1
|
Sheida A, Farshadi M, Mirzaei A, Najjar Khalilabad S, Zarepour F, Taghavi SP, Hosseini Khabr MS, Ravaei F, Rafiei S, Mosadeghi K, Yazdani MS, Fakhraie A, Ghattan A, Zamani Fard MM, Shahyan M, Rafiei M, Rahimian N, Talaei Zavareh SA, Mirzaei H. Potential of Natural Products in the Treatment of Glioma: Focus on Molecular Mechanisms. Cell Biochem Biophys 2024; 82:3157-3208. [PMID: 39150676 DOI: 10.1007/s12013-024-01447-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 08/17/2024]
Abstract
Despite the waning of traditional treatments for glioma due to possible long-term issues, the healing possibilities of substances derived from nature have been reignited in the scientific community. These natural substances, commonly found in fruits and vegetables, are considered potential alternatives to pharmaceuticals, as they have been shown in prior research to impact pathways surrounding cancer progression, metastases, invasion, and resistance. This review will explore the supposed molecular mechanisms of different natural components, such as berberine, curcumin, coffee, resveratrol, epigallocatechin-3-gallate, quercetin, tanshinone, silymarin, coumarin, and lycopene, concerning glioma treatment. While the benefits of a balanced diet containing these compounds are widely recognized, there is considerable scope for investigating the efficacy of these natural products in treating glioma.
Collapse
Affiliation(s)
- Amirhossein Sheida
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Amirhossein Mirzaei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shakiba Najjar Khalilabad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Zarepour
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Sadat Hosseini Khabr
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Ravaei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Sara Rafiei
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Kimia Mosadeghi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Sepehr Yazdani
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Fakhraie
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Ghattan
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Masoud Zamani Fard
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Shahyan
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Moein Rafiei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | | | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
2
|
Wu M, Lu L, Chen S, Li Y, Zhang Q, Fu S, Deng X. Natural products inducing nucleolar stress: implications in cancer therapy. Anticancer Drugs 2022; 33:e21-e27. [PMID: 34561998 DOI: 10.1097/cad.0000000000001146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The nucleolus is the site of ribosome biogenesis and is found to play an important role in stress sensing. For over 100 years, the increase in the size and number of nucleoli has been considered as a marker of aggressive tumors. Despite this, the contribution of the nucleolus and the biologic processes mediated by it to cancer pathogenesis has been largely overlooked. This state has been changed over the recent decades with the demonstration that the nucleolus controls numerous cellular functions associated with cancer development. Induction of nucleolar stress has recently been regarded as being superior to conventional cytotoxic/cytostatic strategy in that it is more selective to neoplastic cells while sparing normal cells. Natural products represent an excellent source of bioactive molecules and some of them have been found to be able to induce nucleolar stress. The demonstration of these nucleolar stress-inducing natural products has paved the way for a new therapeutic approach to more delicate tumor cell-killing. This review provides a contemporary summary of the role of the nucleolus as a novel promising target for cancer therapy, with particular emphasis on natural products as an exciting new class of anti-cancer drugs with nucleolar stress-inducing properties.
Collapse
Affiliation(s)
- Mi Wu
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University
- Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha
| | - Lu Lu
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University
- Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha
| | - Sisi Chen
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University
- Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha
| | - Ying Li
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University
- Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha
| | - Qiuting Zhang
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University
- Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha
| | - Shujun Fu
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University
- Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha
| | - Xiyun Deng
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University
- Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha
- Department of Pathophysiology, Jishou University School of Medicine, Jishou, Hunan, China
| |
Collapse
|
3
|
Liu Z, Chen Y, Gao H, Xu W, Zhang C, Lai J, Liu X, Sun Y, Huang H. Berberine Inhibits Cell Proliferation by Interfering with Wild-Type and Mutant P53 in Human Glioma Cells. Onco Targets Ther 2020; 13:12151-12162. [PMID: 33262612 PMCID: PMC7699991 DOI: 10.2147/ott.s279002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/04/2020] [Indexed: 12/21/2022] Open
Abstract
Introduction Glioma is the most common malignant brain tumor. TP53 is the most common mutant gene in human cancer. Wild-type p53 (wtp53) is a tumor suppressor protein whereas mutant p53 (mutp53) is an oncoprotein that promotes tumor cell proliferation. Our aim was to examine the inhibitory effects of berberine on the proliferation of human glioma cells via regulation of wtp53, mutp53, and their downstream molecules. Methods We selected wtp53 cells (U87 cells) and mutp53 cells (U251 cells termed p53 R273H) to examine the inhibitory effects of berberine on human glioma cells. We used the CCK-8 kit to detect the toxic effect of berberine. Flow cytometry was used to detect the effect of berberine. Clone formation test was used to test the inhibitory effect of berberine on the proliferation of glioma cells. Western blot was used to detect the changes of related proteins such as p53, p-p53, p21 and cyclin D1. Lentivirus transduction was used to transduce wild-type p53 into U251 cells to further examine the effect of berberine. The nude mouse subcutaneous tumor model was used to detect the effect of berberine on inhibiting the proliferation of glioma cells in vivo. Results Berberine promoted the phosphorylation of wtp53, increased the expression of p21 protein, reduced cyclin D1 content, and caused G1 phase arrest in U87 cells. Berberine also reduced mutp53 content and caused G2 phase arrest in U251 cells with a concurrent decrease in p21, cyclin D1, and cyclin B1 content. Transduction with wtp53 enhanced the effects on cell cycle arrest. Further, berberine significantly inhibited glioma growth in vivo mouse tumor model. Discussion Glioma is a group of heterogeneous brain tumors with unique biological and clinical characteristics. Berberine can inhibit glioma cells through a variety of ways. Our research indicated that berberine inhibited the proliferation of glioma cells by interfering with wtp53 and mutp53. This indicates that berberine could be used as a potential drug to treat wild-type and mutant p53 glioma.
