1
|
Zhu J, Zhou Y, Jin B, Shu J. Role of estrogen in the regulation of central and peripheral energy homeostasis: from a menopausal perspective. Ther Adv Endocrinol Metab 2023; 14:20420188231199359. [PMID: 37719789 PMCID: PMC10504839 DOI: 10.1177/20420188231199359] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 08/16/2023] [Indexed: 09/19/2023] Open
Abstract
Estrogen plays a prominent role in regulating and coordinating energy homeostasis throughout the growth, development, reproduction, and aging of women. Estrogen receptors (ERs) are widely expressed in the brain and nearly all tissues of the body. Within the brain, central estrogen via ER regulates appetite and energy expenditure and maintains cell glucose metabolism, including glucose transport, aerobic glycolysis, and mitochondrial function. In the whole body, estrogen has shown beneficial effects on weight control, fat distribution, glucose and insulin resistance, and adipokine secretion. As demonstrated by multiple in vitro and in vivo studies, menopause-related decline of circulating estrogen may induce the disturbance of metabolic signals and a significant decrease in bioenergetics, which could trigger an increased incidence of late-onset Alzheimer's disease, type 2 diabetes mellitus, hypertension, and cardiovascular diseases in postmenopausal women. In this article, we have systematically reviewed the role of estrogen and ERs in body composition and lipid/glucose profile variation occurring with menopause, which may provide a better insight into the efficacy of hormone therapy in maintaining energy metabolic homeostasis and hold a clue for development of novel therapeutic approaches for target tissue diseases.
Collapse
Affiliation(s)
- Jing Zhu
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yier Zhou
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Bihui Jin
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jing Shu
- Reproductive Medicine Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China
| |
Collapse
|
2
|
Song XX, Jin LY, Li Q, Li XF, Luo Y. Estrogen receptor β/substance P signaling in spinal cord mediates antinociceptive effect in a mouse model of discogenic low back pain. Front Cell Neurosci 2023; 16:1071012. [PMID: 36756381 PMCID: PMC9899865 DOI: 10.3389/fncel.2022.1071012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/29/2022] [Indexed: 01/24/2023] Open
Abstract
Introduction Discogenic low back pain (DLBP) is the most commonly described form of back pain. Our previous studies indicated that estrogen-dependent DLBP mechanism was mediated by estrogen receptors (ERs) in the intervertebral disc (IVD) tissue, and the IVD degeneration degree is accompanied by downregulation of ERs, particularly ERβ. However, the neuropathological mechanisms underlying ERs modulation of DLBP are still not well understood. In this study, we investigated the antinociceptive effects of selective ERβ agonists on DLBP-related behavior by regulating substance P in spinal cord and dorsal root ganglia. Methods Two weeks after ovariectomies, 18-week-old female mice were randomly separated into four groups: control group; DLBP sham surgery plus vehicle group; DLBP plus vehicle group; DLBP plus ERβ-specific agonist diarylpropionitrile (DPN) group. Behavioral data was collected including behavioral measures of axial back pain (grip force and tail suspension tests) and radiating hypersensitivity (mechanical sensitivity and cold sensitivity test). Dual label scanning confocal immunofluorescence microscopy was used to observe spatial colocalization of ERβ and substance P in spinal cord. Substance P changes in spinal cord and dorsal root ganglia were measured by immunohistochemistry and real-time PCR. Results ERβ activation could improve both axial and radiating behavioral disorders of DLBP. DPN facilitated the decrease of the amount of time in immobility 1 week after agonist administration. At the time point of 3 weeks, DPN group spent significantly less time in immobility than the vehicle group. In the grip strength tests, starting from postoperative week 1-week 3, DPN injection DLBP mice showed more resistance to stretch than the vehicle injection DLBP mice. Significant differences of cold withdrawal latency time were observed between the DLBP plus DPN injection and DLBP vehicle injection groups at 2- and 3-week injection time point. DPN significantly reversed the paw withdrawal threshold of DLBP mice at the time point of 1, 2, and 3 weeks. Substance P colocalized with ERβ in spinal dorsal horn, mainly in laminae I and II, a connection site of pain transmission. Substance P levels in dorsal horn and dorsal root ganglia of DLBP group were distinctly increased compared with that of control and DLBP sham group. DPN therapy could decrease substance P content in the dorsal horn and the dorsal root ganglia of DLBP mice compared with that of vehicle-treated DLBP mice. Discussion Activation of ERβ is antinociceptive in the DLBP model by controlling substance P in spinal cord and dorsal root ganglia, which might provide a therapeutic target to manage DLBP in the clinic.
