1
|
Zervou MI, Tarlatzis BC, Grimbizis GF, Spandidos DA, Niewold TB, Goulielmos GN. Association of endometriosis with Sjögren's syndrome: Genetic insights (Review). Int J Mol Med 2024; 53:20. [PMID: 38186322 PMCID: PMC10781419 DOI: 10.3892/ijmm.2024.5344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/20/2023] [Indexed: 01/09/2024] Open
Abstract
Patients with a history of endometriosis have an increased risk of developing various autoimmune diseases such as rheumatoid arthritis, ankylosing spondylitis, systemic lupus erythematosus, multiple sclerosis and celiac disease. There is a potential association between endometriosis and an increased susceptibility for Sjögren's syndrome (SS). SS is a common chronic, inflammatory, systemic, autoimmune, multifactorial disease of complex pathology, with genetic, epigenetic and environmental factors contributing to the development of this condition. It occurs in 0.5‑1% of the population, is characterized by the presence of ocular dryness, lymphocytic infiltrations and contributes to neurological, gastrointestinal, vascular and dermatological manifestations. Endometriosis is an inflammatory, estrogen‑dependent, multifactorial, heterogeneous gynecological disease, affecting ≤10% of reproductive‑age women. It is characterized by the occurrence of endometrial tissue outside the uterine cavity, mainly in the pelvic cavity, and is associated with pelvic pain, dysmenorrhea, deep dyspareunia and either subfertility or infertility. It is still unclear whether SS appears as a secondary response to endometriosis, or it is developed due to any potential shared mechanisms of these conditions. The aim of the present review was to explore further the biological basis only of the co‑occurrence of these disorders but not their association at clinical basis, focusing on the analysis of the partially shared genetic background between endometriosis and SS, and the clarification of the possible similarities in the underlying pathogenetic mechanisms and the relevant molecular pathways.
Collapse
Affiliation(s)
- Maria I. Zervou
- Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, University of Crete, 71403 Heraklion, Greece
| | - Basil C. Tarlatzis
- First Department of Obstetrics and Gynecology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Grigoris F. Grimbizis
- Unit for Human Reproduction, First Department of Obstetrics and Gynecology, 'Papageorgiou' General Hospital, Aristotle University Medical School, 56403 Thessaloniki, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71403 Heraklion, Greece
| | - Timothy B. Niewold
- Barbara Volcker Center for Women and Rheumatic Disease, New York, NY 10021, USA
- Hospital for Special Surgery, New York, NY 10021, USA
| | - George N. Goulielmos
- Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, University of Crete, 71403 Heraklion, Greece
- Department of Internal Medicine, University Hospital of Heraklion, 71500 Heraklion, Greece
| |
Collapse
|
2
|
Saleki K, Alijanizadeh P, Azadmehr A. Is neuropilin-1 the neuroimmune initiator of multi-system hyperinflammation in COVID-19? Biomed Pharmacother 2023; 167:115558. [PMID: 37748412 DOI: 10.1016/j.biopha.2023.115558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 09/27/2023] Open
Abstract
A major immunopathological feature of Coronavirus disease-2019 (COVID-19) is excessive inflammation in the form of "cytokine storm". The storm is characterized by injurious levels of cytokines which form a complicated network damaging different organs, including the lungs and the brain. The main starter of "cytokine network" hyperactivation in COVID-19 has not been discovered yet. Neuropilins (NRPs) are transmembrane proteins that act as neuronal guidance and angiogenesis modulators. The crucial function of NRPs in forming the nervous and vascular systems has been well-studied. NRP1 and NRP2 are the two identified homologs of NRP. NRP1 has been shown as a viral entry pathway for SARS-CoV2, which facilitates neuroinvasion by the virus within the central or peripheral nervous systems. These molecules directly interact with various COVID-19-related molecules, such as specific regions of the spike protein (major immune element of SARS-CoV2), vascular endothelial growth factor (VEGF) receptors, VEGFR1/2, and ANGPTL4 (regulator of vessel permeability and integrity). NRPs mainly play a role in hyperinflammatory injury of the CNS and lungs, and also the liver, kidney, pancreas, and heart in COVID-19 patients. New findings have suggested NRPs good candidates for pharmacotherapy of COVID-19. However, therapeutic targeting of NRP1 in COVID-19 is still in the preclinical phase. This review presents the implications of NRP1 in multi-organ inflammation-induced injury by SARS-CoV2 and provides insights for NRP1-targeting treatments for COVID-19 patients.