Collapse
Affiliation(s)
- Ziqiang Liu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Yong Chen
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Haijun Gao
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Weidong Xu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Chaochao Zhang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Jiacheng Lai
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Xingxing Liu
- Department of Internal Medicine, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Yuxue Sun
- Department of Neurosurgery, Henan Provincial People's Hospital, Zhengzhou, People's Republic of China
| | - Haiyan Huang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
4
|
NOL6, a new founding oncogene in human prostate cancer and targeted by miR-590-3p. Cytotechnology 2020; 72:469-478. [PMID: 32249364 DOI: 10.1007/s10616-020-00394-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/31/2020] [Indexed: 12/19/2022] Open
Abstract
We identified a new human prostate cancer oncogene, nucleolar protein 6 (NOL6), and screened for microRNAs that interfere with its expression in prostate cancer cells. A NOL6 shRNA plasmid was constructed and packaged into lentivirus to infect PC-3 cells. The ability of cell proliferation was evaluated by cell counting and colony formation. Cell cycle progression and apoptosis of PC-3 cells were detected by flow cytometry. A retrieval database was used to screen possible target microRNAs, and the effect of target miRNA overexpression on PC-3 cells was observed. The results showed that after NOL6 gene knockdown, PC-3 cell mitosis was blocked, proliferation was decreased, and the number of apoptotic cells were increased. The microRNA, hsa-miR-590-3p, that can regulate the NOL6 gene expression was identified. Overexpression of miR-590-3p in PC-3 cells by synthetic mimics resulted in abnormal mitosis, decreased cell proliferation, and an increase in apoptosis. In summary, we identified NOL6 as a novel oncogene in the human prostate cancer PC-3 cell line. The miRNA miR-590-3p interferes with NOL6 expression making it a potential treatment for prostate cancer.
Collapse
|
5
|
Weeks SE, Metge BJ, Samant RS. The nucleolus: a central response hub for the stressors that drive cancer progression. Cell Mol Life Sci 2019; 76:4511-4524. [PMID: 31338556 PMCID: PMC6841648 DOI: 10.1007/s00018-019-03231-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/25/2019] [Accepted: 07/15/2019] [Indexed: 01/17/2023]
Abstract
The nucleolus is a sub-nuclear body known primarily for its role in ribosome biogenesis. Increased number and/or size of nucleoli have historically been used by pathologists as a prognostic indicator of cancerous lesions. This increase in nucleolar number and/or size is classically attributed to the increased need for protein synthesis in cancer cells. However, evidences suggest that the nucleolus plays critical roles in many cellular functions in both normal cell biology and disease pathologies, including cancer. As new functions of the nucleolus are elucidated, there is mounting evidence to support the role of the nucleolus in regulating additional cellular functions, particularly response to cellular stressors, maintenance of genome stability, and DNA damage repair, as well as the regulation of gene expression and biogenesis of several ribonucleoproteins. This review highlights the central role of the nucleolus in carcinogenesis and cancer progression and discusses how cancer cells may become "addicted" to nucleolar functions.
