MMP-3 expression on days 7 and 15. Immunohistochemical analysis demonstrated that maximum pericellular matrix deposition was achieved in 10% FBS culture in the absence of compressive loading. The pericellular distribution of type II and VI collagens, aggrecan, and COMP proteins tended to be more co-localized in the pericellular region from day 9 to day 21; compressive loading helped promote this co-localization of matrix proteins. The results of this study suggest that the quantity, quality, and spatial distribution of cartilaginous matrix can be altered by serum concentrations and compressive loading.
Collapse
Affiliation(s)
- Peihui Wu
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
12
|
Hübner S, Efthymiadis A. Recent progress in histochemistry and cell biology. Histochem Cell Biol 2012; 137:403-57. [PMID: 22366957 DOI: 10.1007/s00418-012-0933-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2012] [Indexed: 01/06/2023]
Abstract
Studies published in Histochemistry and Cell Biology in the year 2011 represent once more a manifest of established and newly sophisticated techniques being exploited to put tissue- and cell type-specific molecules into a functional context. The review is therefore the Histochemistry and Cell Biology's yearly intention to provide interested readers appropriate summaries of investigations touching the areas of tissue biology, developmental biology, the biology of the immune system, stem cell research, the biology of subcellular compartments, in order to put the message of such studies into natural scientific-/human- and also pathological-relevant correlations.
Collapse
Affiliation(s)
- Stefan Hübner
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany.
| | | |
Collapse
|