1
|
Improving the differentiation potential of pluripotent stem cells by optimizing culture conditions. Sci Rep 2022; 12:14147. [PMID: 35986054 PMCID: PMC9391418 DOI: 10.1038/s41598-022-18400-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/10/2022] [Indexed: 11/22/2022] Open
Abstract
Embryoid cells and induced pluripotent stem cells (iPSCs) are pluripotent stem cells (PSCs). They retain differentiation and self-renewal potential. However, the differentiation potential of PSCs can be changed by the culture medium. PSCs retain their differentiation potential when cultured with medium that supports the glycolytic pathway, showing high expression of chromodomain-helicase-DNA-binding protein 7 (CHD7), but lose their differentiation potential with medium that supports mitochondrial function, showing reduced levels of CHD7. Labeling cells by their copy number variant profile revealed that genetically different PSC populations can be cultured by medium selection. Another factor that defines the self-renewal potential of PSCs is culture condition. PSCs form colonies as they grow, and spontaneous differentiation inevitably occurs along the rim of these colonies in areas that lack cell-to-cell contact; because of this, undifferentiated cell populations would diminish if differentiated cells are not removed properly. Seeding cells on a less potent cell-binding material may minimize the inclusion of differentiated cells, exploiting the reduced adhesive properties of differentiated cells. Culturing cells with medium that supports the glycolytic pathway, using CHD7 as a biomarker for differentiation potential, and culturing cells on less sticky material can improve the differentiation potential of already established PSC clones.
Collapse
|
2
|
Cx43 overexpression is involved in the hyper-proliferation effect of trichloroethylene on human embryonic stem cells. Toxicology 2022; 465:153065. [PMID: 34896440 DOI: 10.1016/j.tox.2021.153065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 10/19/2022]
Abstract
Trichloroethylene (TCE) is a major environmental contaminant. Maternal exposure of TCE is linked to developmental defects, but the mechanisms remain to be elucidated. Along with a strategy of 3Rs principle, human embryonic stem cells (hESCs) are regarded as most promising in vitro models for developmental toxicity studies. TCE interfered with hESCs differentiation, but no report was available for TCE effects on hESCs proliferation. Here, we aimed to explore the toxic effects and mechanisms of TCE on hESCs proliferation. Treatment with TCE, did not affect the pluripotency genes expression. However, TCE enhanced hESCs proliferation, manifested by increased cell number, PCNA expression and EdU incorporation. Moreover, TCE exposure upregulated the protein expression levels of Cx43 and cyclin-dependent kinases. Knockdown of Cx43 attenuated the TCE-induced cell hyper-proliferation and CDK2 upregulation. Furthermore, TCE increased Akt phosphorylation, and the inhibition of Akt blocked the TCE-induced Cx43 overexpression and cell proliferation. In conclusion, TCE exposure resulted in upregulation of Cx43 via Akt phosphorylation, consequently stimulated CDK2 expression, contributing to hyper-proliferation in hESCs. Our study brings to light that TCE stimulated the proliferation of hESCs via Cx43, providing a new research avenue for the causes of TCE-induced developmental toxicity.
Collapse
|
3
|
Abnormal Expression of Connexin43 in Cardiac Injury Induced by S-Band and X-Band Microwave Exposure in Rats. J Immunol Res 2021; 2021:3985697. [PMID: 34957312 PMCID: PMC8709747 DOI: 10.1155/2021/3985697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/06/2021] [Indexed: 12/17/2022] Open
Abstract
Although the effects of microwave exposure on the heart have gradually become the focus of domestic and foreign scholars, the biological effects caused by different doses and different frequency bands of exposure are still unclear. In this study, we will investigate the damaging effect of S-band and X-band microwave composite exposure on cardiac structure and function, as well as the pathophysiological significance of Cx43 in cardiac conduction dysfunction after exposure. We used S- and X-band radiation sources with the average power density of 5 and 10 mW/cm2 to expose Wistar rats to single or composite exposure. At the 6th hour, on the 7th, 14th, and 28th days after exposure, ECG was used to detect the electrical conduction of the heart, and the myocardial enzyme was measured by the automatic biochemical analyzer. We selected the observation time points and groups with severe damage to observe the changes of myocardial structure and ultrastructure with an optical microscope and TEM; and to detect the expression and distribution of Cx43 by western blotting and immunohistochemistry. After exposure, the heart rate increased, the P wave amplitude decreased, and the R wave amplitude increased; the content of the myocardial enzyme in serum increased; the structure and ultrastructure of cardiac tissue were damaged. The damage was dose-dependent and frequency-dependent. The expression of Cx43 in myocardial tissue decreased, and distribution was abnormal. Taken together, these findings suggested that the mechanism of abnormal electrical conduction in the heart of rats by S- and X-band microwave exposure might be related to the decreased expression and disordered distribution of Cx43 after microwave exposure.