Collapse
Affiliation(s)
- Shannon E Weeks
- Department of Pathology, University of Alabama at Birmingham, WTI 320E, 1824 6th Ave South, Birmingham, AL, 35233, USA
| | - Brandon J Metge
- Department of Pathology, University of Alabama at Birmingham, WTI 320E, 1824 6th Ave South, Birmingham, AL, 35233, USA
| | - Rajeev S Samant
- Department of Pathology, University of Alabama at Birmingham, WTI 320E, 1824 6th Ave South, Birmingham, AL, 35233, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
6
|
Holdbrook DA, Singh M, Choudhury Y, Kalaw EM, Koh V, Tan HS, Kanesvaran R, Tan PH, Peng JYS, Tan MH, Lee HK. Automated Renal Cancer Grading Using Nuclear Pleomorphic Patterns. JCO Clin Cancer Inform 2019; 2:1-12. [PMID: 30652593 DOI: 10.1200/cci.17.00100] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
PURPOSE Nuclear pleomorphic patterns are essential for Fuhrman grading of clear cell renal cell carcinoma (ccRCC). Manual observation of renal histopathologic slides may lead to subjective and inconsistent assessment between pathologists. An automated, image-based system that classifies ccRCC slides by quantifying nuclear pleomorphic patterns in an objective and consistent interpretable fashion can aid pathologists in histopathologic assessment. METHODS In the current study, histopathologic tissue slides of 59 patients with ccRCC who underwent surgery at Singapore General Hospital were assembled retrospectively. An automated image classification pipeline detects and analyzes prominent nucleoli in ccRCC images to classify them as either low (Fuhrman grade 1 and 2) or high (Fuhrman grade 3 and 4). The pipeline uses machine learning and image pixel intensity-based feature extraction techniques for nuclear analysis. We trained classification systems that concurrently analyze different permutations of multiple prominent nucleoli image patches. RESULTS Given the parameters for feature combination and extraction, we present experimental results across various configurations for the classification of a given ccRCC histopathologic image. We also demonstrate that the image score used by the pipeline, termed fraction value, is correlated ( R = 0.59) with an existing multigene assay-based scoring system that has previously been demonstrated to be a strong indicator of prognosis in patients with ccRCC. CONCLUSION The current method provides an objective and fully automated way by which to process pathologic slides. The correlation study with a multigene assay-based scoring system also allows us to provide quantitative interpretation for already established nuclear pleomorphic patterns in ccRCC. This method can be extended to other cancers whose corresponding grading systems use nuclear pattern information.
Collapse
Affiliation(s)
- Daniel Aitor Holdbrook
- Daniel Aitor Holdbrook, Malay Singh, Emarene Mationg Kalaw, and Hwee Kuan Lee, Bioinformatics Institute; Malay Singh and Hwee Kuan Lee, National University of Singapore; Yukti Choudhury and Min-Han Tan, Lucence Diagnostics; Yukti Choudhury and Min-Han Tan, Institute of Bioengineering and Nanotechnology; Valerie Koh, Puay Hoon Tan, and John Yuen Shyi Peng, Singapore General Hospital; Hui Shan Tan, Ravindran Kanesvaran, and Min-Han Tan, National Cancer Center Singapore; and Hwee Kuan Lee, Institute for Infocomm Research, Singapore
| | - Malay Singh
- Daniel Aitor Holdbrook, Malay Singh, Emarene Mationg Kalaw, and Hwee Kuan Lee, Bioinformatics Institute; Malay Singh and Hwee Kuan Lee, National University of Singapore; Yukti Choudhury and Min-Han Tan, Lucence Diagnostics; Yukti Choudhury and Min-Han Tan, Institute of Bioengineering and Nanotechnology; Valerie Koh, Puay Hoon Tan, and John Yuen Shyi Peng, Singapore General Hospital; Hui Shan Tan, Ravindran Kanesvaran, and Min-Han Tan, National Cancer Center Singapore; and Hwee Kuan Lee, Institute for Infocomm Research, Singapore
| | - Yukti Choudhury
- Daniel Aitor Holdbrook, Malay Singh, Emarene Mationg Kalaw, and Hwee Kuan Lee, Bioinformatics Institute; Malay Singh and Hwee Kuan Lee, National University of Singapore; Yukti Choudhury and Min-Han Tan, Lucence Diagnostics; Yukti Choudhury and Min-Han Tan, Institute of Bioengineering and Nanotechnology; Valerie Koh, Puay Hoon Tan, and John Yuen Shyi Peng, Singapore General Hospital; Hui Shan Tan, Ravindran Kanesvaran, and Min-Han Tan, National Cancer Center Singapore; and Hwee Kuan Lee, Institute for Infocomm Research, Singapore
| | - Emarene Mationg Kalaw
