1
|
Lipovšek S, Vajs T, Dariš B, Novak T, Kozel P. Autophagic activity in the midgut cells of three arachnids responds selectively to different modes of overwintering in caves. PROTOPLASMA 2025; 262:531-544. [PMID: 39630263 DOI: 10.1007/s00709-024-02009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 11/14/2024] [Indexed: 04/24/2025]
Abstract
Autophagy is a highly conserved metabolic process that regulates cellular homeostasis and energy supply by degrading dysfunctional and excess cell constituents and reserve materials into products that are reused in metabolic and biosynthetic pathways. Macroautophagy is the best studied form of autophagy in invertebrates. Starvation is a common stress factor triggering autophagy in overwintering animals. In arachnids, the midgut diverticula cells perform many vital metabolic functions and are therefore critically involved in the response to starvation. Here we studied macroautophagy in three species which apply different modes for overwintering in caves: the harvestmen Gyas annulatus in diapause, Amilenus aurantiacus with ongoing ontogenesis under fasting conditions, and the spider Meta menardi, which feeds opportunistically even in winter. The main goal was to find eventual qualitative and quantitative differences in autophagic processes by inspecting TEM micrographs. In all three species, the rates of midgut epithelial cells with autophagic structures gradually increased during overwintering, but were significantly lower in G. annulatus in the middle and at the end of overwintering than in the other two species, owing to metabolic activity having been more suppressed. Decomposition of mitochondria and glycogen took place in autophagic structures in all three species. Moreover, spherite disintegration in A. aurantiacus and a special form of lipid disintegration through "lipid bubbly structures" in M. menardi indicate the crucial involvment of selective autophagy, while no specific autophagy was observed in G. annulatus. We conclude that autophagic activities support overwintering in different ways in the species studied.
Collapse
Affiliation(s)
- Saška Lipovšek
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000, Maribor, Slovenia
- Division of Cell Biology, Gottfried Schatz Research Center, Histology and Embryology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010, Graz, Austria
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000, Maribor, Slovenia
| | - Tanja Vajs
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia
| | - Barbara Dariš
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia
| | - Tone Novak
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000, Maribor, Slovenia
| | - Peter Kozel
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000, Maribor, Slovenia.
- Research Centre of the Slovenian Academy of Science and Arts, Karst Research Institute, Titov trg 2, 6230, Postojna, Slovenia.
| |
Collapse
|
2
|
Thomas S, Gaudette C, Spiro S, Dombrowski DS, LaDouceur EEB. Presumed hemocytic neoplasms in scorpions. Vet Pathol 2024; 61:983-987. [PMID: 38860284 DOI: 10.1177/03009858241257898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Although neoplasia has been documented in invertebrates, it has not been reported in scorpions. This report describes presumed hemocytic neoplasia in 2 scorpions: a >3-year-old, female emperor scorpion (Pandinus imperator) and a >4-year-old, male, Asian forest scorpion (Heterometrus sp.). The emperor scorpion had a 1-month history of body wall swelling separating the exoskeleton of the caudal opisthosoma. At necropsy, this corresponded to a white mass in the caudal coelom. The forest scorpion was found dead and processed whole for histology, at which point multiple masses were identified in the coelom and invading skeletal muscle. Histologically, both masses were composed of sheets of hemocytes with round to oval nuclei; eosinophilic, periodic acid Schiff-positive, cytoplasmic granules; mild cellular atypia; and low mitotic rates. Features of inflammation (e.g., melanization and nodulation) were not observed. These masses were diagnosed as a hemocytoma (emperor scorpion) and a hemocytic sarcoma (forest scorpion), possibly of plasmatocyte origin.
Collapse
|
3
|
Ostróżka A, Chajec Ł, Wilczek G, Student S, Kocot K, Homa J, Rost-Roszkowska M. Toxic effects of nickel on tolerance and regeneration in the freshwater shrimp
Neocaridina davidi. THE EUROPEAN ZOOLOGICAL JOURNAL 2024; 91:180-205. [DOI: 10.1080/24750263.2024.2310041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/19/2024] [Indexed: 01/04/2025] Open
Affiliation(s)
- A. Ostróżka
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Ł. Chajec
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - G. Wilczek
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - S. Student
- Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Gliwice, Poland
- Biotechnology Center, Silesian University of Technology, Gliwice, Poland
| | - K. Kocot
- Institute of Chemistry, University of Silesia in Katowice, Katowice, Poland
| | - J. Homa
- Institute of Zoology and Biomedical Research, Department of Evolutionary Immunology, Jagiellonian University, Krakow, Poland
| | - M. Rost-Roszkowska
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
4
|
Gaudette C, LaDouceur EEB, Troan BV, Whitehurst N, Dombrowski DS, Lewbart GA, Linder KE, Passingham K, Christian LS, Schreeg ME. Retrospective analysis of histologic lesions in captive arachnids. Vet Pathol 2023; 60:652-666. [PMID: 37036060 DOI: 10.1177/03009858231162948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Invertebrates, including arachnids, are a common taxon in zoological collections. Invertebrate medicine and pathology are emerging subspecialties, but there is limited reference material or published resources describing histologic lesions in arachnids. Histopathology of 26 captive arachnids (20 spiders and 6 scorpions) from institutional collections was reviewed. Most animals were found dead with limited clinical signs. Tissues evaluated included body wall (cuticle and epidermis), skeletal muscle, book lungs, digestive tract (pharynx, esophagus, sucking stomach, midgut tube, midgut diverticula, and stercoral pocket), central and peripheral nervous system, heart, hemolymph vessels and sinuses, Malpighian tubules, coxal glands, and gonads. Inflammation was frequent (24/26, 92%), and seen in multiple organs (18/24, 75%) with the midgut diverticulum most commonly affected (14/24, 58%) followed by the book lungs (13/24 arachnids, 54%), and body wall (8/24 arachnids, 33%). Inflammation comprised hemocyte accumulation, hemocytic coagula, melanization, and nodulation. Infectious agents, including bacteria (11/26, 42%), fungi (10/26, 38%), and parasites (2/26, 8%), were seen within inflammatory aggregates. Coinfection with multiple infectious agents was common (6/24, 25%). No etiologic agent was identified in 7/24 (29%) cases with inflammatory lesions. Lesions suggestive of decreased nutritional status or increased metabolic rate included midgut diverticula atrophy in 11/26 (42%) animals and skeletal muscle atrophy in 6/26 (23%) animals. Atrophic lesions were seen in combination with infection (8/11, 73%), pregnancy (2/11, 18%), male sex (2/11, 18%), or without other lesions (1/11, 9%). Other suspected contributors to death included dysecdysis-associated trauma (2/26, 8%) and uterine intussusception (1/26, 4%). No animals had neoplasia.