Collapse
Affiliation(s)
- Xiao-Xing Song
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin-Yu Jin
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Li
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin-Feng Li
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Xin-Feng Li,
| | - Yan Luo
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Yan Luo,
| |
Collapse
|
3
|
Chou YS, Chuang SC, Chen CH, Ho ML, Chang JK. G-Protein-Coupled Estrogen Receptor-1 Positively Regulates the Growth Plate Chondrocyte Proliferation in Female Pubertal Mice. Front Cell Dev Biol 2021; 9:710664. [PMID: 34490260 PMCID: PMC8417792 DOI: 10.3389/fcell.2021.710664] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022] Open
Abstract
Estrogen enhances long bone longitudinal growth during early puberty. Growth plate chondrocytes are the main cells that contribute to long bone elongation. The role of G-protein-coupled estrogen receptor-1 (GPER-1) in regulating growth plate chondrocyte function remains unclear. In the present study, we generated chondrocyte-specific GPER-1 knockout (CKO) mice to investigate the effect of GPER-1 in growth plate chondrocytes. In control mice, GPER-1 was highly expressed in the growth plates of 4- and 8-week-old mice, with a gradual decline through 12 to 16 weeks. In CKO mice, the GPER-1 expression in growth plate chondrocytes was significantly lower than that in the control mice (80% decrease). The CKO mice also showed a decrease in body length (crown-rump length), body weight, and the length of tibias and femurs at 8 weeks. More importantly, the cell number and thickness of the proliferative zone of the growth plate, as well as the thickness of primary spongiosa and length of metaphysis plus diaphysis in tibias of CKO mice, were significantly decreased compared with those of the control mice. Furthermore, there was also a considerable reduction in the number of proliferating cell nuclear antigens and Ki67-stained proliferating chondrocytes in the tibia growth plate in the CKO mice. The chondrocyte proliferation mediated by GPER-1 was further demonstrated via treatment with a GPER-1 antagonist in cultured epiphyseal cartilage. This study demonstrates that GPER-1 positively regulates chondrocyte proliferation at the growth plate during early puberty and contributes to the longitudinal growth of long bones.
Collapse
Affiliation(s)
- Ya-Shuan Chou
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shu-Chun Chuang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Hwan Chen
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Orthopaedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Orthopaedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Orthopaedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan.,Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan.,Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mei-Ling Ho
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Je-Ken Chang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Orthopaedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Orthopaedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Orthopaedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| |
Collapse
|
4
|
Liu J, Yin S, Luo Y, Bai X, Chen S, Yang H, Zhu H, Pan H, Ma H. Treatment of Short Stature with Aromatase Inhibitors: A Systematic Review and Meta-Analysis. Horm Metab Res 2021; 53:391-401. [PMID: 34154030 DOI: 10.1055/a-1492-2841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The objective of the study is to determine the risks and benefits of treating idiopathic short stature (ISS) with aromatase inhibitors (AIs). We comprehensively searched PubMed, Embase, and the China National Knowledge Infrastructure between establishment year and January 31, 2020. Mean difference (MD)/Standardized mean differences (SMD) with 95% confidence intervals (CI) of individual studies were pooled using fixed or random effects models. Subgroup and sensitivity analyses were also performed. Publication bias was estimated using funnel plots and Egger tests. Fourteen studies including 388 participants were included. The meta-analysis results showed that AIs significantly increased final height (MD=2.46, 95% CI: 0.8-4.12) and predicted adult height (MD=0.34, 95% CI: 0.11-0.57). Changes in bone age (MD=-0.1, 95% CI: -0.86-0.66) and bone mineral density (MD=-0.05, 95% CI: -0.19-0.1) were not different between intervention and control group. AI significantly increased testosterone level (SMD=2.01, 95% CI: 0.8-3.23) and reduced estradiol level (SMD=-1.13, 95% CI: -1.87 to -0.40); The intervention and control group had no significant differences in the levels of high-density lipoprotein-cholesterol (SMD=-0.31, 95%CI: -0.68-0.06) and IGF-1 (SMD=0.7, 95% CI: -0.66-2.06) levels. Adverse events were more frequent in the intervention group than in the control group (odds ratio=3.12, 95% CI: 1.44-6.73). In conclusion, both AI monotherapy and AI combination therapy can increase predicted adult height and testosterone levels.