Collapse
|
4
|
Beckmann A, Recktenwald J, Ferdinand A, Grißmer A, Meier C. First Responders to Hyperosmotic Stress in Murine Astrocytes: Connexin 43 Gap Junctions Are Subject to an Immediate Ultrastructural Reorganization. BIOLOGY 2021; 10:biology10121307. [PMID: 34943223 PMCID: PMC8698406 DOI: 10.3390/biology10121307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Gap junctions are intercellular channels that provide the means for direct transport of small molecules, ions, and water between connected cells. With these functions, gap junctions are essential for the maintenance of astrocytic homeostasis and of particular importance in the context of pathophysiological disbalances. These include the hyperosmolar hyperglycemic syndrome or the pathology after brain trauma. We demonstrate that short-term hyperosmolarity reduces intercellular communication via gap junctions. These functional changes coincide with the transformation of gap junction ultrastructure as evidenced by freeze-fracture replica immunolabeling and transmission electron microscopy. The hyperosmolarity-induced immediate changes in the ultrastructural assembly of connexons, the protein constituents of gap junction channels, have not been described in astrocytes before and are revealing the coherence of structure and function in gap junctions. Phosphorylation of Connexin 43, the main gap junction protein in astrocytes, at amino acid 368 (Serine) might link the two. Abstract In a short-term model of hyperosmotic stress, primary murine astrocytes were stimulated with a hyperosmolar sucrose solution for five minutes. Astrocytic gap junctions, which are mainly composed of Connexin (Cx) 43, displayed immediate ultrastructural changes, demonstrated by freeze–fracture replica immunogold labeling: their area, perimeter, and distance of intramembrane particles increased, whereas particle numbers per area decreased. Ultrastructural changes were, however, not accompanied by changes in Cx43 mRNA expression. In contrast, transcription of the gap junction regulator zonula occludens (ZO) protein 1 significantly increased, whereas its protein expression was unaffected. Phosphorylation of Serine (S) 368 of the Cx43 C–terminus has previously been associated with gap junction disassembly and reduction in gap junction communication. Hyperosmolar sucrose treatment led to enhanced phosphorylation of Cx43S368 and was accompanied by inhibition of gap junctional intercellular communication, demonstrated by a scrape loading-dye transfer assay. Taken together, Cx43 gap junctions are fast reacting elements in response to hyperosmolar challenges and can therefore be considered as one of the first responders to hyperosmolarity. In this process, phosphorylation of Cx43S368 was associated with disassembly of gap junctions and inhibition of their function. Thus, modulation of the gap junction assembly might represent a target in the treatment of brain edema or trauma.
Collapse
|
5
|
Beckmann A, Grissmer A, Meier C, Tschernig T. Intercellular communication between alveolar epithelial cells and macrophages. Ann Anat 2019; 227:151417. [PMID: 31563569 DOI: 10.1016/j.aanat.2019.151417] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/13/2019] [Accepted: 09/13/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND The alveolus in the lung tissue is an extremely vulnerable site. Alveolar macrophages control this micro-environment both in states of health and illnesssuch as acute lung injury and infection. It has been reported in mice in vivo that intercellular communication between alveolar macrophages and alveolar epithelial cells is mediated by gap junctions. However, little is known about thismicro-environment in human cells. METHODS Since this gap junctional intercellular communication is hard to investigate in human tissues, a co-culture model of two human cell lines, one of epithelial and one of macrophage origin, was used. Immunoblot analysis, freeze fracture replica immunolabeling and electron microscopy were performed. RESULTS Connexin (Cx) 43 protein expression as well as ultrastructurally defined Cx43 gap junctions were detected in co-cultures, yielding evidence of intercellular gap junctions between human alveolar cells of two distinct entities. CONCLUSION Alveolar macrophages possibly have direct access to the alveolar epithelium via gap junctions in humans, enabling the orchestration of the microenvironment in physiology and disease states.