Collapse
Affiliation(s)
| | | | - Brigid V Troan
- North Carolina State University, Raleigh, NC
- North Carolina Zoo, Asheboro, NC
| | | | | | | | | | | | | | - Megan E Schreeg
- North Carolina State University, Raleigh, NC
- The Ohio State University, Columbus, OH
| |
Collapse
|
5
|
Kozel P, Novak T, Janžekovič F, Lipovšek S. Starvation hardiness as preadaptation for life in subterranean habitats. Sci Rep 2023; 13:9643. [PMID: 37316704 DOI: 10.1038/s41598-023-36556-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 06/06/2023] [Indexed: 06/16/2023] Open
Abstract
Most subterranean habitats, especially caves, are considered extreme environments, mainly because of the limited and erratic food supply and constant darkness. In temperate regions, many climatic conditions, such as temperature and air humidity, are periodically less adverse or even more favourable in caves than the harsh seasonal weather on the surface. Accordingly, many animal species search for hibernacula in caves. These overwintering, non-specialized subterranean species (non-troglobionts) show various modes of dormancy and ongoing development. Since they do not feed, they all undergo periodic starvation, a preadaptation, which might evolve in permanent starvation hardiness, such as found in most specialized subterranean species (troglobionts). To this end, we performed a comparative analysis of energy-supplying compounds in eleven most common terrestrial non-troglobiont species during winter in central European caves. We found highly heterogeneous responses to starvation, which are rather consistent with the degree of energetic adaptation to the habitat than to overwintering mode. The consumption of energy-supplying compounds was strongly higher taxa-dependant; glycogen is the main energy store in gastropods, lipids in insects, and arachnids rely on both reserve compounds. We assume that permanent starvation hardiness in specialized subterranean species might evolved in many different ways as shown in this study.
Collapse
Affiliation(s)
- Peter Kozel
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška Cesta 160, 2000, Maribor, Slovenia.
- Research Centre of the Slovenian Academy of Science and Arts, Karst Research Institute, Titov Trg 2, 6230, Postojna, Slovenia.
| | - Tone Novak
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška Cesta 160, 2000, Maribor, Slovenia
| | - Franc Janžekovič
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška Cesta 160, 2000, Maribor, Slovenia
| | - Saška Lipovšek
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška Cesta 160, 2000, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000, Maribor, Slovenia
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000, Maribor, Slovenia
| |
Collapse
|
6
|
Błaszczyk F, Sosinka A, Wilczek G, Student S, Rost-Roszkowska M. Effect of gluten on the digestive tract and fat body of Telodeinopus aoutii (Diplopoda). J Morphol 2023; 284:e21546. [PMID: 36533734 DOI: 10.1002/jmor.21546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Adult specimens or larvae of invertebrates used as food for vertebrates are often maintained close to gluten so they might become vectors for cereal proteins. However, the tissues and internal organs can respond differently in animals with different feeding habits. The midgut epithelium might be a first and sufficient barrier preventing uptake and effects of gluten on the whole body, while the fat body is the main organ that accumulates different xenobiotics. Good models for such research are animals that do not feed on gluten-rich products in their natural environment. The project's goal was to investigate alterations in the midgut epithelium and fat body of the herbivorous millipede Telodeinopus aoutii (Diplopoda) and analyze cell death processes activated by gluten. It enabled us to determine whether changes were intensified or reversed by adaptive mechanisms. Adult specimens were divided into control and experimental animals fed with mushrooms supplemented with gluten and analyzed using transmission electron microscopy, flow cytometry, and confocal microscopy. Two organs were isolated for the qualitative and quantitative analysis: the midgut and the fat body. Our study of the herbivorous T. aoutii which does not naturally feed on gluten containing diet showed that continuous and prolonged gluten feeding activates repair processes that inhibit the processes of cell death (apoptosis and necrosis) and induce an increase in cell viability.
Collapse
Affiliation(s)
- Florentyna Błaszczyk
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Agnieszka Sosinka
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Grażyna Wilczek
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Sebastian Student
- Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Gliwice, Poland.,Biotechnology Center, Silesian University of Technology, Gliwice, Poland
| | - Magdalena Rost-Roszkowska
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
7
|
Augustyniak M, Babczyńska A, Dziewięcka M, Flasz B, Karpeta-Kaczmarek J, Kędziorski A, Mazur B, Rozpędek K, Seyed Alian R, Skowronek M, Świerczek E, Świętek A, Tarnawska M, Wiśniewska K, Ziętara P. Does age pay off? Effects of three-generational experiments of nanodiamond exposure and withdrawal in wild and longevity-selected model animals. CHEMOSPHERE 2022; 303:135129. [PMID: 35636606 DOI: 10.1016/j.chemosphere.2022.135129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Nanodiamonds (NDs) are considered a material with low toxicity. However, no studies describe the effects of ND withdrawal after multigenerational exposure. The aim was to evaluate ND exposure (in the 1st and 2nd generations) effects at low concentrations (0.2 or 2 mg kg-1) and withdrawal (in the 3rd generation) in the wild (H) and longevity-selected (D) model insect Acheta domesticus. We measured selected oxidative stress parameters, immunity, types of cell death, and DNA damage. Most of the results obtained in the 1st generation, e.g., catalase (CAT), total antioxidant capacity (TAC), heat shock proteins (HSP70), defensins, or apoptosis level, confirmed no significant toxicity of low doses of NDs. Interestingly, strain-specific differences were observed. D-strain crickets reduced autophagy, the number of ROS+ cells, and DNA damage. The effect can be a symptom of mobilization of the organism and stimulation of physiological defense mechanisms in long-living organisms. The 2nd-generation D-strain insects fed ND-spiked food at higher concentrations manifested a reduction in CAT, TAC, early apoptosis, and DNA damage, together with an increase in HSP70 and defensins. ROS+ cells and cells with reduced membrane potential and autophagy did not differ significantly from the control. H-strain insects revealed a higher number of ROS+ cells and cells with reduced membrane potential, decreased CAT activity, and early apoptosis. Elimination of NDs from the diet in the 3rd generation did not cause full recovery of the measured parameters. We noticed an increase in the concentration of HSP70 and defensins (H-strain) and a decrease in apoptosis (D-strain). However, the most visible increase was a significant increase in DNA damage, especially in H-strain individuals. The results suggest prolonged adverse effects of NDs on cellular functions, reaching beyond "contact time" with these particles. Unintentional and/or uncontrolled ND pollution of the environment poses a new challenge for all organisms inhabiting it, particularly during multigenerational exposure.