Collapse
Affiliation(s)
- Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; Department of e-Learning, Virtual School of Medical Education and Management, Shahid Beheshti University of Medical Sciences(SBMU), Tehran, Iran; USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Parsa Alijanizadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Abbas Azadmehr
- Immunology Department, Babol University of Medical Sciences, Babol, Iran; Cellular and Molecular Biology Research Center Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
3
|
Sisto M, Ribatti D, Lisi S. Molecular Mechanisms Linking Inflammation to Autoimmunity in Sjögren's Syndrome: Identification of New Targets. Int J Mol Sci 2022; 23:13229. [PMID: 36362017 PMCID: PMC9658723 DOI: 10.3390/ijms232113229] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 10/15/2023] Open
Abstract
Sjögren's syndrome (SS) is a systemic autoimmune rheumatic disorder characterized by the lymphocytic infiltration of exocrine glands and the production of autoantibodies to self-antigens. The involvement of the exocrine glands drives the pathognomonic manifestations of dry eyes (keratoconjunctivitis sicca) and dry mouth (xerostomia) that define sicca syndrome. To date, the molecular mechanisms mediating pathological salivary gland dysfunction in SS remain to be elucidated, despite extensive studies investigating the underlying cause of this disease, hampering the development of novel therapeutic strategies. Many researchers have identified a multifactorial pathogenesis of SS, including environmental, genetic, neuroendocrine, and immune factors. In this review, we explore the latest developments in understanding the molecular mechanisms involved in the pathogenesis of SS, which have attracted increasing interest in recent years.
Collapse
Affiliation(s)
- Margherita Sisto
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari “Aldo Moro”, Piazza Giulio Cesare 1, I-70124 Bari, Italy
| | | | | |
Collapse
|
4
|
Yang QC, Yao F, Li QY, Chen MJ, Zhang LJ, Shu HY, Liang RB, Pan YC, Ge QM, Shao Y. Ocular microvascular alteration in Sjögren syndrome. Quant Imaging Med Surg 2022; 12:1324-1335. [PMID: 35111627 DOI: 10.21037/qims-21-234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/24/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Sjögren syndrome (SjS) is a systemic disease affecting exocrine, including ocular lacrimal, glands. It is uncertain whether ocular microvascular alterations are associated with this disease. In this study, we evaluated retinal and conjunctival microvascular changes in SjS patients using optical coherence tomography angiography (OCTA). METHODS Twelve SjS patients (24 eyes) and 12 normal controls (24 eyes) were recruited to this study. Three-dimensional conjunctival and retinal OCTA images of each eye were captured and microvascular density was calculated. Each image was analyzed by retinal area based on the early treatment of diabetic retinopathy study method (R, S, L, and I) hemisphere segmentation method (SR, SL, IL, and IR); and central wheel division method (C1-C6). Correlation analyses were used to look for associations between retinal and conjunctival microvascular densities. RESULTS Superficial and deep retinal layer microvascular density was decreased in SjS patients compared with normal controls (P<0.05). This significant difference was found in both superficial and deep layers in S, L, SL, IL and C1-C3 regions, and additionally in the I and SR regions in the superficial layer. Conversely, in the conjunctiva microvascular density was higher in SjS patients than in controls. In SjS patients, a significant negative correlation was found between conjunctival and both superficial (r=-0.641; P=0.025) and deep (r=-0.958; P<0.0001) microvascular densities. CONCLUSIONS The changed microvascular densities measured in deep and superficial retinal layers and in the conjunctiva demonstrate that OCTA is a promising method in differentiating the eyes from those with SjS.