- Daniel Aitor Holdbrook, Malay Singh, Emarene Mationg Kalaw, and Hwee Kuan Lee, Bioinformatics Institute; Malay Singh and Hwee Kuan Lee, National University of Singapore; Yukti Choudhury and Min-Han Tan, Lucence Diagnostics; Yukti Choudhury and Min-Han Tan, Institute of Bioengineering and Nanotechnology; Valerie Koh, Puay Hoon Tan, and John Yuen Shyi Peng, Singapore General Hospital; Hui Shan Tan, Ravindran Kanesvaran, and Min-Han Tan, National Cancer Center Singapore; and Hwee Kuan Lee, Institute for Infocomm Research, Singapore
| | - Valerie Koh
- Daniel Aitor Holdbrook, Malay Singh, Emarene Mationg Kalaw, and Hwee Kuan Lee, Bioinformatics Institute; Malay Singh and Hwee Kuan Lee, National University of Singapore; Yukti Choudhury and Min-Han Tan, Lucence Diagnostics; Yukti Choudhury and Min-Han Tan, Institute of Bioengineering and Nanotechnology; Valerie Koh, Puay Hoon Tan, and John Yuen Shyi Peng, Singapore General Hospital; Hui Shan Tan, Ravindran Kanesvaran, and Min-Han Tan, National Cancer Center Singapore; and Hwee Kuan Lee, Institute for Infocomm Research, Singapore
| | - Hui Shan Tan
- Daniel Aitor Holdbrook, Malay Singh, Emarene Mationg Kalaw, and Hwee Kuan Lee, Bioinformatics Institute; Malay Singh and Hwee Kuan Lee, National University of Singapore; Yukti Choudhury and Min-Han Tan, Lucence Diagnostics; Yukti Choudhury and Min-Han Tan, Institute of Bioengineering and Nanotechnology; Valerie Koh, Puay Hoon Tan, and John Yuen Shyi Peng, Singapore General Hospital; Hui Shan Tan, Ravindran Kanesvaran, and Min-Han Tan, National Cancer Center Singapore; and Hwee Kuan Lee, Institute for Infocomm Research, Singapore
| | - Ravindran Kanesvaran
- Daniel Aitor Holdbrook, Malay Singh, Emarene Mationg Kalaw, and Hwee Kuan Lee, Bioinformatics Institute; Malay Singh and Hwee Kuan Lee, National University of Singapore; Yukti Choudhury and Min-Han Tan, Lucence Diagnostics; Yukti Choudhury and Min-Han Tan, Institute of Bioengineering and Nanotechnology; Valerie Koh, Puay Hoon Tan, and John Yuen Shyi Peng, Singapore General Hospital; Hui Shan Tan, Ravindran Kanesvaran, and Min-Han Tan, National Cancer Center Singapore; and Hwee Kuan Lee, Institute for Infocomm Research, Singapore
| | - Puay Hoon Tan
- Daniel Aitor Holdbrook, Malay Singh, Emarene Mationg Kalaw, and Hwee Kuan Lee, Bioinformatics Institute; Malay Singh and Hwee Kuan Lee, National University of Singapore; Yukti Choudhury and Min-Han Tan, Lucence Diagnostics; Yukti Choudhury and Min-Han Tan, Institute of Bioengineering and Nanotechnology; Valerie Koh, Puay Hoon Tan, and John Yuen Shyi Peng, Singapore General Hospital; Hui Shan Tan, Ravindran Kanesvaran, and Min-Han Tan, National Cancer Center Singapore; and Hwee Kuan Lee, Institute for Infocomm Research, Singapore
| | - John Yuen Shyi Peng
- Daniel Aitor Holdbrook, Malay Singh, Emarene Mationg Kalaw, and Hwee Kuan Lee, Bioinformatics Institute; Malay Singh and Hwee Kuan Lee, National University of Singapore; Yukti Choudhury and Min-Han Tan, Lucence Diagnostics; Yukti Choudhury and Min-Han Tan, Institute of Bioengineering and Nanotechnology; Valerie Koh, Puay Hoon Tan, and John Yuen Shyi Peng, Singapore General Hospital; Hui Shan Tan, Ravindran Kanesvaran, and Min-Han Tan, National Cancer Center Singapore; and Hwee Kuan Lee, Institute for Infocomm Research, Singapore
| | - Min-Han Tan
- Daniel Aitor Holdbrook, Malay Singh, Emarene Mationg Kalaw, and Hwee Kuan Lee, Bioinformatics Institute; Malay Singh and Hwee Kuan Lee, National University of Singapore; Yukti Choudhury and Min-Han Tan, Lucence Diagnostics; Yukti Choudhury and Min-Han Tan, Institute of Bioengineering and Nanotechnology; Valerie Koh, Puay Hoon Tan, and John Yuen Shyi Peng, Singapore General Hospital; Hui Shan Tan, Ravindran Kanesvaran, and Min-Han Tan, National Cancer Center Singapore; and Hwee Kuan Lee, Institute for Infocomm Research, Singapore
| | - Hwee Kuan Lee
- Daniel Aitor Holdbrook, Malay Singh, Emarene Mationg Kalaw, and Hwee Kuan Lee, Bioinformatics Institute; Malay Singh and Hwee Kuan Lee, National University of Singapore; Yukti Choudhury and Min-Han Tan, Lucence Diagnostics; Yukti Choudhury and Min-Han Tan, Institute of Bioengineering and Nanotechnology; Valerie Koh, Puay Hoon Tan, and John Yuen Shyi Peng, Singapore General Hospital; Hui Shan Tan, Ravindran Kanesvaran, and Min-Han Tan, National Cancer Center Singapore; and Hwee Kuan Lee, Institute for Infocomm Research, Singapore
| |
Collapse
|
7
|
He S, Ma X, Ye Y, Zhang M, Zhuang J, Song Y, Xia W. HEATR1 modulates cell survival in non-small cell lung cancer via activation of the p53/PUMA signaling pathway. Onco Targets Ther 2019; 12:4001-4011. [PMID: 31190896 PMCID: PMC6535672 DOI: 10.2147/ott.s195826] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 04/26/2019] [Indexed: 12/31/2022] Open
Abstract