Collapse
Affiliation(s)
- Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland.
| | - Agnieszka Babczyńska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Marta Dziewięcka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Barbara Flasz
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Julia Karpeta-Kaczmarek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Andrzej Kędziorski
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Beata Mazur
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Katarzyna Rozpędek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Reyhaneh Seyed Alian
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Magdalena Skowronek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Ewa Świerczek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Agata Świętek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Monika Tarnawska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Klaudia Wiśniewska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Patrycja Ziętara
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| |
Collapse
|
8
|
Poprawa I, Chajec Ł, Chachulska-Żymełka A, Wilczek G, Student S, Leśniewska M, Rost-Roszkowska M. Ovaries and testes of Lithobius forficatus (Myriapoda, Chilopoda) react differently to the presence of cadmium in the environment. Sci Rep 2022; 12:6705. [PMID: 35469038 PMCID: PMC9038927 DOI: 10.1038/s41598-022-10664-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 04/11/2022] [Indexed: 01/18/2023] Open
Abstract
Proper reproduction depends on properly functioning gonads (ovaries and testes). Many xenobiotics, including heavy metals, can cause changes in somatic and germ line cells, thus damaging the reproductive capacity. The aim of this study was to investigate the effect of the heavy metal cadmium on the gonads, including germ line and somatic cells. It is important to determine whether cell death processes are triggered in both types of cells in the gonads, and which gonads are more sensitive to the presence of cadmium in the environment. The research was conducted on the soil-dwelling arthropod Lithobius forficatus (Myriapoda, Chilopoda), which is common for European fauna. Animals were cultured in soil supplemented with Cd for different periods (short- and long-term treatment). Gonads were isolated and prepared for qualitative and quantitative analysis, which enabled us to describe all changes which appeared after both the short- and long-term cadmium treatment. The results of our study showed that cadmium affects the structure and ultrastructure of both gonads in soil-dwelling organisms including the activation of cell death processes. However, the male germ line cells are more sensitive to cadmium than female germ line cells. We also observed that germ line cells are protected by the somatic cells of both gonads.
Collapse
Affiliation(s)
- Izabela Poprawa
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland.
| | - Łukasz Chajec
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Alina Chachulska-Żymełka
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Grażyna Wilczek
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Sebastian Student
- Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Akademicka 16, 44-100, Gliwice, Poland
| | - Małgorzata Leśniewska
- Department of General Zoology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland
| | - Magdalena Rost-Roszkowska
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| |
Collapse
|
9
|
Can insecticide-free clean water regenerate the midgut epithelium of the freshwater shrimp after dimethoate treatment? Micron 2021; 155:103162. [PMID: 35139453 DOI: 10.1016/j.micron.2021.103162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 10/07/2021] [Accepted: 10/07/2021] [Indexed: 01/18/2023]
|
10
|
Babczyńska A, Nowak A, Kafel A, Łozowski B, Rost-Roszkowska M, Tarnawska M, Augustyniak M, Sawadro M, Molenda A. Autophagy: a necessary defense against extreme cadmium intoxication in a multigenerational 2D experiment. Sci Rep 2020; 10:21141. [PMID: 33273657 PMCID: PMC7712871 DOI: 10.1038/s41598-020-78316-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/24/2020] [Indexed: 11/09/2022] Open
Abstract
Autophagy is a natural process that aims to eliminate malfunctioning cell parts, organelles or molecules under physiological conditions. It is also induced in response to infection, starvation or oxidative stress to provide energy in case of an energy deficit. The aim of this 2-dimensional study was to test if, and if so, how, this process depends on the concentration of cadmium in food (with Cd concentrations from 0 to 352 μg of Cd per g of food (dry weight)-D1 dimension) and the history of selection pressure (160 vs 20 generations of exposure to Cd-D2 dimension). For the study, the 5th instar larvae of a unique strain of the moth Spodoptera exigua that was selected for cadmium tolerance for 160 generations (44 μg of Cd per g of food (dry weight)), as well as 20-generation (11, 22 and 44 μg of Cd per g of food (dry weight)) and control strains, were used. Autophagy intensity was measured by means of flow cytometry and compared with life history parameters: survivability and duration of the 3rd larval stage. The highest values of autophagy markers were found in the groups exposed to the highest Cd concentration and corresponded (with a significant correlation coefficient) to an increased development duration or decreased survivorship in the respective groups. In conclusion, autophagy is probably initiated only if any other defense mechanisms, e.g., antioxidative mechanisms, are not efficient. Moreover, in individuals from pre-exposed populations, the intensity of autophagy is lower.
Collapse
Affiliation(s)
- Agnieszka Babczyńska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland.
| | - Agnieszka Nowak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Alina Kafel
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Bartosz Łozowski
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Magdalena Rost-Roszkowska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Monika Tarnawska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Marta Sawadro
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Agnieszka Molenda
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| |
Collapse
|
11
|
Mammola S, Hesselberg T, Lunghi E. A trade‐off between latitude and elevation contributes to explain range segregation of broadly distributed cave‐dwelling spiders. J ZOOL SYST EVOL RES 2020. [DOI: 10.1111/jzs.12432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Stefano Mammola
- Laboratory for Integrative Biodiversity Research (LIBRe) Finnish Museum of Natural History (LUOMUS) University of Helsinki Helsinki Finland
- Molecular Ecology Group (MEG) Water Research Institute (IRSA) National Research Council (CNR) Verbania Pallanza Italy
| | | | - Enrico Lunghi
- Key Laboratory of the Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
- Museo di Storia Naturale dell'Università degli Studi di Firenze Sezione di Zoologia "La Specola" Firenze Italy
- Natural Oasis Prato Italy
| |
Collapse
|
12
|
Sonakowska-Czajka L, Śróbka J, Ostróżka A, Rost-Roszkowska M. Postembryonic development and differentiation of the midgut in the freshwater shrimp Neocaridina davidi (Crustacea, Malacostraca, Decapoda) larvae. J Morphol 2020; 282:48-65. [PMID: 33074574 DOI: 10.1002/jmor.21281] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/17/2020] [Accepted: 09/22/2020] [Indexed: 11/10/2022]
Abstract
Neocaridina davidi is a freshwater shrimp that originates from Taiwan and is commonly bred all over the word. Like all decapods, which develop indirectly, this species has pelagic larvae that may differ entirely in their morphology and habits from adult specimens. To fill a gap of knowledge about the developmental biology of freshwater shrimps we decided to document the 3D-localization of the midgut inside the body cavity of larval stages of N. davidi using X-ray microtomography, and to describe all structural and ultrastructural changes of the midgut epithelium (intestine and hepatopancreas) which occur during postembryonic development of N. davidi using light and transmission electron microscopy. We laid emphasis on stem cell functioning and cell death processes connected with differentiation. Our study revealed that while the intestine in both larval stages of N. davidi has the form of a fully developed organ, which resembles that of adult specimens, the hepatopancreas undergoes elongation and differentiation. E-cells, which are midgut stem cells, due to their proliferation and differentiation are responsible for the above-mentioned processes. Our study revealed that apoptosis is a common process in both larval stages of N. davidi in the intestine and proximal region of the hepatopancreas. In zoea III, autophagy as a survival factor is activated in order to protect cells against their death. However, when there are too many autophagic structures in epithelial cells, necrosis as passive cell death is activated. The presence of all types of cell death in the midgut in the zoea III stage confirms that this part of the digestive tract is fully developed and functional. Here, we present the first description of apoptosis, autophagy and necrosis in the digestive system of larval stages of Malacostraca and present the first description of their hepatopancreas elongation and differentiation due to midgut stem cell functioning.