Collapse
Affiliation(s)
- Qi-Chen Yang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, China.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Fan Yao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, China
| | - Qiu-Yu Li
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, China
| | - Min-Jie Chen
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, China
| | - Li-Juan Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, China
| | - Hui-Ye Shu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, China
| | - Rong-Bin Liang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, China
| | - Yi-Cong Pan
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, China
| | - Qian-Min Ge
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, China
| | - Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, China
| |
Collapse
|
5
|
Asam S, Neag G, Berardicurti O, Gardner D, Barone F. The role of stroma and epithelial cells in primary Sjögren's syndrome. Rheumatology (Oxford) 2019; 60:3503-3512. [PMID: 30945742 DOI: 10.1093/rheumatology/kez050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/19/2018] [Indexed: 12/27/2022] Open
Abstract
Primary SS (pSS) is a chronic autoimmune condition characterized by infiltration of the exocrine glands and systemic B cell hyperactivation. This glandular infiltration is associated with loss of glandular function, with pSS patients primarily presenting with severe dryness of the eyes and mouth. Within the affected glands, the infiltrating lymphocytes are organized in tertiary lymphoid structures. Tertiary lymphoid structures subvert normal tissue architecture and impact on organ function, by promoting the activation and maintenance of autoreactive lymphocytes. This review summarizes the current knowledge about the role of stromal cells (including endothelium, epithelium, nerves and fibroblasts) in the pathogenesis of pSS, in particular the interactions taking place between stromal cells and infiltrating lymphocytes. We will provide evidences pointing towards the driving role of stromal cells in the orchestration of the local inflammatory milieu, thus highlighting the need for therapies aimed at targeting this compartment alongside classical immunosuppression in pSS.
Collapse
Affiliation(s)
- Saba Asam
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Georgiana Neag
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | | | - David Gardner
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Francesca Barone
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| |
Collapse
|
6
|
Clinical and immunological parameters of Sjögren's syndrome. Autoimmun Rev 2018; 17:1053-1064. [DOI: 10.1016/j.autrev.2018.05.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 05/13/2018] [Indexed: 02/08/2023]
|
7
|
Roy S, Bag AK, Singh RK, Talmadge JE, Batra SK, Datta K. Multifaceted Role of Neuropilins in the Immune System: Potential Targets for Immunotherapy. Front Immunol 2017; 8:1228. [PMID: 29067024 PMCID: PMC5641316 DOI: 10.3389/fimmu.2017.01228] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/19/2017] [Indexed: 12/27/2022] Open
Abstract
Neuropilins (NRPs) are non-tyrosine kinase cell surface glycoproteins expressed in all vertebrates and widely conserved across species. The two isoforms, such as neuropilin-1 (NRP1) and neuropilin-2 (NRP2), mainly act as coreceptors for class III Semaphorins and for members of the vascular endothelial growth factor family of molecules and are widely known for their role in a wide array of physiological processes, such as cardiovascular, neuronal development and patterning, angiogenesis, lymphangiogenesis, as well as various clinical disorders. Intriguingly, additional roles for NRPs occur with myeloid and lymphoid cells, in normal physiological as well as different pathological conditions, including cancer, immunological disorders, and bone diseases. However, little is known concerning the molecular pathways that govern these functions. In addition, NRP1 expression has been characterized in different immune cellular phenotypes including macrophages, dendritic cells, and T cell subsets, especially regulatory T cell populations. By contrast, the functions of NRP2 in immune cells are less well known. In this review, we briefly summarize the genomic organization, structure, and binding partners of the NRPs and extensively discuss the recent advances in their role and function in different immune cell subsets and their clinical implications.