Aim: To determine the mechanisms of HEATR1 on cell survival in non-small cell lung cancer (NSCLC). Methods: HEATR1 mRNA expression levels in 57 pairs of NSCLC tumor and adjacent normal lung tissues were analyzed using the TCGA database. The effect of HEATR1 inhibition on cell proliferation, apoptosis, and colony formation was measured in A549 and NCI-H460 cells lines. In addition, the effect of HEATR1 inhibition on tumor growth was measured using in vivo xenograft nude mouse models. Additionally, downstream signaling pathways affected by HEATR1 inhibition were analyzed using microarrays and bioinformatics analysis, and were validated using quantitative real-time polymerase chain reaction and Western blot analysis. Results: HEATR1 levels were significantly higher in NSCLC tumor tissues compared to normal adjacent lung tissues (P<0.001). In vitro, cell proliferation was significantly reduced in both A549 and NCI-H1299 cells transduced with shHEATR1 compared to shCtrl (P<0.001). Colony formation was also significantly reduced after HEATR1 interference (P<0.01). Additionally, the percentage of apoptosis was significantly increased in cells transduced with shHEATR1 (P<0.001). In vivo, HEATR1 inhibition significantly reduced xenograft tumor growth in nude mice. HEATR1 inhibition drastically affected the p53-signaling pathway, significantly up-regulating PUMA and BAX both at the mRNA and protein levels (P<0.001), while BCL2 levels were significantly down-regulated (P<0.01). The cell proliferation and apoptosis were recovered in cell transduced with shHEATR1 and shp53 compared to shHEATR1 (P<0.05). Conclusion: HEATR1 inhibition activated p53 by reducing ribosome biogenesis, which subsequently led to NSCLC cell apoptosis and reduced cell survival through the p53-PUMA-BAX/BCL2 axis. Our results provide a mechanism by which therapeutic modulation of HEATR1 could be a treatment strategy for NSCLC. In addition, HEATR1 could be used as a potential biomarker for the prognosis or therapeutic evaluation of NSCLC.
Collapse
Affiliation(s)
- Saifei He
- Central Laboratory, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Xing Ma
- Department of Nuclear Medicine, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Ying Ye
- Central Laboratory, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Miao Zhang
- Central Laboratory, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Juhua Zhuang
- Department of Nuclear Medicine, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yanan Song
- Central Laboratory, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Wei Xia
- Department of Nuclear Medicine, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| |
Collapse
|
8
|
Yang C, Zang W, Ji Y, Li T, Yang Y, Zheng X. Ribosomal protein L6 (RPL6) is recruited to DNA damage sites in a poly(ADP-ribose) polymerase-dependent manner and regulates the DNA damage response. J Biol Chem 2018; 294:2827-2838. [PMID: 30598506 DOI: 10.1074/jbc.ra118.007009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 12/27/2018] [Indexed: 12/21/2022] Open
Abstract
Ribosomal proteins are the building blocks of ribosome biogenesis. Beyond their known participation in ribosome assembly, the ribosome-independent functions of ribosomal proteins are largely unknown. Here, using immunoprecipitation, subcellular fractionation, His-ubiquitin pulldown, and immunofluorescence microscopy assays, along with siRNA-based knockdown approaches, we demonstrate that ribosomal protein L6 (RPL6) directly interacts with histone H2A and is involved in the DNA damage response (DDR). We found that in response to DNA damage, RPL6 is recruited to DNA damage sites in a poly(ADP-ribose) polymerase (PARP)-dependent manner, promoting its interaction with H2A. We also observed that RPL6 depletion attenuates the interaction between mediator of DNA damage checkpoint 1 (MDC1) and H2A histone family member X, phosphorylated (γH2AX), impairs the accumulation of MDC1 at DNA damage sites, and reduces both the recruitment of ring finger protein 168 (RNF168) and H2A Lys-15 ubiquitination (H2AK15ub). These RPL6 depletion-induced events subsequently inhibited the recruitment of the following downstream repair proteins: tumor protein P53-binding protein 1 (TP53BP1) and BRCA1, DNA repair-associated (BRCA1). Moreover, the RPL6 knockdown resulted in defects in the DNA damage-induced G2-M checkpoint, DNA damage repair, and cell survival. In conclusion, our study identifies RPL6 as a critical regulatory factor involved in the DDR. These findings expand our knowledge of the extraribosomal functions of ribosomal proteins in cell physiology and deepen our understanding of the molecular mechanisms underlying DDR regulation.