Collapse
Affiliation(s)
- Lidia Sonakowska-Czajka
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Katowice, Poland
| | - Joanna Śróbka
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Katowice, Poland
| | - Anna Ostróżka
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Katowice, Poland
| | - Magdalena Rost-Roszkowska
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Katowice, Poland
| |
Collapse
|
13
|
Rost-Roszkowska M, Poprawa I, Chajec Ł, Chachulska-Żymełka A, Leśniewska M, Student S. Effects of short- and long-term exposure to cadmium on salivary glands and fat body of soil centipede Lithobius forficatus (Myriapoda, Chilopoda): Histology and ultrastructure. Micron 2020; 137:102915. [PMID: 32652474 DOI: 10.1016/j.micron.2020.102915] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/31/2020] [Accepted: 06/20/2020] [Indexed: 10/24/2022]
Abstract
Cadmium (Cd) is the most widely studied heavy metal in terms of food-chain accumulation and contamination because it can strongly affect all environments (e.g., soil, water, air). It can accumulate in different tissues and organs and can affect the organism at different levels of organization: from organs, tissues and cells though cell organelles and structures to activation of mechanisms of survival and cell death. In soil-dwelling organisms heavy metals gather in all tissues with accumulation properties: midgut, salivary glands, fat body. The aim of this study was to describe the effects of cadmium on the soil species Lithobius forficatus, mainly on two organs responsible for gathering different substances, the fat body and salivary glands, at the ultrastructural level. Changes caused by cadmium short- and long-term intoxication, connected with cell death (autophagy, apoptosis, necrosis), and the crosstalk between them, were analyzed. Adult specimens of L. forficatus were collected in a natural environment and divided into three experimental groups: C (the control group), Cd1 (cultured in soil with 80 mg/kg of CdCl2 for 12 days) and Cd2 (cultured in soil with 80 mg/kg of CdCl2 for 45 days). Transmission electron microscopy revealed ultrastructural alterations in both of the organs analyzed (reduction in the amount of reserve material, the appearance of vacuoles, etc.). Qualitative analysis using TUNEL assay revealed distinct crosstalk between autophagy and necrosis in the fat body adipocytes, while crosstalk between autophagy, apoptosis and necrosis in the salivary glands was detected in salivary glands of the centipedes examined here. We conclude that different organs in the body can react differently to the same stressor, as well as to the same concentration and time of exposure. Different mechanisms at the ultrastructural level activate different types of cell death and with different dynamics.
Collapse
Affiliation(s)
- Magdalena Rost-Roszkowska
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, 40-007, Katowice, Poland.
| | - Izabela Poprawa
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, 40-007, Katowice, Poland
| | - Łukasz Chajec
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, 40-007, Katowice, Poland
| | - Alina Chachulska-Żymełka
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, 40-007, Katowice, Poland
| | - Małgorzata Leśniewska
- Adam Mickiewicz University, Department of General Zoology, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Sebastian Student
- Silesian University of Technology, Faculty of Automatic Control, Electronics and Computer Science, Akademicka 16, 44-100, Gliwice, Poland; Silesian University of Technology, Biotechnology Centre, Krzywoustego 8, 44-100, Gliwice, Poland
| |
Collapse
|
14
|
Rost-Roszkowska M, Poprawa I, Chajec Ł, Chachulska-Żymełka A, Wilczek G, Wilczek P, Student S, Skowronek M, Nadgórska-Socha A, Leśniewska M. Influence of soil contaminated with cadmium on cell death in the digestive epithelium of soil centipede Lithobius forficatus (Myriapoda, Chilopoda). THE EUROPEAN ZOOLOGICAL JOURNAL 2020. [DOI: 10.1080/24750263.2020.1757168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- M. Rost-Roszkowska
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - I. Poprawa
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Ł. Chajec
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - A. Chachulska-Żymełka
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - G. Wilczek
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - P. Wilczek
- Bioengineering Laboratory, Heart Prosthesis Institute, Zabrze, Poland
| | - S. Student
- Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Gliwice, Poland
| | - M. Skowronek
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - A. Nadgórska-Socha
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - M. Leśniewska
- Department of General Zoology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
15
|
Tachibana SI, Matsuzaki S, Tanaka M, Shiota M, Motooka D, Nakamura S, Goto SG. The Autophagy-Related Protein GABARAP Is Induced during Overwintering in the Bean Bug (Hemiptera: Alydidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:427-434. [PMID: 31693096 DOI: 10.1093/jee/toz287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Indexed: 06/10/2023]
Abstract
In most insects dependent on food resources that deplete seasonally, mechanisms exist to protect against starvation. Insects overcome periods of food depletion using diapause-associated physiological mechanisms, such as increased energy resources in fat bodies and suppression of metabolism. Because autophagy supplies energy resources through the degradation of intracellular components, we hypothesized that it might be an additional strategy to combat starvation during overwintering. In this study, we measured the abundance of the proteins involved in the signaling pathway of autophagy during overwintering in adults of the bean bug Riptortus pedestris (Fabricius) (Hemiptera: Alydidae), which must withstand the periodic depletion of its host plants from late fall to early spring. Although the levels of gamma-aminobutyric acid receptor-associated protein (GABARAP) markedly increased after the cessation of food supply, AMP-activated protein kinase (AMPK) and target of rapamycin (TOR) were not found to be associated with food depletion. Thus, food depletion appears to induce autophagy independent of AMPK and TOR. The GABARAP levels significantly increased universally when the food supply ceased, irrespective of the diapause status of adults and low-temperature conditions. In overwintering diapause adults under seminatural conditions, the GABARAP levels significantly increased during early spring. Thus, autophagy appears to assist the survival of the bean bugs under natural conditions of food deficiency.