Collapse
Affiliation(s)
- Jing Liu
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
- Key Laboratory of Endocrinology of National Health Commission, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Shujuan Yin
- Key Laboratory of Endocrinology of National Health Commission, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Graduate School, Hebei North University, Zhangjiakou, Hebei, China
| | - Yunyun Luo
- Key Laboratory of Endocrinology of National Health Commission, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xi Bai
- Key Laboratory of Endocrinology of National Health Commission, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Shi Chen
- Key Laboratory of Endocrinology of National Health Commission, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hongbo Yang
- Key Laboratory of Endocrinology of National Health Commission, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Huijuan Zhu
- Key Laboratory of Endocrinology of National Health Commission, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hui Pan
- Key Laboratory of Endocrinology of National Health Commission, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Huijuan Ma
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital Shijiazhuang, Hebei, China
| |
Collapse
|
5
|
Iravani M, Lagerquist MK, Karimian E, Chagin AS, Ohlsson C, Sävendahl L. Effects of the selective GPER1 agonist G1 on bone growth. Endocr Connect 2019; 8:1302-1309. [PMID: 31434056 PMCID: PMC6765336 DOI: 10.1530/ec-19-0274] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 08/20/2019] [Indexed: 12/28/2022]
Abstract
Estrogens may affect bone growth locally or systemically via the known estrogen receptors ESR1, ESR2 and G protein-coupled estrogen receptor 1 (GPER1). Mouse and human growth plate chondrocytes have been demonstrated to express GPER1 and ablation of this receptor increased bone length in mice. Therefore, GPER1 is an attractive target for therapeutic modulation of bone growth, which has never been explored. To investigate the effects of activated GPER1 on the growth plate, we locally exposed mouse metatarsal bones to different concentrations of the selective GPER1 agonist G1 for 14 days ex vivo. The results showed that none of the concentrations of G1 had any direct effect on metatarsal bone growth when compared to control. To evaluate if GPER1 stimulation may systemically modulate bone growth, ovariectomized C57BL/6 mice were treated with G1 or β-estradiol (E2). Similarly, G1 did not influence tibia and femur growth in treated mice. As expected, E2 treatment suppressed bone growth in vivo. We conclude that ligand stimulation of GPER1 does not influence bone growth in mice.
Collapse
Affiliation(s)
- Maryam Iravani
- Department of Women’s and Children’s Health, Karolinska Institutet and Pediatric Endocrinology Unit, Karolinska University Hospital, Solna, Sweden
- Correspondence should be addressed to M Iravani:
| | - Marie K Lagerquist
- Center of Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Elham Karimian
- Department of Women’s and Children’s Health, Karolinska Institutet and Pediatric Endocrinology Unit, Karolinska University Hospital, Solna, Sweden
| | - Andrei S Chagin
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russian Federation
| | - Claes Ohlsson
- Center of Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Lars Sävendahl
- Department of Women’s and Children’s Health, Karolinska Institutet and Pediatric Endocrinology Unit, Karolinska University Hospital, Solna, Sweden
| |
Collapse
|
6
|
Seyyed Anvari S, Dehgan GH, Razi M. Preliminary Findings of Platelet-Rich Plasma-Induced Ameliorative Effect on Polycystic Ovarian Syndrome. CELL JOURNAL 2019; 21:243-252. [PMID: 31210429 PMCID: PMC6582424 DOI: 10.22074/cellj.2019.5952] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 11/19/2018] [Indexed: 01/22/2023]
Abstract
Objective Polycystic ovarian syndrome (PCOS) is characterized by hormonal imbalance, oxidative stress and chronic
anovulation. The present study was designed to assess ameliorative effect of auto-locating platelet-rich plasma (PRP),
as a novel method, for inhibiting PCOS-induced pathogenesis in experimentally-induced hyperandrogenic PCOS.
Materials and Methods In this experimental study, 30 immature (21 days old) female rats were assigned into five
groups, including control (sampled after 30 days with no treatment), 15 and 30 days PCOS-sole-induced as well as
15 and 30 days PRP auto-located PCOS-induced groups. Serum levels of estrogen, progesterone, androstenedione,
testosterone, follicle stimulating hormone (FSH), luteinizing hormone (LH), ovarian total antioxidant capacity (TAC),
malondialdehyde (MDA), glutathione peroxidase (GSH-px) and superoxide dismutase (SOD) were evaluated.
Expression of estrogen receptor α (Erα), β (Erβ) and c-Myc were assessed. Finally, the numbers of intact follicles per
ovary and mRNA damage ratio were analyzed.