Collapse
Affiliation(s)
- Sohini Roy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Arup K Bag
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Rakesh K Singh
- Department of Microbiology and Pathology, University of Nebraska Medical Center, Omaha, NE, United States
| | - James E Talmadge
- Department of Microbiology and Pathology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kaustubh Datta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
8
|
Alunno A, Ibba-Manneschi L, Bistoni O, Rosa I, Caterbi S, Gerli R, Manetti M. Mobilization of lymphatic endothelial precursor cells and lymphatic neovascularization in primary Sjögren's syndrome. J Cell Mol Med 2016; 20:613-22. [PMID: 26828975 PMCID: PMC5125813 DOI: 10.1111/jcmm.12793] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 12/18/2015] [Indexed: 12/15/2022] Open
Abstract
Although lymphatic neovascularization may be a key feature of chronic inflammation, it is almost unexplored in primary Sjögren's syndrome (pSS). A recent study revealed a pro‐lymphangiogenic function of interleukin (IL)‐17, a leading player in pSS pathogenesis. The aims of the study were to investigate lymphangiogenic mediators and lymphatic vasculature in pSS, as well as their possible association with IL‐17. Circulating lymphatic endothelial precursor cells (LEPCs) and Th17 cells were enumerated in pSS patients and healthy donors. VEGF‐C and IL‐17 levels were assessed in paired serum samples. Lymphatic vasculature, VEGF‐C/VEGF receptor (VEGFR)‐3 and IL‐17 were evaluated in pSS minor salivary glands (MSGs) and compared with normal and non‐specific chronic sialadenitis (NSCS) MSGs. Circulating LEPCs were expanded in pSS and correlated with circulating Th17 cells, IL‐17 and VEGF‐C. In pSS MSGs, a newly formed lymphatic capillary network was found within periductal inflammatory infiltrates and the number of interlobular lymphatic vessels was significantly increased compared with normal and NSCS MSGs. Strong VEGF‐C expression was detected in pSS ductal epithelial cells and periductal inflammatory cells. Numerous VEGFR‐3+ infiltrating mononuclear cells were exclusively observed in pSS MSGs. VEGFR‐3 expression was strongly increased in lymphatic capillaries of pSS MSGs. IL‐17+ inflammatory cells were preferentially observed around lymphatic vessels in pSS MSGs. This study supports the notion that lymphvasculogenesis and lymphangiogenesis are active in pSS, thereby unmasking a novel aspect of disease pathogenesis. In addition, our results suggest another possible pathogenic role of IL‐17 in pSS, further supporting its therapeutic targeting in this disease.
Collapse
Affiliation(s)
- Alessia Alunno
- Rheumatology Unit, Department of Medicine, University of Perugia, Perugia, Italy
| | - Lidia Ibba-Manneschi
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Onelia Bistoni
- Rheumatology Unit, Department of Medicine, University of Perugia, Perugia, Italy
| | - Irene Rosa
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Sara Caterbi
- Rheumatology Unit, Department of Medicine, University of Perugia, Perugia, Italy
| | - Roberto Gerli
- Rheumatology Unit, Department of Medicine, University of Perugia, Perugia, Italy
| | - Mirko Manetti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence, Italy
| |
Collapse
|
9
|
Lee KE, Park DJ, Choi SE, Kang JH, Yim YR, Kim JE, Lee JW, Wen L, Kim TJ, Park YW, Lee JS, Yoon KC, Lee SS. Chemokine (C-X-C Motif) Ligand 1 (CXCL1) Expression in the Minor Salivary Glands of Sjögren's Syndrome Patients. JOURNAL OF RHEUMATIC DISEASES 2016. [DOI: 10.4078/jrd.2016.23.5.297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kyung-Eun Lee
- Division of Rheumatology, Department of Internal Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Dong-Jin Park
- Division of Rheumatology, Department of Internal Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Sung-Eun Choi
- Division of Rheumatology, Department of Internal Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Ji-Hyoun Kang
- Division of Rheumatology, Department of Internal Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Yi-Rang Yim
- Division of Rheumatology, Department of Internal Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Ji-Eun Kim
- Division of Rheumatology, Department of Internal Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Jeong-Won Lee