Collapse
Affiliation(s)
- Shin-Ichiro Tachibana
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, Japan
- Department of Tropical Medicine and Parasitology, Juntendo University School of Medicine, Tokyo, Japan
| | - Shinji Matsuzaki
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, Japan
| | - Masako Tanaka
- Department of Pharmacology, Osaka City University, Graduate School of Medicine, Osaka, Japan
- Waseda Institute for Advanced Study, Waseda University, Tokyo, Japan
| | - Masayuki Shiota
- Department of Pharmacology, Osaka City University, Graduate School of Medicine, Osaka, Japan
- Research support platform, Osaka City University, Graduate School of Medicine, Osaka, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shota Nakamura
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shin G Goto
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, Japan
| |
Collapse
|
16
|
Mammola S, Cardoso P, Angyal D, Balázs G, Blick T, Brustel H, Carter J, Ćurčić S, Danflous S, Dányi L, Déjean S, Deltshev C, Elverici M, Fernández J, Gasparo F, Komnenov M, Komposch C, Kováč L, Kunt KB, Mock A, Moldovan O, Naumova M, Pavlek M, Prieto CE, Ribera C, Rozwałka R, Růžička V, Vargovitsh RS, Zaenker S, Isaia M. Continental data on cave-dwelling spider communities across Europe (Arachnida: Araneae). Biodivers Data J 2019; 7:e38492. [PMID: 31636503 PMCID: PMC6794329 DOI: 10.3897/bdj.7.e38492] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/07/2019] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Spiders (Arachnida: Araneae) are widespread in subterranean ecosystems worldwide and represent an important component of subterranean trophic webs. Yet, global-scale diversity patterns of subterranean spiders are still mostly unknown. In the frame of the CAWEB project, a European joint network of cave arachnologists, we collected data on cave-dwelling spider communities across Europe in order to explore their continental diversity patterns. Two main datasets were compiled: one listing all subterranean spider species recorded in numerous subterranean localities across Europe and another with high resolution data about the subterranean habitat in which they were collected. From these two datasets, we further generated a third dataset with individual geo-referenced occurrence records for all these species. NEW INFORMATION Data from 475 geo-referenced subterranean localities (caves, mines and other artificial subterranean sites, interstitial habitats) are herein made available. For each subterranean locality, information about the composition of the spider community is provided, along with local geomorphological and habitat features. Altogether, these communities account for > 300 unique taxonomic entities and 2,091 unique geo-referenced occurrence records, that are made available via the Global Biodiversity Information Facility (GBIF) (Mammola and Cardoso 2019). This dataset is unique in that it covers both a large geographic extent (from 35° south to 67° north) and contains high-resolution local data on geomorphological and habitat features. Given that this kind of high-resolution data are rarely associated with broad-scale datasets used in macroecology, this dataset has high potential for helping researchers in tackling a range of biogeographical and macroecological questions, not necessarily uniquely related to arachnology or subterranean biology.
Collapse
Affiliation(s)
- Stefano Mammola
- Department of Life Sciences and Systems Biology, University of Turin, Turin, ItalyDepartment of Life Sciences and Systems Biology, University of TurinTurinItaly
- Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History, University of Helsinki, Helsinki, FinlandLaboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History, University of HelsinkiHelsinkiFinland
| | - Pedro Cardoso
- Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History, University of Helsinki, Helsinki, FinlandLaboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History, University of HelsinkiHelsinkiFinland
| | - Dorottya Angyal
- Department of Zoology, Hungarian Natural History Museum, Budapest, HungaryDepartment of Zoology, Hungarian Natural History MuseumBudapestHungary
- UMDI, Faculty of Sciences, UNAM National Autonomous University of Mexico, Sisal, MexicoUMDI, Faculty of Sciences, UNAM National Autonomous University of MexicoSisalMexico
| | - Gergely Balázs
- Department of Systematic Zoology and Ecology, Eötvös Loránd University, Budapest, HungaryDepartment of Systematic Zoology and Ecology, Eötvös Loránd UniversityBudapestHungary
| | - Theo Blick
- Independent Researcher, Hummeltal, GermanyIndependent ResearcherHummeltalGermany
| | - Hervé Brustel
- Ecole d'Ingénieur de Purpan, Toulouse, FranceEcole d'Ingénieur de PurpanToulouseFrance
| | - Julian Carter
- Amgueddfa Cymru National Museum Wales, Cardiff, United KingdomAmgueddfa Cymru National Museum WalesCardiffUnited Kingdom
| | - Srećko Ćurčić
- Faculty of Biology, Institute of Zoology, University of Belgrade, Belgrade, SerbiaFaculty of Biology, Institute of Zoology, University of BelgradeBelgradeSerbia
| | - Samuel Danflous
- Conservatoire d'Espaces Naturels de Midi-Pyrénées, Toulouse, FranceConservatoire d'Espaces Naturels de Midi-PyrénéesToulouseFrance
| | - László Dányi
- Department of Zoology, Hungarian Natural History Museum, Budapest, HungaryDepartment of Zoology, Hungarian Natural History MuseumBudapestHungary
| | - Sylvain Déjean
- Conservatoire d'Espaces Naturels de Midi-Pyrénées, Tolouse, FranceConservatoire d'Espaces Naturels de Midi-PyrénéesTolouseFrance
| | - Christo Deltshev
- National Museum of Natural History, Bulgarian Academy of Sciences, Sofia, BulgariaNational Museum of Natural History, Bulgarian Academy of SciencesSofiaBulgaria
| | - Mert Elverici