Collapse
Affiliation(s)
- Chuanzhen Yang
- From the State Key Lab of Protein and Plant Gene Research and.,the Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Weicheng Zang
- From the State Key Lab of Protein and Plant Gene Research and.,the Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yapeng Ji
- From the State Key Lab of Protein and Plant Gene Research and.,the Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Tingting Li
- From the State Key Lab of Protein and Plant Gene Research and.,the Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yongfeng Yang
- From the State Key Lab of Protein and Plant Gene Research and.,the Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xiaofeng Zheng
- From the State Key Lab of Protein and Plant Gene Research and .,the Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
9
|
Jarzebowski L, Le Bouteiller M, Coqueran S, Raveux A, Vandormael-Pournin S, David A, Cumano A, Cohen-Tannoudji M. Mouse adult hematopoietic stem cells actively synthesize ribosomal RNA. RNA (NEW YORK, N.Y.) 2018; 24:1803-1812. [PMID: 30242063 PMCID: PMC6239186 DOI: 10.1261/rna.067843.118] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/14/2018] [Indexed: 06/08/2023]
Abstract
The contribution of basal cellular processes to the regulation of tissue homeostasis has just started to be appreciated. However, our knowledge of the modulation of ribosome biogenesis activity in situ within specific lineages remains very limited. This is largely due to the lack of assays that enable quantitation of ribosome biogenesis in small numbers of cells in vivo. We used a technique, named Flow-FISH, combining cell surface antibody staining and flow cytometry with intracellular ribosomal RNA (rRNA) FISH, to measure the levels of pre-rRNAs of hematopoietic cells in vivo. Here, we show that Flow-FISH reports and quantifies ribosome biogenesis activity in hematopoietic cell populations, thereby providing original data on this fundamental process notably in rare populations such as hematopoietic stem and progenitor cells. We unravel variations in pre-rRNA levels between different hematopoietic progenitor compartments and during erythroid differentiation. In particular, our data indicate that, contrary to what may be anticipated from their quiescent state, hematopoietic stem cells have significant ribosome biogenesis activity. Moreover, variations in pre-rRNA levels do not correlate with proliferation rates, suggesting that cell type-specific mechanisms might regulate ribosome biogenesis in hematopoietic stem cells and progenitors. Our study contributes to a better understanding of the cellular physiology of the hematopoietic system in vivo in unperturbed situations.
Collapse
Affiliation(s)
- Léonard Jarzebowski
- Early Mammalian Development and Stem Cell Biology, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris 75015, France
- CNRS UMR 3738, Institut Pasteur, Paris 75015, France
| | - Marie Le Bouteiller
- Early Mammalian Development and Stem Cell Biology, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris 75015, France
- CNRS UMR 3738, Institut Pasteur, Paris 75015, France
| | - Sabrina Coqueran
- Early Mammalian Development and Stem Cell Biology, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris 75015, France
- CNRS UMR 3738, Institut Pasteur, Paris 75015, France
| | - Aurélien Raveux
- Early Mammalian Development and Stem Cell Biology, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris 75015, France
- CNRS UMR 3738, Institut Pasteur, Paris 75015, France
| | - Sandrine Vandormael-Pournin
- Early Mammalian Development and Stem Cell Biology, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris 75015, France
- CNRS UMR 3738, Institut Pasteur, Paris 75015, France
| | - Alexandre David
- Team "Signaling and Cancer," Institut de Génomique Fonctionnelle, Montpellier 34094, France
| | - Ana Cumano
- Lymphocyte Development Unit, Institut Pasteur, Paris 75015, France
| | - Michel Cohen-Tannoudji
- Early Mammalian Development and Stem Cell Biology, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris 75015, France
- CNRS UMR 3738, Institut Pasteur, Paris 75015, France
| |
Collapse
|
10
|
Abstract
The rates of ribosome production by a nucleolus and of protein biosynthesis by ribosomes are tightly correlated with the rate of cell growth and proliferation. All these processes must be matched and appropriately regulated to provide optimal cell functioning. Deregulation of certain factors, including oncogenes, controlling these processes, especially ribosome biosynthesis, can lead to cell transformation. Cancer cells are characterized by intense ribosome biosynthesis which is advantageous for their growth and proliferation. On the other hand, this feature can be engaged as an anticancer strategy. Numerous nucleolar factors such as nucleolar and ribosomal proteins as well as different RNAs, in addition to their role in ribosome biosynthesis, have other functions, including those associated with cancer biology. Some of them can contribute to cell transformation and cancer development. Others, under stress evoked by different factors which often hamper function of nucleoli and thus induce nucleolar/ribosomal stress, can participate in combating cancer cells. In this sense, intentional application of therapeutic agents affecting ribosome biosynthesis can cause either release of these molecules from nucleoli or their de novo biosynthesis to mediate the activation of pathways leading to elimination of harmful cells. This review underlines the role of a nucleolus not only as a ribosome constituting apparatus but also as a hub of both positive and negative control of cancer development. The article is mainly based on original papers concerning mechanisms in which the nucleolus is implicated directly or indirectly in processes associated with neoplasia.