Results PRP groups significantly (P<0.05) decreased serum levels of FSH, LH, testosterone and androstenedione
and remarkably (P<0.05) increased estrogen and progesterone syntheses versus PCOS-sole groups. The PRP
auto-located animals exhibited increased TAC, GSH-px and SOD levels, while they showed diminished MDA content
(P<0.05) versus PCOS-sole groups. The PRP auto-located groups exhibited an elevated expression of Erα and Erβ
versus PCOS-sole groups. Moreover, PRP groups significantly (P<0.05) decreased c-Myc expression and mRNA
damage compared to PCOS-sole groups, and remarkably improved follicular growth.
Conclusion PRP is able to regulate hormonal interaction, improve the ovarian antioxidant potential as well as folliculogenesis
and its auto-location could be considered as a novel method to prevent/ameliorate PCOS-induced pathogenesis.
Collapse
Affiliation(s)
- Samira Seyyed Anvari
- Department of Biology, Collage of Post Graduate, Ahar Islamic Azad University, Ahar, Iran
| | - G Holamreza Dehgan
- Department of Biochemistry, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Mazdak Razi
- Department of Basic Science, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.Electronic Address:
| |
Collapse
|
7
|
Song XX, Shi S, Guo Z, Li XF, Yu BW. Estrogen receptors involvement in intervertebral discogenic pain of the elderly women: colocalization and correlation with the expression of Substance P in nucleus pulposus. Oncotarget 2018; 8:38136-38144. [PMID: 28430617 PMCID: PMC5503520 DOI: 10.18632/oncotarget.15421] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/08/2017] [Indexed: 11/25/2022] Open
Abstract
Estrogenic modulation of pain is an exceedingly complex phenomenon. However, whether estrogen is involved in discogenic low back pain still remains unclear. Here, immunoreactivity staining technique was used to examine the expression level of the estrogen receptors (ERα and ERβ) and a pain related neuropeptide, Substance P in the lumbar intervertebral discs to analyze the relationship between the ERs and Substance P. Nucleus pulposus tissues of 23 elderly female patients were harvested during spinal surgeries and made to detect the immunoreactivity staining of ERα, ERβ and Substance P. The colocalization and intensities of ERs and Substance P were explored and evaluated respectively. The correlations between changes of ERα, ERβ and Substance P were also assessed.Our results revealed that Substance P colocalized with ERα and ERβ both in cytoplasm and nucleus of the nucleus pulposus cells. HSCORE analysis indicated that Substance P negatively correlated with both ERα and ERβ expression. Collectively, the crosstalk between ERs and Substance P might exist in the disc tissue. Estrogen-dependent pain mechanism might partly be mediated through ERs and Substance P in the nucleus pulposus of the elderly females. Estrogen and its receptors might be drug targets in discogenic low back pain diseases.
Collapse
Affiliation(s)
- Xiao-Xing Song
- Department of Anesthesiology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Orthopaedic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sheng Shi
- Department of Orthopaedic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Guo
- Department of Orthopaedic Surgery, Yang Pu Hospital, Tongji University, Shanghai, China
| | - Xin-Feng Li
- Department of Orthopaedic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bu-Wei Yu
- Department of Anesthesiology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Yu B, Jiang K, Chen B, Wang H, Li X, Liu Z. Leptin differentially regulates chondrogenesis in mouse vertebral and tibial growth plates. BMC Musculoskelet Disord 2017; 18:235. [PMID: 28569158 PMCID: PMC5452289 DOI: 10.1186/s12891-017-1601-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 05/22/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Leptin plays an important role in mediating chondrogenesis of limb growth plate. Previous studies suggest that bone structures and development of spine and limb are different. The expression of Ob-Rb, the gene that encodes leptin receptors, is vertebral and appendicular region-specific, suggesting the regulation of leptin on VGP and TGP chondrogenesis may be very different. The aim of the present study was to investigate the differential regulation of leptin on the chondrogenesis of vertebral growth plate (VGP) and tibial growth plate (TGP). METHODS We compared the VGP and TGP from wild type (C57BL/6) and leptin-deficient (ob/ob) mice. We then generated primary cultures of TGP and VGP chondrocytes. By treating the primary cells with different concentrations of leptin in vitro, we analyzed proliferation and apoptosis of the primary chondrocytes from TGP and VGP. We further measured expression of chondrogenic-related genes in these cells that had been incubated with different doses of leptin. RESULTS Leptin-deficient mice of 8-week-old had shorter tibial and longer vertebral lengths than the wide type mice. Disturbed columnar structure was observed for TGP but not for VGP. In primary chondrocyte cultures, leptin inhibited VGP chondrocyte proliferation but promoted their apoptosis. Collagen IIA and aggrecan mRNA, and the protein levels of proliferation- and chondrogenesis-related markers, including PCNA, Sox9, and Smad4, were downregulated by leptin in a dose-dependent manner. In contrast, leptin stimulated the proliferation and chondrogenic differentiation of TGP chondrocytes at physiological levels (i.e., 10 and 50 ng/mL) but not at high levels (i.e., 100 and 1000 ng/mL). CONCLUSION Leptin exerts a stimulatory effect on the proliferation and chondrogenic differentiation of the long bone growth plate but an inhibitory effect on the spine growth plate. The ongoing study will shed light on the regulatory mechanisms of leptin in bone development and metabolism.