Collapse
Affiliation(s)
- Anja Beckmann
- Department of Anatomy and Cell Biology, Saarland University, Homburg, Saar, Germany.
| | - Alexander Grissmer
- Department of Anatomy and Cell Biology, Saarland University, Homburg, Saar, Germany.
| | - Carola Meier
- Department of Anatomy and Cell Biology, Saarland University, Homburg, Saar, Germany.
| | - Thomas Tschernig
- Department of Anatomy and Cell Biology, Saarland University, Homburg, Saar, Germany.
| |
Collapse
|
6
|
Shao Q, Esseltine JL, Huang T, Novielli-Kuntz N, Ching JE, Sampson J, Laird DW. Connexin43 is Dispensable for Early Stage Human Mesenchymal Stem Cell Adipogenic Differentiation But is Protective against Cell Senescence. Biomolecules 2019; 9:E474. [PMID: 31514306 PMCID: PMC6770901 DOI: 10.3390/biom9090474] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/05/2019] [Accepted: 09/07/2019] [Indexed: 02/07/2023] Open
Abstract
In the last couple of decades, there has been a growing optimism surrounding the potential transformative use of human mesenchymal stem cells (MSCs) and human-induced pluripotent stem cells (iPSCs) for regenerative medicine and disease treatment. In order for this to occur, it is first essential to understand the mechanisms underpinning their cell-fate specification, which includes cell signaling via gap junctional intercellular communication. Here, we investigated the role of the prototypical gap junction protein, connexin43 (Cx43), in governing the differentiation of iPSCs into MSCs and MSC differentiation along the adipogenic lineage. We found that control iPSCs, as well as iPSCs derived from oculodentodigital dysplasia patient fibroblasts harboring a GJA1 (Cx43) gene mutation, successfully and efficiently differentiated into LipidTox and perilipin-positive cells, indicating cell differentiation along the adipogenic lineage. Furthermore, the complete CRISPR-Cas9 ablation of Cx43 from iPSCs did not prevent their differentiation into bona fide MSCs or pre-adipocytes, strongly suggesting that even though Cx43 expression is upregulated during adipogenesis, it is expendable. Interestingly, late passage Cx43-ablated MSCs senesced more quickly than control cells, resulting in failure to properly differentiate in vitro. We conclude that despite being upregulated during adipogenesis, Cx43 plays no detectable role in the early stages of human iPSC-derived MSC adipogenic differentiation. However, Cx43 may play a more impactful role in protecting MSCs from premature senescence.
Collapse
Affiliation(s)
- Qing Shao
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada.
| | - Jessica L Esseltine
- Division of BioMedical Sciences, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada.
| | - Tao Huang
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada.
- Department of Pathology, Shenyang Medical College, Shenyang 110034, China.
| | - Nicole Novielli-Kuntz
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada.
| | - Jamie E Ching
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada.
| | - Jacinda Sampson
- Department of Neurology, Stanford University Medical Center, Palo Alto, CA 94304, USA.
| | - Dale W Laird
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada.
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada.
| |
Collapse
|
7
|
Beckmann A, Grißmer A, Wolf S, Recktenwald J, Meier C. Oxygen-Glucose Deprivation in Mouse Astrocytes is Associated with Ultrastructural Changes in Connexin 43 Gap Junctions. Neuroscience 2018; 397:67-79. [PMID: 30513376 DOI: 10.1016/j.neuroscience.2018.11.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/26/2018] [Accepted: 11/28/2018] [Indexed: 01/09/2023]
Abstract
In the intact brain, astrocytes play an important role in a number of physiological functions like spatial buffering of potassium, maintenance of calcium homeostasis, neurotransmitter release, regulation of the cerebral blood flow, and many more. As pathophysiological events upon hypoxic-ischemic brain injury include excitotoxicity by glutamate release as well as oxidative stress, astrocytes and their gap junction-based syncytium are of major relevance for regulating the extent of resulting brain damage. The gap junction protein Connexin (Cx) 43 contributes mainly to the astrocytic intercellular communication. As little is known about the ultrastructural assemblage of Cx43 and its changes in response to hypoxic events, we chose temporary oxygen and glucose deprivation with subsequent reoxygenation (OGD-R) as a metabolic inhibition model of hypoxia in primary murine astrocytes. Gap junction morphology and assembly/disintegration were analyzed at the ultrastructural level using freeze-fracture replica immunolabeling. The exposure of cultured astrocytes to short-term OGD-R resulted in the activation of ERK1/2 (p44/p42), downregulation of Cx43 protein expression, and the rearrangement of Cx43 particles within the cell membrane and within gap junctions. These changes in gap junction morphology were associated with phosphorylation of Cx43 at Serine 368. Analysis of the nearest-neighbor distance within gap junction plaques revealed the loosening of Cx43 particle clusters. Together with the observation of additional connexons being present in the vicinity of gap junction plaques after OGD-R treatment, our study indicates that changes in gap junction assembly are associated with the early phase of hypoxic cell damage.