Collapse
Affiliation(s)
- Dariusz Stępiński
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236, Łódź, Poland.
| |
Collapse
|
11
|
Derenzini E, Rossi A, Treré D. Treating hematological malignancies with drugs inhibiting ribosome biogenesis: when and why. J Hematol Oncol 2018; 11:75. [PMID: 29855342 PMCID: PMC5984324 DOI: 10.1186/s13045-018-0609-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/26/2018] [Indexed: 01/05/2023] Open
Abstract
It is well known that chemotherapy can cure only some cancers in advanced stage, mostly those with an intact p53 pathway. Hematological cancers such as lymphoma and certain forms of leukemia are paradigmatic examples of such scenario. Recent evidence indicates that the efficacy of many of the alkylating and intercalating agents, antimetabolites, topoisomerase, and kinase inhibitors used in cancer therapy is largely due to p53 stabilization and activation consequent to the inhibition of ribosome biogenesis. In this context, innovative drugs specifically hindering ribosome biogenesis showed preclinical activity and are currently in early clinical development in hematological malignancies. The mechanism of p53 stabilization after ribosome biogenesis inhibition is a multistep process, depending on specific factors that can be altered in tumor cells, which can affect the antitumor efficacy of ribosome biogenesis inhibitors (RiBi). In the present review, the basic mechanisms underlying the anticancer activity of RiBi are discussed based on the evidence deriving from available preclinical and clinical studies, with the purpose of defining when and why the treatment with drugs inhibiting ribosomal biogenesis could be highly effective in hematological malignancies.
Collapse
Affiliation(s)
- Enrico Derenzini
- European Institute of Oncology, Via Ripamonti 435, 20141, Milan, Italy.
| | - Alessandra Rossi
- European Institute of Oncology, Via Ripamonti 435, 20141, Milan, Italy
| | - Davide Treré
- DIMES, Università di Bologna, Via Massarenti 9, Bologna, Italy.
| |
Collapse
|
12
|
Prohibitin 2 localizes in nucleolus to regulate ribosomal RNA transcription and facilitate cell proliferation in RD cells. Sci Rep 2018; 8:1479. [PMID: 29367618 PMCID: PMC5784149 DOI: 10.1038/s41598-018-19917-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 01/09/2018] [Indexed: 01/03/2023] Open
Abstract
Prohibitin 2 (PHB2), as a conserved multifunctional protein, is traditionally localized in the mitochondrial inner membrane and essential for maintenance of mitochondrial function. Here, we investigated the role of PHB2 in human rhabdomyosarcoma (RMS) RD cells and found substantial localization of PHB2 in the nucleolus. We demonstrated that PHB2 knockdown inhibited RD cell proliferation through inducing cell cycle arrest and suppressing DNA synthesis. Meanwhile, down-regulation of PHB2 also induced apoptosis and promoted differentiation in fractions of RD cells. In addition, PHB2 silencing led to altered nucleolar morphology, as observed by transmission electron microscopy, and impaired nucleolar function, as evidenced by down-regulation of 45S and 18S ribosomal RNA synthesis. Consistently, upon PHB2 knockdown, occupancy of c-Myc at the ribosomal DNA (rDNA) promoter was attenuated, while more myoblast determination protein 1 (MyoD) molecules bound to the rDNA promoter. In conclusion, our findings suggest that nucleolar PHB2 is involved in maintaining nucleolar morphology and function in RD cells by regulating a variety of transcription factors, which is likely to be one of the underlying mechanisms by which PHB2 promotes tumor proliferation and represses differentiation. Our study provides new insight into the pathogenesis of RMS and novel characterizations of the highly conserved PHB2 protein.
Collapse
|
13
|
Turi Z, Senkyrikova M, Mistrik M, Bartek J, Moudry P. Perturbation of RNA Polymerase I transcription machinery by ablation of HEATR1 triggers the RPL5/RPL11-MDM2-p53 ribosome biogenesis stress checkpoint pathway in human cells. Cell Cycle 2017; 17:92-101. [PMID: 29143558 DOI: 10.1080/15384101.2017.1403685] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Ribosome biogenesis is an energy consuming process which takes place mainly in the nucleolus. By producing ribosomes to fuel protein synthesis, it is tightly connected with cell growth and cell cycle control. Perturbation of ribosome biogenesis leads to the activation of p53 tumor suppressor protein promoting processes like cell cycle arrest, apoptosis or senescence. This ribosome biogenesis stress pathway activates p53 through sequestration of MDM2 by a subset of ribosomal proteins (RPs), thereby stabilizing p53. Here, we identify human HEATR1, as a nucleolar protein which positively regulates ribosomal RNA (rRNA) synthesis. Downregulation of HEATR1 resulted in cell cycle arrest in a manner dependent on p53. Moreover, depletion of HEATR1 also caused disruption of nucleolar structure and activated the ribosomal biogenesis stress pathway - RPL5 / RPL11 dependent stabilization and activation of p53. These findings reveal an important role for HEATR1 in ribosome biogenesis and further support the concept that perturbation of ribosome biosynthesis results in p53-dependent cell cycle checkpoint activation, with implications for human pathologies including cancer.