Collapse
Affiliation(s)
- Bo Yu
- Department of Spine Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Kaibiao Jiang
- Department of Spine Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Bin Chen
- Department of Spine Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Hantao Wang
- Department of Spine Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Xinfeng Li
- Department of Spine Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Zude Liu
- Department of Spine Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Rd, Shanghai, 200127, China.
| |
Collapse
|
9
|
Iravani M, Lagerquist M, Ohlsson C, Sävendahl L. Regulation of bone growth via ligand-specific activation of estrogen receptor alpha. J Endocrinol 2017; 232:403-410. [PMID: 27999091 DOI: 10.1530/joe-16-0263] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 12/20/2016] [Indexed: 01/17/2023]
Abstract
Estrogens are well known for their capacity to promote bone maturation and at high doses to induce growth plate closure and thereby stop further growth. High-dose estrogen treatment has therefore been used to limit growth in extremely tall girls. However, recent data suggest that this treatment may have severe side effects, including increased risk of cancer and reduced fertility. We hypothesized that estrogenic effects in bone are mediated via ERα signaling. Twelve-week-old ovariectomized female C57BL/6 mice were subcutaneously injected for 4 weeks with E2 or selective ERα (PPT) or ERβ (DPN) agonists. After killing, tibia and femur lengths were measured, and growth plate morphology was analyzed. E2- and PPT-treated mice had shorter tibiae and femur bones when compared to vehicle-treated controls, whereas animals treated with DPN had similar bone lengths compared to controls. Growth plate height and hypertrophic zone height were reduced in animals treated with E2 or PPT but not in those treated with DPN, supporting that the effect was mediated via ERα. Moreover, PCNA staining revealed suppressed proliferation of chondrocytes in the tibia growth plate in PPT- or E2-treated mice compared to controls. Our data show that estrogenic effects on bone growth and growth plate maturation are mainly mediated via ERα. Our findings may have direct implications for the development of new and more selective treatment modalities of extreme tall stature using selective estrogen receptor modulators that may have low side effects than high-dose E2 treatment.
Collapse
Affiliation(s)
- Maryam Iravani
- Department of Women's and Children's HealthKarolinska Institutet, Stockholm, Sweden
| | - Marie Lagerquist
- Centre for Bone and Arthritis ResearchInstitute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Claes Ohlsson
- Centre for Bone and Arthritis ResearchInstitute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Lars Sävendahl
- Department of Women's and Children's HealthKarolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Shi S, Zheng S, Li XF, Liu ZD. The Effect of Estradiol on the Growth Plate Chondrocytes of Limb and Spine from Postnatal Mice in vitro: The Role of Estrogen-Receptor and Estradiol Concentration. Int J Biol Sci 2017; 13:100-109. [PMID: 28123350 PMCID: PMC5264265 DOI: 10.7150/ijbs.17696] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 11/08/2016] [Indexed: 01/04/2023] Open
Abstract
Objectives: Skeletal development is a complex process. Little is known about the different response of limb or spine growth plate chondrocytes (LGP or SGP) to the estrogen level and the role of estrogen receptor (ER) during postnatal stage. Methods: LGP and SGP chondrocytes were isolated from 50 one-week mice and treated with different concentrations of 17β-estradiol. Cell viability was measured by cell counting kit-8 (CCK-8). The expression of collagen II and X were evaluated by real-time PCR and Western blotting. Then, the response of LGP or SGP chondrocyte after with or without estradiol and specific ER antagonists to block the effect of ERs were also measured by Western blotting and immunofluorescence. Results: Estradiol promoted the chondrogensis of the chondrocytes in vitro and achieved the maximal expression of type II collagen at the dose of 10-7 M. Additionally, the regulatory effect of estradiol on the chondrogenesis can be mainly relied on ERα. The LGP chondrocytes were more sensitive to the estradiol treatment than SGP in the expression of type II collagen. Conclusions: Estrogen at a pharmacological concentration (10-7 M) could stimulate the maximal production of type II collagen in the growth plate chondrocytes in vitro, which exerts its activity mainly through ERα in the chondrogenesis. Furthermore, the LGP chondrocytes were more sensitive to the estradiol treatment than SGP in the chondrogenesis.