Collapse
Affiliation(s)
- Anja Beckmann
- Department of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Saar, Germany
| | - Alexander Grißmer
- Department of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Saar, Germany
| | - Sandra Wolf
- Department of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Saar, Germany
| | - Johanna Recktenwald
- Department of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Saar, Germany
| | - Carola Meier
- Department of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Saar, Germany.
| |
Collapse
|
8
|
Wörsdörfer P, Wagner N, Ergün S. The role of connexins during early embryonic development: pluripotent stem cells, gene editing, and artificial embryonic tissues as tools to close the knowledge gap. Histochem Cell Biol 2018; 150:327-339. [PMID: 30039329 DOI: 10.1007/s00418-018-1697-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2018] [Indexed: 12/14/2022]
Abstract
Since almost 4 decades, connexins have been discussed as important regulators of embryogenesis. Several different members of the gene family can be detected in the preimplantation embryo and during gastrulation. However, genetically engineered mice deficient for every connexin expressed during early development are available and even double-deficient mice were generated. Interestingly, all of these mice complete gastrulation without any abnormalities. This raises the question if the role of connexins has been overrated or if other gene family members compensate and mask their importance. To answer this question, embryos completely devoid of any gap junctional communication need to be investigated. This is challenging because a variety of connexin genes are co-expressed and some null mutations lead to a lethal phenotype. In addition, maternal connexin transcripts were described to persist until the blastocyst stage. In this review, we summarize the current knowledge about the role of connexins during preimplantation development and in embryonic stem cells. We propose that the use of pluripotent stem cells, trophoblast stem cells, as well as artificial embryo-like structures and organoid cultures in combination with multiplex CRISPR/Cas9-based genome editing provides a powerful platform to comprehensively readdress this issue and decipher the role of connexins during lineage decision, differentiation, and morphogenesis in a cell culture model for mouse and human development.
Collapse
Affiliation(s)
- Philipp Wörsdörfer
- Institute of Anatomy and Cell Biology, University of Würzburg, Koellikerstr.6, 97070, Würzburg, Germany.
| | - Nicole Wagner
- Institute of Anatomy and Cell Biology, University of Würzburg, Koellikerstr.6, 97070, Würzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Würzburg, Koellikerstr.6, 97070, Würzburg, Germany
| |
Collapse
|
9
|
Colasuonno F, Borghi R, Niceforo A, Muzzi M, Bertini E, Di Giulio A, Moreno S, Compagnucci C. Senescence-associated ultrastructural features of long-term cultures of induced pluripotent stem cells (iPSCs). Aging (Albany NY) 2018; 9:2209-2222. [PMID: 29064821 PMCID: PMC5680563 DOI: 10.18632/aging.101309] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 10/15/2017] [Indexed: 12/12/2022]
Abstract
Induced pluripotent stem cells (iPSCs) hold great promise for developing personalized regenerative medicine, however characterization of their biological features is still incomplete. Moreover, changes occurring in long-term cultured iPSCs have been reported, suggesting these as a model of cellular aging. For this reason, we addressed the ultrastructural characterization of iPSCs, with a focus on possible time-dependent changes, involving specific cell compartments. To this aim, we comparatively analysed cultures at different timepoints, by an innovative electron microscopic technology (FIB/SEM). We observed progressive loss of cell-to-cell contacts, associated with increased occurrence of exosomes. Mitochondria gradually increased, while acquiring an elongated shape, with well-developed cristae. Such mitochondrial maturation was accompanied by their turnover, as assessed by the presence of autophagomes (undetectable in young iPSCs), some containing recognizable mitochondria. This finding was especially frequent in middle-aged iPSCs, while being occasional in aged cells, suggesting early autophagic activation followed by a decreased efficiency of the process with culturing time. Accordingly, confocal microscopy showed age-dependent alterations to the expression and distribution of autophagic markers. Interestingly, responsivity to rapamycin, highest in young iPSCs, was almost lost in aged cells. Overall, our results strongly support long-term cultured iPSCs as a model for studying relevant aspects of cellular senescence, involving intercellular communication, energy metabolism, and autophagy.