Collapse
Affiliation(s)
- Zsofia Turi
- a Institute of Molecular and Translational Medicine , Faculty of Medicine and Dentistry , Palacky University , 779 00 Olomouc , Czech Republic
| | - Marketa Senkyrikova
- a Institute of Molecular and Translational Medicine , Faculty of Medicine and Dentistry , Palacky University , 779 00 Olomouc , Czech Republic
| | - Martin Mistrik
- a Institute of Molecular and Translational Medicine , Faculty of Medicine and Dentistry , Palacky University , 779 00 Olomouc , Czech Republic
| | - Jiri Bartek
- a Institute of Molecular and Translational Medicine , Faculty of Medicine and Dentistry , Palacky University , 779 00 Olomouc , Czech Republic.,b Genome Integrity Unit , Danish Cancer Society Research Center , DK-2100 Copenhagen , Denmark.,c Department of Medical Biochemistry and Biophysics , Division of Genome Biology , Science for Life Laboratory , Karolinska Institute , 171 65 Stockholm , Sweden
| | - Pavel Moudry
- a Institute of Molecular and Translational Medicine , Faculty of Medicine and Dentistry , Palacky University , 779 00 Olomouc , Czech Republic
| |
Collapse
|
14
|
Wang X, Wang Y, He H, Ma X, Chen Q, Zhang S, Ge B, Wang S, Nau WM, Huang F. Deep-Red Fluorescent Gold Nanoclusters for Nucleoli Staining: Real-Time Monitoring of the Nucleolar Dynamics in Reverse Transformation of Malignant Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:17799-17806. [PMID: 28492304 DOI: 10.1021/acsami.7b04576] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Nucleoli are important subnuclear structures inside cells. We report novel fluorescent gold nanoclusters (K-AuNCs) that are able to stain the nucleoli selectively and make it possible to explore the nucleolar morphology with fluorescence imaging technique. This novel probe is prepared through an easy synthesis method by employing a tripeptide (Lys-Cys-Lys) as the surface ligand. The properties, including deep-red fluorescence emission (680 nm), large Stocks shift, broad excitation band, low cytotoxicity, and good photostability, endow this probe with potential for bioanalytical applications. Because of their small size and their positively charged surface, K-AuNCs are able to accumulate efficiently at the nucleolar regions and provide precise morphological information. K-AuNCs are also used to monitor the nucleolar dynamics along the reverse-transformation process of malignant cells, induced by the agonist of protein A, 8-chloro-cyclic adenosine monophosphate. This gives a novel approach for investigating the working mechanism of antitumor drugs.
Collapse
Affiliation(s)
| | | | | | | | | | - Shuai Zhang
- Department of Life Sciences and Chemistry, Jacobs University Bremen , Campus Ring 1, 28759 Bremen, Germany
| | | | | | - Werner M Nau
- Department of Life Sciences and Chemistry, Jacobs University Bremen , Campus Ring 1, 28759 Bremen, Germany
| | | |
Collapse
|
15
|
Zhang X, Cheng Q, Yin H, Yang G. Regulation of autophagy and EMT by the interplay between p53 and RAS during cancer progression (Review). Int J Oncol 2017; 51:18-24. [PMID: 28560457 DOI: 10.3892/ijo.2017.4025] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/05/2017] [Indexed: 11/06/2022] Open
Abstract
Cellular autophagy and epithelial-mesenchymal transition (EMT) are key events mostly resulted from the interplay of tumor suppressors and oncogenes during cancer progression. The master tumor suppressor p53 may control tumor cell autophagy and EMT through the transcriptional induction of multiple target genes, while the activated oncogene RAS may also play a critical role in regulating mitogenic signaling to tumor cell autophagy and EMT. Although the fundamental functions of p53 and RAS are well understood, the interactive effects of p53 and RAS on autophagy and EMT are still unclear. In this review, we highlight the recent advances in the regulation of autophagy and EMT by p53 and RAS, aiming to explore novel therapeutic targets and biomarkers in cancer treatment and prevention.
Collapse
Affiliation(s)
- Xiaofei Zhang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Qian Cheng
- Department of Orthopedics, the Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Huijing Yin
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Gong Yang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| |
Collapse
|
16
|
Taatjes DJ, Roth J. In Focus in HCB. Histochem Cell Biol 2016; 146:117-8. [PMID: 27381063 DOI: 10.1007/s00418-016-1459-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Douglas J Taatjes
- Department of Pathology and Laboratory Medicine, The University of Vermont College of Medicine, Burlington, VT, 05405, USA.
| | - Jürgen Roth
- University of Zurich, 8091, Zurich, Switzerland
| |
Collapse
|