Collapse
Affiliation(s)
- Sheng Shi
- Department of Orthopaedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, P.R.China
| | - Shuang Zheng
- Department of Endocrinology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, P.R.China
| | - Xin-Feng Li
- Department of Orthopaedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, P.R.China
| | - Zu-De Liu
- Department of Orthopaedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, P.R.China
| |
Collapse
|
11
|
Adibnia E, Razi M, Malekinejad H. Zearalenone and 17 β-estradiol induced damages in male rats reproduction potential; evidence for ERα and ERβ receptors expression and steroidogenesis. Toxicon 2016; 120:133-46. [PMID: 27527272 DOI: 10.1016/j.toxicon.2016.08.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/09/2016] [Accepted: 08/11/2016] [Indexed: 12/29/2022]
Abstract
The estrogen receptors (ERs)-dependent effects of Zearalenone (ZEA) on structure and function of the testis as well as sperm parameters were compared with 17-β estradiol as endogenous substance. For this purpose, 30 mature male rats were assigned into five groups as; control (appropriate volume of normal saline, i. p.), ZEA-received (1, 2 and 4 mg/kg, b. w., i. p.) and 17 β-estradiol (E2)-received (appropriate dose of 0.1 mg/kg, i. p.). Following 28 days, the mRNA levels of estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ) in the testis and sperms and the expression of them at protein levels in testicles were estimated. Mitochondrial content of germinal epithelium, Leydig cells steroid foci, sperm quality parameters and serum level of testosterone were assessed. Fluorescent techniques were used for analyzing apoptosis and mRNA damage in necrotic cells. ZEA reduced the mRNA and protein levels of ERα in testicles while up-regulated the ERβ expression. The mRNA level of ERα decreased in sperms of ZEA and E2-received animals. No remarkable changes were found for ERβ expression in sperms from ZEA and E2-received animals. ZEA reduced the Leydig cells steroidogenesis, mitochondrial content of germinal cells and elevated cellular apoptosis and necrosis dose-dependently. E2 reduced the testosterone concentration, enhanced the apoptosis and reduced sperm quality. Our data suggest that ZEA-induced detrimental effects in the structure and function of testis, may attribute to changing the ERs expression at mRNA and translational level.
Collapse
Affiliation(s)
- Elmira Adibnia
- Department of Comparative Histology & Embryology, Faculty of Veterinary Medicine, P.O. Box: 1177, Urmia University, Urmia, Iran
| | - Mazdak Razi
- Department of Comparative Histology & Embryology, Faculty of Veterinary Medicine, P.O. Box: 1177, Urmia University, Urmia, Iran.
| | - Hassan Malekinejad
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran; Department of Pharmacology & Toxicology, Faculty of Veterinary Medicine, P.O. Box: 1177, Urmia University, Urmia, Iran
| |
Collapse
|
12
|
Song XX, Yu YJ, Li XF, Liu ZD, Yu BW, Guo Z. Estrogen receptor expression in lumbar intervertebral disc of the elderly: Gender- and degeneration degree-related variations. Joint Bone Spine 2014; 81:250-3. [DOI: 10.1016/j.jbspin.2013.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 09/04/2013] [Indexed: 10/25/2022]
|
13
|
Taatjes DJ, Roth J. The Histochemistry and Cell Biology compendium: a review of 2012. Histochem Cell Biol 2013; 139:815-46. [PMID: 23665922 DOI: 10.1007/s00418-013-1098-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2013] [Indexed: 01/27/2023]
Abstract
The year 2012 was another exciting year for Histochemistry and Cell Biology. Innovations in immunohistochemical techniques and microscopy-based imaging have provided the means for advances in the field of cell biology. Over 130 manuscripts were published in the journal during 2012, representing methodological advancements, pathobiology of disease, and cell and tissue biology. This annual review of the manuscripts published in the previous year in Histochemistry and Cell Biology serves as an abbreviated reference for the readership to quickly peruse and discern trends in the field over the past year. The review has been broadly divided into multiple sections encompassing topics such as method advancements, subcellular components, extracellular matrix, and organ systems. We hope that the creation of this subdivision will serve to guide the reader to a specific topic of interest, while simultaneously providing a concise and easily accessible encapsulation of other topics in the broad area of Histochemistry and Cell Biology.