- Department of Biology, Faculty of Science and Arts, Erzincan Binali Yıldırım University, Erzincan, TurkeyDepartment of Biology, Faculty of Science and Arts, Erzincan Binali Yıldırım UniversityErzincanTurkey
| | - Jon Fernández
- Independent researcher, Basque Country, SpainIndependent researcherBasque CountrySpain
| | - Fulvio Gasparo
- Commissione Grotte “E. Boegan”, Società Alpina delle Giulie, C.A.I., Trieste, ItalyCommissione Grotte “E. Boegan”, Società Alpina delle Giulie, C.A.I.TriesteItaly
| | - Marjan Komnenov
- Independent Researcher, Blwd Kuzman Josifovski Pitu, Skopje, MacedoniaIndependent Researcher, Blwd Kuzman Josifovski PituSkopjeMacedonia
| | - Christian Komposch
- OEKOTEAM - Institute for Animal Ecology and Landscape Planning, Graz, AustriaOEKOTEAM - Institute for Animal Ecology and Landscape PlanningGrazAustria
| | - L’ubomír Kováč
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University, Košice, SlovakiaInstitute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik UniversityKošiceSlovakia
| | - Kadir Boğaç Kunt
- Zoological Collection of Cyprus Wildlife Research Institute, Kyrenia, CyprusZoological Collection of Cyprus Wildlife Research InstituteKyreniaCyprus
- Department of Biology, Faculty of Science, Eskişehir Technical University, Eskişehir, TurkeyDepartment of Biology, Faculty of Science, Eskişehir Technical UniversityEskişehirTurkey
| | - Andrej Mock
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University, Košice, SlovakiaInstitute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik UniversityKošiceSlovakia
| | - Oana Moldovan
- Emil Racovitza Institute of Speleology, Cluj-Napoca, RomaniaEmil Racovitza Institute of SpeleologyCluj-NapocaRomania
| | - Maria Naumova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, BulgariaInstitute of Biodiversity and Ecosystem Research, Bulgarian Academy of SciencesSofiaBulgaria
| | - Martina Pavlek
- Ruđer Bošković Institute, Zagreb, CroatiaRuđer Bošković InstituteZagrebCroatia
- Croatian Biospeleological Society, Zagreb, CroatiaCroatian Biospeleological SocietyZagrebCroatia
- Department of Evolutionary Biology, Ecology and Environmental Sciences & Biodiversity Research Institute, University of Barcelona, Barcelona, SpainDepartment of Evolutionary Biology, Ecology and Environmental Sciences & Biodiversity Research Institute, University of BarcelonaBarcelonaSpain
| | - Carlos E. Prieto
- Department of Zoology & Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country, Bilbao, SpainDepartment of Zoology & Animal Cell Biology, Faculty of Science and Technology, University of the Basque CountryBilbaoSpain
| | - Carles Ribera
- Department of Evolutionary Biology, Ecology and Environmental Sciences & Biodiversity Research Institute, University of Barcelona, Barcelona, SpainDepartment of Evolutionary Biology, Ecology and Environmental Sciences & Biodiversity Research Institute, University of BarcelonaBarcelonaSpain
| | - Robert Rozwałka
- Faculty of Biology and Environmental Sciences, Cardinal Stefan Wyszyński University, Warsaw, PolandFaculty of Biology and Environmental Sciences, Cardinal Stefan Wyszyński UniversityWarsawPoland
| | - Vlastimil Růžička
- Biology Centre, Institute of Entomology, České Budějovice, Czech RepublicBiology Centre, Institute of EntomologyČeské BudějoviceCzech Republic
| | - Robert S. Vargovitsh
- Schmalhausen Institute of Zoology, National Academy of Sciences of Ukraine, Kiev, UkraineSchmalhausen Institute of Zoology, National Academy of Sciences of UkraineKievUkraine
| | - Stefan Zaenker
- Verband der deutschen Höhlen- und Karstforscher e.V., Fulda, GermanyVerband der deutschen Höhlen- und Karstforscher e.V.FuldaGermany
| | - Marco Isaia
- Department of Life Sciences and Systems Biology, University of Turin, Turin, ItalyDepartment of Life Sciences and Systems Biology, University of TurinTurinItaly
| |
Collapse
|
17
|
Włodarczyk A, Wilczek G, Wilczek P, Student S, Ostróżka A, Tarnawska M, Rost-Roszkowska M. Relationship between ROS production, MnSOD activation and periods of fasting and re-feeding in freshwater shrimp Neocaridina davidi (Crustacea, Malacostraca). PeerJ 2019; 7:e7399. [PMID: 31565545 PMCID: PMC6744934 DOI: 10.7717/peerj.7399] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/02/2019] [Indexed: 12/27/2022] Open
Abstract
The middle region of the digestive system, the midgut of freshwater shrimp Neocaridina davidi is composed of a tube-shaped intestine and the hepatopancreas formed by numerous caeca. Two types of cells have been distinguished in the intestine, the digestive cells (D-cells) and regenerative cells (R-cells). The hepatopancreatic tubules have three distinct zones distinguished along the length of each tubule—the distal zone with R-cells, the medial zone with differentiating cells, and the proximal zone with F-cells (fibrillar cells) and B-cells (storage cells). Fasting causes activation of cell death, a reduction in the amount of reserve material, and changes in the mitochondrial membrane potential. However, here we present how the concentration of ROS changes according to different periods of fasting and whether re-feeding causes their decrease. In addition, the activation/deactivation of mitochondrial superoxide dismutase (MnSOD) was analyzed. The freshwater shrimps Neocaridina davidi (Crustacea, Malacostraca, Decapoda) were divided into experimental groups: animals starved for 14 days, animals re-fed for 4, 7, and 14 days. The material was examined using the confocal microscope and the flow cytometry. Our studies have shown that long-term starvation increases the concentration of free radicals and MnSOD concentration in the intestine and hepatopancreas, while return to feeding causes their decrease in both organs examined. Therefore, we concluded that a distinct relationship between MnSOD concentration, ROS activation, cell death activation and changes in the mitochondrial membrane potential occurred.