Collapse
Affiliation(s)
- Fiorella Colasuonno
- Department of Science, LIME, University "Roma Tre", Rome 00146, Italy.,Department of Neuroscience, Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Bambino Gesu' Children's Research Hospital, IRCCS, Rome 00146, Italy
| | - Rossella Borghi
- Department of Science, LIME, University "Roma Tre", Rome 00146, Italy.,Department of Neuroscience, Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Bambino Gesu' Children's Research Hospital, IRCCS, Rome 00146, Italy
| | - Alessia Niceforo
- Department of Science, LIME, University "Roma Tre", Rome 00146, Italy.,Department of Neuroscience, Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Bambino Gesu' Children's Research Hospital, IRCCS, Rome 00146, Italy
| | - Maurizio Muzzi
- Department of Science, LIME, University "Roma Tre", Rome 00146, Italy
| | - Enrico Bertini
- Department of Neuroscience, Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Bambino Gesu' Children's Research Hospital, IRCCS, Rome 00146, Italy
| | - Andrea Di Giulio
- Department of Science, LIME, University "Roma Tre", Rome 00146, Italy
| | - Sandra Moreno
- Department of Science, LIME, University "Roma Tre", Rome 00146, Italy
| | - Claudia Compagnucci
- Department of Neuroscience, Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Bambino Gesu' Children's Research Hospital, IRCCS, Rome 00146, Italy
| |
Collapse
|
10
|
Dahlmann J, Awad G, Dolny C, Weinert S, Richter K, Fischer KD, Munsch T, Leßmann V, Volleth M, Zenker M, Chen Y, Merkl C, Schnieke A, Baraki H, Kutschka I, Kensah G. Generation of functional cardiomyocytes from rat embryonic and induced pluripotent stem cells using feeder-free expansion and differentiation in suspension culture. PLoS One 2018. [PMID: 29513687 PMCID: PMC5841662 DOI: 10.1371/journal.pone.0192652] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The possibility to generate cardiomyocytes from pluripotent stem cells in vitro has enormous significance for basic research, disease modeling, drug development and heart repair. The concept of heart muscle reconstruction has been studied and optimized in the rat model using rat primary cardiovascular cells or xenogeneic pluripotent stem cell derived-cardiomyocytes for years. However, the lack of rat pluripotent stem cells (rPSCs) and their cardiovascular derivatives prevented the establishment of an authentic clinically relevant syngeneic or allogeneic rat heart regeneration model. In this study, we comparatively explored the potential of recently available rat embryonic stem cells (rESCs) and induced pluripotent stem cells (riPSCs) as a source for cardiomyocytes (CMs). We developed feeder cell-free culture conditions facilitating the expansion of undifferentiated rPSCs and initiated cardiac differentiation by embryoid body (EB)-formation in agarose microwell arrays, which substituted the robust but labor-intensive hanging drop (HD) method. Ascorbic acid was identified as an efficient enhancer of cardiac differentiation in both rPSC types by significantly increasing the number of beating EBs (3.6 ± 1.6-fold for rESCs and 17.6 ± 3.2-fold for riPSCs). These optimizations resulted in a differentiation efficiency of up to 20% cTnTpos rPSC-derived CMs. CMs showed spontaneous contractions, expressed cardiac markers and had typical morphological features. Electrophysiology of riPSC-CMs revealed different cardiac subtypes and physiological responses to cardio-active drugs. In conclusion, we describe rPSCs as a robust source of CMs, which is a prerequisite for detailed preclinical studies of myocardial reconstruction in a physiologically and immunologically relevant small animal model.