Collapse
Affiliation(s)
- Douglas J Taatjes
- Department of Pathology and Microscopy Imaging Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| | | |
Collapse
|
14
|
Boyan BD, Hart DA, Enoka RM, Nicolella DP, Resnick E, Berkley KJ, Sluka KA, Kwoh CK, Tosi LL, O'Connor MI, Coutts RD, Kohrt WM. Hormonal modulation of connective tissue homeostasis and sex differences in risk for osteoarthritis of the knee. Biol Sex Differ 2013; 4:3. [PMID: 23374322 PMCID: PMC3583799 DOI: 10.1186/2042-6410-4-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 12/10/2012] [Indexed: 12/24/2022] Open
Abstract
Young female athletes experience a higher incidence of ligament injuries than their male counterparts, females experience a higher incidence of joint hypermobility syndrome (a risk factor for osteoarthritis development), and post-menopausal females experience a higher prevalence of osteoarthritis than age-matched males. These observations indicate that fluctuating sex hormone levels in young females and loss of ovarian sex hormone production due to menopause likely contribute to observed sex differences in knee joint function and risk for loss of function. In studies of osteoarthritis, however, there is a general lack of appreciation for the heterogeneity of hormonal control in both women and men. Progress in this field is limited by the relatively few preclinical osteoarthritis models, and that most of the work with established models uses only male animals. To elucidate sex differences in osteoarthritis, it is important to examine sex hormone mechanisms in cells from knee tissues and the sexual dimorphism in the role of inflammation at the cell, tissue, and organ levels. There is a need to determine if the risk for loss of knee function and integrity in females is restricted to only the knee or if sex-specific changes in other tissues play a role. This paper discusses these gaps in knowledge and suggests remedies.
Collapse
Affiliation(s)
- Barbara D Boyan
- Isis Research Network on Musculoskeletal Health, Society for Women's Health Research, 1025 Connecticut Avenue, NW Suite 601, Washington, DC, 20036, USA.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA 30332-0363, USA
| | - David A Hart
- Isis Research Network on Musculoskeletal Health, Society for Women's Health Research, 1025 Connecticut Avenue, NW Suite 601, Washington, DC, 20036, USA
| | - Roger M Enoka
- Isis Research Network on Musculoskeletal Health, Society for Women's Health Research, 1025 Connecticut Avenue, NW Suite 601, Washington, DC, 20036, USA
| | - Daniel P Nicolella
- Isis Research Network on Musculoskeletal Health, Society for Women's Health Research, 1025 Connecticut Avenue, NW Suite 601, Washington, DC, 20036, USA
| | - Eileen Resnick
- Isis Research Network on Musculoskeletal Health, Society for Women's Health Research, 1025 Connecticut Avenue, NW Suite 601, Washington, DC, 20036, USA
| | - Karen J Berkley
- Isis Research Network on Musculoskeletal Health, Society for Women's Health Research, 1025 Connecticut Avenue, NW Suite 601, Washington, DC, 20036, USA
| | - Kathleen A Sluka
- Isis Research Network on Musculoskeletal Health, Society for Women's Health Research, 1025 Connecticut Avenue, NW Suite 601, Washington, DC, 20036, USA
| | - C Kent Kwoh
- University of Pittsburgh and Pittsburgh VA Healthcare System, Pittsburgh, PA, USA.,Epidemiology, and Clinical and Translational Science Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, University of Pittsburgh Arthritis Institute, Pittsburgh, USA
| | - Laura L Tosi
- Isis Research Network on Musculoskeletal Health, Society for Women's Health Research, 1025 Connecticut Avenue, NW Suite 601, Washington, DC, 20036, USA
| | - Mary I O'Connor
- Isis Research Network on Musculoskeletal Health, Society for Women's Health Research, 1025 Connecticut Avenue, NW Suite 601, Washington, DC, 20036, USA.,Mayo Clinic, 4500 San Pablo Road, Jacksonville, Florida, USA
| | - Richard D Coutts
- Isis Research Network on Musculoskeletal Health, Society for Women's Health Research, 1025 Connecticut Avenue, NW Suite 601, Washington, DC, 20036, USA
| | - Wendy M Kohrt
- Isis Research Network on Musculoskeletal Health, Society for Women's Health Research, 1025 Connecticut Avenue, NW Suite 601, Washington, DC, 20036, USA
| |
Collapse
|
15
|