- Division of Rheumatology, Department of Internal Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Lihui Wen
- Division of Rheumatology, Department of Internal Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Tae-Jong Kim
- Division of Rheumatology, Department of Internal Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Yong-Wook Park
- Division of Rheumatology, Department of Internal Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Ji Shin Lee
- Department of Pathology, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Kyung Chul Yoon
- Department of Ophthalmology, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Shin-Seok Lee
- Division of Rheumatology, Department of Internal Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
10
|
Sisto M, Lisi S. New Insights Into ADAMs Regulation of the GRO-α/CXCR2 System: Focus on Sjögren's Syndrome. Int Rev Immunol 2014; 34:486-99. [DOI: 10.3109/08830185.2014.975892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
11
|
Sisto M, Lisi S, Ingravallo G, Lofrumento DD, D'Amore M, Ribatti D. Neovascularization is prominent in the chronic inflammatory lesions of Sjögren's syndrome. Int J Exp Pathol 2014; 95:131-7. [PMID: 24772480 DOI: 10.1111/iep.12061] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Angiogenesis is a common finding in chronic inflammatory diseases; however, its role in Sjögren's syndrome (SS) remains to be elucidated. Previous SS studies have demonstrated an increase in VEGF-A/VEGFR-2 system expression in minor salivary gland (MSG) biopsies from patients with SS, but differences in the new blood vessel formation between the different grades of disease severity have not been reported. Therefore, experiments were performed to demonstrate angiogenesis during different phases of primary SS (pSS) and to define the relationship between the microvessel density (MVD), macrophage infiltration and histiocyte distribution in SS MSG inflammatory lesions. In this series of experiments, immunohistochemistry was used to examine angiogenesis in serial sections of pSS MSG. Patients with pSS were classified accordingly with the grade of inflammatory lesions as I = low-grade (low focus score of 1 or 2), II = intermediate-grade (focus score of 3–6) and III = extensive inflammation in the MSG (high focus score of 12). Histological examination demonstrated that the MVD increased with the severity of the inflammatory lesions, and in addition, we found an increased infiltration of inflammatory and pro-angiogenic cells.These findings reveal that angiogenesis is intimately involved in the progression of pSS, may be central to the propagation of the chronic immune response observed in pSS and could represent a novel potential biomarker of pSS disease activity.
Collapse
|
12
|
New advances in the classification, pathogenesis and treatment of Sjogren's syndrome. Curr Opin Rheumatol 2014; 25:623-9. [PMID: 23846338 DOI: 10.1097/bor.0b013e328363eaa5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE OF REVIEW In the current review, we summarize the newly proposed classification criteria for Sjogren's syndrome, recent findings of Sjogren's syndrome pathogenesis and the latest achievements in disease management. RECENT FINDINGS A new set of Sjogren's syndrome classification criteria has been recently proposed by an expert consensus panel of the American College of Rheumatology-Sjögren's International Collaborative Clinical Alliance. Recent findings reveal new aspects in the activation of innate and adaptive immune pathways and novel animal models - highly reminiscent of human Sjogren's syndrome-are described. Of particular note, apoptosis of epithelial cells as a result of deficient IκBζ, previously shown to be a modulator of NFκB activity, has been suggested as a central pathogenetic event. Mechanistic data on anti-B-cell therapies, gene transfer approaches aimed to restore secretory function, as well mesenchymal stem cell transplantation in mice and humans are also discussed. SUMMARY Over the last year, a new set of classification criteria for Sjogren's syndrome has been suggested, new Sjogren's syndrome-like animal models have been described and significant progress has been made in understanding the activation of innate and adaptive immune responses. New therapeutic approaches have been also implemented with variable success.