Collapse
Affiliation(s)
- Agnieszka Włodarczyk
- Department of Animal Histology and Embryology, University of Silesia in Katowice, Katowice, Poland
| | - Grażyna Wilczek
- Department of Animal Physiology and Ecotoxicology, University of Silesia in Katowice, Katowice, Poland
| | - Piotr Wilczek
- Bioengineering Laboratory, Heart Prosthesis Institute, Zabrze, Poland
| | - Sebastian Student
- Faculty of Automatic Control, Silesian University of Technology, Gliwice, Poland
| | - Anna Ostróżka
- Department of Animal Histology and Embryology, University of Silesia in Katowice, Katowice, Poland
| | - Monika Tarnawska
- Department of Animal Physiology and Ecotoxicology, University of Silesia in Katowice, Katowice, Poland
| | | |
Collapse
|
18
|
Hesselberg T, Simonsen D. A comparison of morphology and web geometry between hypogean and epigean species of Metellina orb spiders (family Tetragnathidae). SUBTERRANEAN BIOLOGY 2019. [DOI: 10.3897/subtbiol.32.36222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Studies on the behaviour of subterranean animals are rare, mainly due to the problems with collecting data in these inaccessible habitats. Web-building cave spiders, however, leave a semi-permanent record of their foraging behaviour, which can relatively easily be recorded. In this study, we compare size, leg lengths and web characteristics between hypogean populations of Metellina merianae with its close wood-inhabiting relative M. mengei. We confirm previous observations that M. merianae does not show any obvious morphological and behavioural adaptions to a subterranean life-style, although individuals of the cave species were significantly larger and had webs with relatively fewer radii and capture spiral turns than M. mengei. We were, however, not able to determine if these findings indicate a transition towards behavioural adaptation to caves or if they are a result of behavioural flexibility in response to the different humidity and temperature between caves and woodland. Finally, we did not find any effect of cave characteristics on either the number of radii or the area of the M. merianae web.
Collapse
|
19
|
Hesselberg T, Simonsen D. A comparison of morphology and web geometry between hypogean and epigean species of Metellina orb spiders (family Tetragnathidae). SUBTERRANEAN BIOLOGY 2019. [DOI: 10.3897/subtbiol.31.36222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Studies on the behaviour of subterranean animals are rare, mainly due to the problems with collecting data in these inaccessible habitats. Web-building cave spiders, however, leave a semi-permanent record of their foraging behaviour, which can relatively easily be recorded. In this study, we compare size, leg lengths and web characteristics between hypogean populations of Metellina merianae with its close wood-inhabiting relative M. mengei. We confirm previous observations that M. merianae does not show any obvious morphological and behavioural adaptions to a subterranean life-style, although individuals of the cave species were significantly larger and had webs with relatively fewer radii and capture spiral turns than M. mengei. We were, however, not able to determine if these findings indicate a transition towards behavioural adaptation to caves or if they are a result of behavioural flexibility in response to the different humidity and temperature between caves and woodland. Finally, we did not find any effect of cave characteristics on either the number of radii or the area of the M. merianae web.
Collapse
|
20
|
Rost-Roszkowska MM, Vilimová J, Tajovský K, Chachulska-Żymełka A, Sosinka A, Kszuk-Jendrysik M, Ostróżka A, Kaszuba F. Autophagy and Apoptosis in the Midgut Epithelium of Millipedes. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2019; 25:1004-1016. [PMID: 31106722 DOI: 10.1017/s143192761900059x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The process of autophagy has been detected in the midgut epithelium of four millipede species: Julus scandinavius, Polyxenus lagurus, Archispirostreptus gigas, and Telodeinopus aoutii. It has been examined using transmission electron microscopy (TEM), which enabled differentiation of cells in the midgut epithelium, and some histochemical methods (light microscope and fluorescence microscope). While autophagy appeared in the cytoplasm of digestive, secretory, and regenerative cells in J. scandinavius and A. gigas, in the two other species, T. aoutii and P. lagurus, it was only detected in the digestive cells. Both types of macroautophagy, the selective and nonselective processes, are described using TEM. Phagophore formation appeared as the first step of autophagy. After its blind ends fusion, the autophagosomes were formed. The autophagosomes fused with lysosomes and were transformed into autolysosomes. As the final step of autophagy, the residual bodies were detected. Autophagic structures can be removed from the midgut epithelium via, e.g., atypical exocytosis. Additionally, in P. lagurus and J. scandinavius, it was observed as the neutralization of pathogens such as Rickettsia-like microorganisms. Autophagy and apoptosis ca be analyzed using TEM, while specific histochemical methods may confirm it.
Collapse
Affiliation(s)
- M M Rost-Roszkowska
- Department of Animal Histology and Embryology,University of Silesia in Katowice,Bankowa 9, 40-007 Katowice,Poland
| | - J Vilimová
- Department of Zoology,Charles University, Faculty of Science,Viničná 7, 128 44 Prague 2,Czech Republic
| | - K Tajovský
- Institute of Soil Biology, Biology Centre CAS,Na Sádkách 7, 370 05 České Budějovice,Czech Republic
| | - A Chachulska-Żymełka
- Department of Animal Histology and Embryology,University of Silesia in Katowice,Bankowa 9, 40-007 Katowice,Poland
| | - A Sosinka
- Department of Animal Histology and Embryology,University of Silesia in Katowice,Bankowa 9, 40-007 Katowice,Poland
| | - M Kszuk-Jendrysik
- Department of Animal Histology and Embryology,University of Silesia in Katowice,Bankowa 9, 40-007 Katowice,Poland
| | - A Ostróżka
- Department of Animal Histology and Embryology,University of Silesia in Katowice,Bankowa 9, 40-007 Katowice,Poland
| | - F Kaszuba
- Department of Animal Histology and Embryology,University of Silesia in Katowice,Bankowa 9, 40-007 Katowice,Poland
| |
Collapse
|
21
|
Lipovšek S, Leitinger G, Janžekovič F, Kozel P, Dariš B, Perc M, Devetak D, Weiland N, Novak T. Towards understanding partial adaptation to the subterranean habitat in the European cave spider, Meta menardi: An ecocytological approach. Sci Rep 2019; 9:9121. [PMID: 31235705 PMCID: PMC6591380 DOI: 10.1038/s41598-019-45291-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 06/04/2019] [Indexed: 12/16/2022] Open
Abstract
The European cave spider, Meta menardi, is a representative of the troglophiles, i.e. non-strictly subterranean organisms. Our aim was to interpret the cytological results from an ecological perspective, and provide a synthesis of the hitherto knowledge about M. menardi into a theory of key features marking it a troglophile. We studied ultrastructural changes of the midgut epithelial cells in individuals spending winter under natural conditions in caves, using light microscopy and TEM. The midgut diverticula epithelium consisted of secretory cells, digestive cells and adipocytes. During winter, gradual vacuolization of some digestive cells appeared, and some necrotic digestive cells and necrotic adipocytes appeared. This cytological information completes previous studies on M. menardi starved under controlled conditions in the laboratory. In experimental starvation and natural winter conditions, M. menardi gradually exploit reserve compounds from spherites, protein granules and through autophagy, and energy-supplying lipids and glycogen, as do many overwintering arthropods. We found no special cellular response to living in the habitat. Features that make it partly adapted to the subterranean habitat include starvation hardiness as a possible preadaptation, an extremely opportunistic diet, a partly reduced orb, tracking and capturing prey on bare walls and partly reduced tolerance to below-zero temperatures.