Collapse
Affiliation(s)
- Julia Dahlmann
- Clinic of Cardiothoracic Surgery, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - George Awad
- Clinic of Cardiothoracic Surgery, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Carsten Dolny
- Clinic of Cardiothoracic Surgery, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Sönke Weinert
- Clinic of Cardiology and Angiology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Karin Richter
- Institute of Biochemistry and Cell Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Klaus-Dieter Fischer
- Institute of Biochemistry and Cell Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Thomas Munsch
- Institute of Physiology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Volkmar Leßmann
- Institute of Physiology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Marianne Volleth
- Institute of Human Genetics, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Martin Zenker
- Institute of Human Genetics, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Yaoyao Chen
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Claudia Merkl
- Chair of Livestock Biotechnology, Technical University Munich, Freising-Weihenstephan, Germany
| | - Angelika Schnieke
- Chair of Livestock Biotechnology, Technical University Munich, Freising-Weihenstephan, Germany
| | - Hassina Baraki
- Clinic of Cardiothoracic Surgery, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Ingo Kutschka
- Clinic of Cardiothoracic Surgery, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - George Kensah
- Clinic of Cardiothoracic Surgery, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- * E-mail:
| |
Collapse
|
11
|
Freeze fracture: new avenues for the ultrastructural analysis of cells in vitro. Histochem Cell Biol 2017; 149:3-13. [PMID: 29134300 DOI: 10.1007/s00418-017-1617-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2017] [Indexed: 01/02/2023]
Abstract
The ultrastructural analysis of biological membranes by freeze fracture has a 60-year tradition. In this review, we summarize the benefits of the freeze-fracture technique and review special structures analyzed by freeze fracture and by combined freeze-fracture replica immunogold labeling (FRIL) of cell cultures. In principle, every cellular membrane whether of cell suspensions, mono- or bilayers of cell cultures can be analyzed in freeze fracture. The combination of freeze fracture and immunogold labeling of the replica allows the ultrastructural identification of protein assemblies in combination with the molecular identification of their constituent proteins using specific antibodies. The analysis of fractured and labeled intramembrane particles enables determination of the arrangement and organization of proteins within the membrane due to the high resolution of the transmission electron microscope. Because of cell-specific ultrastructural features such as square arrays, identification of cell types can be performed in parallel. This review is aimed at presenting the possibilities of freeze fracture and FRIL in the high-resolution ultrastructural analysis of membrane proteins and their assembly in naïve, transfected or otherwise treated cultured cells. At the interface of molecular approaches and morphology, the application of FRIL in genetically modified cells provides a novel and intriguing aspect for their analysis.
Collapse
|
12
|
Thuringer D, Solary E, Garrido C. The Microvascular Gap Junction Channel: A Route to Deliver MicroRNAs for Neurological Disease Treatment. Front Mol Neurosci 2017; 10:246. [PMID: 28824376 PMCID: PMC5543088 DOI: 10.3389/fnmol.2017.00246] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/24/2017] [Indexed: 12/25/2022] Open
Abstract
Brain microvascular endothelial cells (BMECs) separate the peripheral blood from the brain. These cells, which are surrounded by basal lamina, pericytes and glial cells, are highly interconnected through tight and gap junctions. Their permeability properties restrict the transfer of potentially useful therapeutic agents. In such a hermetic system, the gap junctional exchange of small molecules between cerebral endothelial and non-endothelial cells is crucial for maintaining tissue homeostasis. MicroRNA were shown to cross gap junction channels, thereby modulating gene expression and function of the recipient cell. It was also shown that, when altered, BMEC could be regenerated by endothelial cells derived from pluripotent stem cells. Here, we discuss the transfer of microRNA through gap junctions between BMEC, the regeneration of BMEC from induced pluripotent stem cells that could be engineered to express specific microRNA, and how such an innovative approach could benefit to the treatment of glioblastoma and other neurological diseases.
Collapse
Affiliation(s)
| | - Eric Solary
- INSERM U1170, Institut Gustave RoussyVillejuif, France
| | - Carmen Garrido
- INSERM U1231, Université de Bourgogne Franche ComtéDijon, France
| |
Collapse
|
13
|
|