Li XF, Wang SJ, Jiang LS, Dai LY. Stage specific effect of leptin on the expressions of estrogen receptor and extracellular matrix in a model of chondrocyte differentiation. Cytokine 2013; 61:876-84. [PMID: 23357303 DOI: 10.1016/j.cyto.2012.12.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Revised: 11/20/2012] [Accepted: 12/19/2012] [Indexed: 01/01/2023]
Abstract
Endochondral ossification is a dynamic process. The interaction between leptin and estrogen in this process is complicated. Whether there is a stage specific crosstalk between leptin and estrogen in the differentiation process of the chondrocytes in the growth plate remains unknown. The aim of our study was to investigate the effect of leptin on the expression of estrogen receptors and extracellular matrix in ATDC5 cells, an in vitro model of endochondral ossification. First, we quantified the physiological expressions of estrogen receptors α, β (ERα, ERβ), leptin receptor (Ob-Rb), type II and type X collagens in definite stages of endochondral ossification in ATDC5 cells using real-time PCR. Dynamic and stage specific expression characteristics of these target genes were observed. Simultaneous expressions of Ob-Rb with ERα or ERβ in ATDC5 cells were also found with dual-label confocal immunofluorescency. Then using Western blotting analysis and/or real-time PCR, we detected that, leptin treatment up-regulated the expressions of ERα, ERβ and type II collagen, but down-regulated type X collagen expression and the ERα/ERβ ratio in the chondrogenic differentiation stage. Meanwhile, leptin down-regulated the expressions of ERα, type II and type X collagens, and the ERα/ERβ ratio, but up-regulated the expression of ERβ in the hypertrophic differentiation stage. Significant positive correlation existed between ERα and type II collagen expression, and between the ratio of ERα/ERβ and type X collagen production. In summary, the crosstalk between leptin and estrogen receptor might be differentiation stage specific in ATDC5 cells.
Collapse
Affiliation(s)
- Xin-Feng Li
- Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | | | | | | |
Collapse
|
16
|
Wang SJ, Li XF, Jiang LS, Dai LY. Estrogen stimulates leptin receptor expression in ATDC5 cells via the estrogen receptor and extracellular signal-regulated kinase pathways. J Endocrinol 2012; 213:163-72. [PMID: 22396455 DOI: 10.1530/joe-11-0353] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Regulation of the physiological processes of endochondral bone formation during long bone growth is controlled by various factors including the hormones estrogen and leptin. The effects of estrogen are mediated not only through the direct activity of estrogen receptors (ERs) but also through cross talk with other signaling systems implicated in chondrogenesis. The receptors of both estrogen and leptin (OBR (LEPR)) are detectable in growth plate chondrocytes of all zones. In this study, the expression of mRNA and protein of OBR in chondrogenic ATDC5 cells and the effect of 17β-estradiol (E(2)) stimulation were assessed using quantitative PCR and western blotting. We have found that the mRNA of Obr was dynamically expressed during the differentiation of ATDC5 cells over 21 days. Application of E(2) (10(-7) M) at day 14 for 48 h significantly upregulated OBR mRNA and protein levels (P<0.05). The upregulation of Obr mRNA by E(2) was shown to take place in a concentration-dependent manner, with a concentration of 10(-7) M E(2) having the greatest effect. Furthermore, we have confirmed that E(2) affected the phosphorylation of ERK1/2 (MAPK1/MAPK3) in a time-dependent manner where a maximal fourfold change was observed at 10 min following application of E(2). Finally, pretreatment of the cells with either U0126 (ERK1/2 inhibitor) or ICI 182 780 (ER antagonist) blocked the upregulation of OBR by E(2) and prevented the E(2)-induced phosphorylation of ERK. These data demonstrate, for the first time, the existence of cross talk between estrogen and OBR in the regulation of bone growth whereby estrogen regulates the expression of Obr in growth plate chondrocytes via ERs and the activation of ERK1/2 signaling pathways.
Collapse
Affiliation(s)
- Shan-Jin Wang
- Department of Orthopedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | | | | | | |
Collapse
|