Collapse
|
13
|
Chronic inflammation enhances NGF-β/TrkA system expression via EGFR/MEK/ERK pathway activation in Sjögren’s syndrome. J Mol Med (Berl) 2014; 92:523-37. [DOI: 10.1007/s00109-014-1130-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/27/2014] [Accepted: 01/28/2014] [Indexed: 10/25/2022]
|
14
|
Mavragani CP, Moutsopoulos HM. Sjögren's syndrome. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2013; 9:273-85. [PMID: 24050623 DOI: 10.1146/annurev-pathol-012513-104728] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sjögren's syndrome (SS) is a chronic autoimmune disorder that typically affects exocrine glands--mainly labial and lacrimal--leading to complaints of dry mouth and eyes. Given that periepithelial mononuclear cell infiltrates, both in exocrine glands and in other parenchymal organs (kidney, lung, and liver), are the histopathological disease hallmark, the term autoimmune epithelitis has been proposed. B cell hyperactivity is another cardinal SS feature manifested by the presence of autoantibodies and hypergammaglobulinemia, as well as clinical/serological phenotypes mediated by immune complexes, such as peripheral neuropathy, vasculitic lesions, and hypocomplementemia. These have been designated adverse predictors for lymphoma development in approximately 5% to 10% of patients. Activation of the type I interferon/B cell-activating factor axis in SS has recently attracted particular attention. Inappropriate overexpression of endogenous nucleic acids in a genetically susceptible individual might provide a plausible scenario for the immune activation observed in SS.
Collapse
Affiliation(s)
- Clio P Mavragani
- Department of Physiology, University of Athens, Athens, 11527 Greece;
| | | |
Collapse
|
15
|
Taatjes DJ, Roth J. The Histochemistry and Cell Biology compendium: a review of 2012. Histochem Cell Biol 2013; 139:815-46. [PMID: 23665922 DOI: 10.1007/s00418-013-1098-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2013] [Indexed: 01/27/2023]
Abstract
The year 2012 was another exciting year for Histochemistry and Cell Biology. Innovations in immunohistochemical techniques and microscopy-based imaging have provided the means for advances in the field of cell biology. Over 130 manuscripts were published in the journal during 2012, representing methodological advancements, pathobiology of disease, and cell and tissue biology. This annual review of the manuscripts published in the previous year in Histochemistry and Cell Biology serves as an abbreviated reference for the readership to quickly peruse and discern trends in the field over the past year. The review has been broadly divided into multiple sections encompassing topics such as method advancements, subcellular components, extracellular matrix, and organ systems. We hope that the creation of this subdivision will serve to guide the reader to a specific topic of interest, while simultaneously providing a concise and easily accessible encapsulation of other topics in the broad area of Histochemistry and Cell Biology.
Collapse
Affiliation(s)
- Douglas J Taatjes
- Department of Pathology and Microscopy Imaging Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| | | |
Collapse
|
16
|
|
17
|
Sisto M, Lisi S, Lofrumento DD, Ingravallo G, De Lucro R, D'Amore M. Salivary gland expression level of IκBα regulatory protein in Sjögren's syndrome. J Mol Histol 2013; 44:447-54. [PMID: 23377923 DOI: 10.1007/s10735-013-9487-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 01/28/2013] [Indexed: 12/22/2022]
Abstract
Diagnosis and therapeutic strategies in Sjögren's syndrome (SS) might greatly benefit of the present multidisciplinary approach to studying the molecular pathogenesis of the disease. A deregulated inflammatory response has been described in the SS. The research in the last years sheds light on the importance of the NF-κB pathway regulating the pro-inflammatory cytokine production and leukocyte recruitment. These are important contributors to the inflammatory response during the development of SS. In this study we examine the expression of the NF-κB inhibitory protein termed IκBα in salivary glands epithelial cells (SGEC) comparing it with SGEC from healthy controls, to test the hypothesis that an altered expression of IκBα occurs in SGEC from SS biopsies. Real-Time PCR, western blot and immunohistochemistry demonstrated that the expression level of IκBα was significantly lower in SS with respect to healthy controls leading to an increased NF-κB activity. Our results suggest that the analysis of IκBα expression at salivary gland epithelial cell level could be a potential new hallmark of SS progression and sustain a rationale to more deeply investigate the therapeutic potential of specific NF-κB inhibitors in SS.