Collapse
Affiliation(s)
- Saška Lipovšek
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000, Maribor, Slovenia
- Faculty of Chemistry and Chemical Engineering, Smetanova ulica 17, University of Maribor, 2000, Maribor, Slovenia
- Gottfried Schatz Research Center, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010, Graz, Austria
| | - Gerd Leitinger
- Gottfried Schatz Research Center, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010, Graz, Austria
| | - Franc Janžekovič
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000, Maribor, Slovenia
| | - Peter Kozel
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000, Maribor, Slovenia
- Karst Research Institute ZRC SAZU, Titov trg 2, 6230, Postojna, Slovenia
- UNESCO Chair on Karst Education, University of Nova Gorica, Glavni trg 8, 5271, Vipava, Slovenia
| | - Barbara Dariš
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia
| | - Matjaž Perc
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000, Maribor, Slovenia
| | - Dušan Devetak
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000, Maribor, Slovenia
| | - Nina Weiland
- Vodovodna ulica 27, 2352, Selnica ob Dravi, Slovenia
| | - Tone Novak
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000, Maribor, Slovenia.
| |
Collapse
|
22
|
Włodarczyk A, Student S, Rost-Roszkowska M. Autophagy and apoptosis in starved and refed Neocaridina davidi (Crustacea, Malacostraca) midgut. CAN J ZOOL 2019. [DOI: 10.1139/cjz-2018-0104] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Adult specimens of the freshwater shrimp Neocaridina davidi Bouvier, 1904 (Crustacea) were starved for 7, 14, and 21 days. Specimens from the first and second experimental group were collected for the studies. The majority of animals starved for 21 days died. Additionally, some specimens from each group were refed for 4, 7, and 14 days. The epithelium of the midgut, which is composed of the intestine and hepatopancreas, was analyzed. While the epithelium of the intestine is formed by D- and R-cells, the epithelium of the hepatopancreas has R-, B-, and F-cells. Autophagy and apoptosis in the midgut epithelium were analyzed using transmission electron microscopy and immunohistochemical methods. These processes were only observed in the D-cells of the intestine and the F- and B-cells of the hepatopancreas. Starvation led to a reduction in the amount of reserve material in the B-cells. Although this process activated autophagy in both regions of the midgut, the intestine and hepatopancreas, after refeeding, the level of autophagy decreased. Starvation caused an increase in the apoptotic cells in both organs, while the refeeding caused a decrease in the number of apoptotic cells in both organs analyzed. Refeeding after periods of starvation caused an accumulation of reserve material in the hepatopancreas.
Collapse
Affiliation(s)
- A. Włodarczyk
- Department of Animal Histology and Embryology, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice
| | - S. Student
- Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Akademicka 16, 44-100 Gliwice
| | - M. Rost-Roszkowska
- Department of Animal Histology and Embryology, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice
| |
Collapse
|
23
|
Rost-Roszkowska M, Janelt K, Poprawa I. Fine structure of the midgut epithelium of Thulinius ruffoi (Tardigrada, Eutardigrada, Parachela) in relation to oogenesis and simplex stage. ARTHROPOD STRUCTURE & DEVELOPMENT 2019; 49:128-136. [PMID: 30557624 DOI: 10.1016/j.asd.2018.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
Thulinius ruffoi is a small freshwater tardigrade that lives in both non-polluted and polluted freshwater environments. As a result of tardigradan body miniaturization, the digestive system is reduced and simplified. It consists of a short fore- and hindgut, and the midgut in the shape of a short tube is lined with a simple epithelium. The midgut epithelium is formed by the digestive cells and two rings of crescent-shaped cells were also detected. The anterior ring is located at the border between the fore- and midgut, while the posterior ring is situated between the mid- and hindgut. The precise ultrastructure of the digestive and crescent-shaped cells was examined using transmission electron microscopy, serial block face scanning electron microscopy and histochemical methods. We analyzed the changes that occurred in the midgut epithelial cells according to oogenesis (the species is parthenogenetic and there were only females in the laboratory culture). We focused on the accumulation of reserve material and the relationship between this and the intensity of autophagy. We concluded that autophagy supplies energy during a natural period of starvation (the simplex stage) and delivers the energy and probably the substances that are required during oogenesis. Apoptosis was not detected in the midgut epithelium of T. ruffoi.
Collapse
Affiliation(s)
- Magdalena Rost-Roszkowska
- University of Silesia in Katowice, Department of Animal Histology and Embryology, Bankowa 9, 40-007 Katowice, Poland.
| | - Kamil Janelt
- University of Silesia in Katowice, Department of Animal Histology and Embryology, Bankowa 9, 40-007 Katowice, Poland.
| | - Izabela Poprawa
- University of Silesia in Katowice, Department of Animal Histology and Embryology, Bankowa 9, 40-007 Katowice, Poland.
| |
Collapse
|
24
|
Changes in the midgut diverticula epithelial cells of the European cave spider, Meta menardi, under controlled winter starvation. Sci Rep 2018; 8:13645. [PMID: 30206362 PMCID: PMC6133933 DOI: 10.1038/s41598-018-31907-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 08/24/2018] [Indexed: 12/13/2022] Open
Abstract
The European cave spider, Meta menardi, is among the most common troglophile species inhabiting the cave entrance zone in Europe, where prey is scarce in winter. Spiders feed only if prey is available; otherwise, they are subjected to long-term winter starvation. We carried out a four-month winter starvation of M. menardi under controlled conditions to analyze ultrastructural changes in the midgut diverticula epithelial cells at the beginning, in the middle and at the end of the starvation period. We used light microscopy, TEM and quantified reserve lipids and glycogen. The midgut diverticula epithelium consisted of secretory cells, digestive cells and adipocytes. During starvation, gradual vacuolization of some digestive cells, and some necrotic digestive cells and adipocytes appeared. Autophagic structures, autophagosomes, autolysosomes and residual bodies were found in all three cell types. Spherites and the energy-reserve compounds were gradually exploited, until in some spherites only the membrane remained. Comparison between spring, autumn and winter starvation reveals that, during the growth period, M. menardi accumulate reserve compounds in spherites and protein granules, and energy-supplying lipids and glycogen, like many epigean, overwintering arthropods. In M. menardi, otherwise active all over the year, this is an adaptive response to the potential absence of prey in winter.
Collapse
|