Collapse
Affiliation(s)
- Margherita Sisto
- Laboratory of Cell Biology, Section of Human Anatomy and Histology, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari Medical School, piazza Giulio Cesare 1, 70124, Bari, Italy.
| | | | | | | | | | | |
Collapse
|
18
|
Emerging avenues linking inflammation, angiogenesis and Sjögren's syndrome. Cytokine 2013; 61:693-703. [PMID: 23340181 DOI: 10.1016/j.cyto.2012.12.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 12/10/2012] [Accepted: 12/19/2012] [Indexed: 12/28/2022]
Abstract
Sjögren's syndrome (SS) is an autoimmune disease characterized by an inflammatory mononuclear infiltration and the destruction of epithelial cells of the lachrymal and salivary glands. The aetiology is unknown. The expression "autoimmune epithelitis" has been proposed as an alternative to SS, in view of the emerging central role of the epithelial cells in the disease pathogenesis. At the biomolecular level, the epithelial cells play an important role in triggering the autoimmune condition via antigen presentation, apoptosis, and chemokine and cytokines release. Inflammation and angiogenesis are frequently coupled in the pathological conditions associated to autoimmune diseases, and an angiogenic imbalance contributes to the pathogenesis of a number of inflammatory disorders. This work reviews the current knowledge of the molecular and cellular mechanisms underlying the pathogenesis of the inflammatory reactions that characterize SS. The literature and our data on the role of angiogenesis in the pathophysiology of the disease are discussed.
Collapse
|
19
|
Lisi S, Sisto M, Lofrumento DD, D'Amore M, De Lucro R, Ribatti D. A potential role of the GRO-α/CXCR2 system in Sjögren's syndrome: regulatory effects of pro-inflammatory cytokines. Histochem Cell Biol 2012; 139:371-9. [PMID: 23052840 DOI: 10.1007/s00418-012-1035-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2012] [Indexed: 01/10/2023]
Abstract
Chemokines, small pro-inflammatory cytokines, are involved in migration of inflammatory cells in inflamed tissues and recent studies established their role in angiogenesis, hematopoiesis, cancer and autoimmune conditions. Growth related oncogene-alpha (GRO-α), a member of the CXC chemokine family, and its receptor CXCR2 are involved in the inflammatory processes. Since there is no previous report that supports a possible role of GRO-α/CXCR2 receptor complex during inflammation and neovascularization existing in the autoimmune disease Sjögren's syndrome (SS), in this study, we examined CXCR2 and its ligand GRO-α expression in SS tissues. Immunohistochemistry revealed that GRO-α and its receptor CXCR2 were expressed at high levels in diseased tissues compared to healthy controls. In addition, human salivary gland epithelial cells (SGEC) cultures were submitted to a pro-inflammatory microenvironment using cytokines IL-6 and TNF-α in order to demonstrate that CXCR2 may change its initial expression pattern to another under inflammatory condition. The data show an increased expression of CXCR2 depending on the inflammatory cytokine used in culture in a time-dependent manner. Furthermore, silencing of the pro-angiogenic chemokine GRO-α is proportionally correlated with decreased expression of CXCR2 in pro-inflammatory cytokine-stimulated SGEC indicating the GRO-α/CXCR2 complex as a novel therapeutic target for the chronic inflammatory disease Sjögren's syndrome.
Collapse
Affiliation(s)
- Sabrina Lisi
- Department of Basic Medical Sciences, Section of Human Anatomy and Histology, Laboratory of Cell Biology, University of Bari Medical School, piazza Giulio Cesare 1, 70124 Bari, Italy.
| | | | | | | | | | | |
Collapse
|