1
|
Yao T, Luo J, Han X, Yi H, Zhang H, Pan W, Xue Q, Liu X, Fu J, Zhang A. From Nuclear Receptors to GPCRs: a Deep Transfer Learning Approach for Enhanced Environmental Estrogen Recognition. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40306980 DOI: 10.1021/acs.est.5c02014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Environmental estrogens (EEs), as typical endocrine-disrupting chemicals (EDCs), can bind to classic estrogen receptors (ERs) to induce genomic effects, as well as to G protein-coupled estrogen receptor (GPER) located on the membrane, thereby inducing downstream nongenomic effects rapidly. However, due to the relatively scarce ligand data, receptor-based or ligand-based screening models for GPER are challenging. Inspired by functional similarity between GPER and ER, this study constructs a deep transfer learning model named GPNET to predict potential GPER-binding ligands by using three-dimensional (3D) molecular surface electrostatic potential point clouds (SepPC) as input. The model retains a part of molecular structural knowledge learned from the ER ligands and then trains the remaining parameters of the model using the GPER ligands, ultimately obtaining the GPNET model, which effectively predicts the binding activity of compounds with GPER. GPNET outperforms From Scratch (nontransfer) model on the small data set, achieving the area under the receiver operating characteristic (ROC) curve (AUCROC) of 0.898 on the validation set and 0.863 on the test set, respectively. Furthermore, by visualizing the critical points and extracting the features from activation points of active ligands, the study provides a more in-depth interpretation of the molecular mechanism of two bisphenol A (BPA) alternatives binding to GPER.
Collapse
Affiliation(s)
- Tingji Yao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310012, P. R. China
| | - Jiaqi Luo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Xiaoxiao Han
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Hang Yi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Huazhou Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Wenxiao Pan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Qiao Xue
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Xian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310012, P. R. China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, P.R. China
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310012, P. R. China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, P.R. China
| |
Collapse
|
2
|
Goodman RL, Moore AM, Onslow K, Hileman SM, Hardy SL, Bowdridge EC, Walters BA, Agus S, Griesgraber MJ, Aerts EG, Lehman MN, Coolen LM. Lesions of KNDy and Kiss1R Neurons in the Arcuate Nucleus Produce Different Effects on LH Pulse Patterns in Female Sheep. Endocrinology 2023; 164:bqad148. [PMID: 37776515 PMCID: PMC10587900 DOI: 10.1210/endocr/bqad148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/02/2023]
Abstract
The current model for the synchronization of GnRH neural activity driving GnRH and LH pulses proposes that a set of arcuate (ARC) neurons that contain kisspeptin, neurokinin B, and dynorphin (KNDy neurons) is the GnRH pulse generator. This study tested the functional role of ovine KNDy neurons in pulse generation and explored the roles of nearby Kiss1 receptor (Kiss1R)-containing cells using lesions produced with saporin (SAP) conjugates. Injection of NK3-SAP ablated over 90% of the KNDy cells, while Kiss-SAP (saporin conjugated to kisspeptin-54) lesioned about two-thirds of the Kiss1R population without affecting KNDy or GnRH cell number. Both lesions produced a dramatic decrease in LH pulse amplitude but had different effects on LH pulse patterns. NK3-SAP increased interpulse interval, but Kiss-SAP did not. In contrast, Kiss-SAP disrupted the regular hourly occurrence of LH pulses, but NK3-SAP did not. Because Kiss1R is not expressed in KNDy cells, HiPlex RNAScope was used to assess the colocalization of 8 neurotransmitters and 3 receptors in ARC Kiss1R-containing cells. Kiss1R cells primarily contained transcript markers for GABA (68%), glutamate (28%), ESR1 (estrogen receptor-α) mRNA, and OPRK1 (kappa opioid receptor) mRNA. These data support the conclusion that KNDy neurons are essential for GnRH pulses in ewes, whereas ARC Kiss1R cells are not but do maintain the amplitude and regularity of GnRH pulses. We thus propose that in sheep, ARC Kiss1R neurons form part of a positive feedback circuit that reinforces the activity of the KNDy neural network, with GABA or glutamate likely being involved.
Collapse
Affiliation(s)
- Robert L Goodman
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506, USA
| | - Aleisha M Moore
- Brain Health Research Institute, Kent State University, Kent, OH 44242, USA
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Kayla Onslow
- Brain Health Research Institute, Kent State University, Kent, OH 44242, USA
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Stanley M Hileman
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506, USA
| | - Steve L Hardy
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506, USA
| | - Elizabeth C Bowdridge
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506, USA
| | - Burgundy A Walters
- Brain Health Research Institute, Kent State University, Kent, OH 44242, USA
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Sami Agus
- Brain Health Research Institute, Kent State University, Kent, OH 44242, USA
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Max J Griesgraber
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506, USA
| | - Eliana G Aerts
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506, USA
| | - Michael N Lehman
- Brain Health Research Institute, Kent State University, Kent, OH 44242, USA
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Lique M Coolen
- Brain Health Research Institute, Kent State University, Kent, OH 44242, USA
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
3
|
Ma Y, Awe O, Radovick S, Yang X, Divall S, Wolfe A, Wu S. Lower FSH With Normal Fertility in Male Mice Lacking Gonadotroph Kisspeptin Receptor. Front Physiol 2022; 13:868593. [PMID: 35557961 PMCID: PMC9089166 DOI: 10.3389/fphys.2022.868593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/31/2022] [Indexed: 12/03/2022] Open
Abstract
The kisspeptin receptor, crucial for hypothalamic control of puberty and reproduction, is also present in the pituitary gland. Its role in the pituitary gland is not defined. Kisspeptin signaling via the Kiss1r could potentially regulate reproductive function at the level of pituitary gonadotrope. Using Cre/Lox technology, we deleted the Kiss1r gene in pituitary gonadotropes (PKiRKO). PKiRKO males have normal genital development (anogenital distance WT: 19.1 ± 0.4 vs. PKiRKO: 18.5 ± 0.4 mm), puberty onset, testes cell structure on gross histology, normal testes size, and fertility. PKiRKO males showed significantly decreased serum FSH levels compared to WT males (5.6 ± 1.9 vs. 10.2 ± 1.8 ng/ml) with comparable LH (1.1 ± 0.2 vs. 1.8 ± 0.4 ng/ml) and testosterone levels (351.8 ± 213.0 vs. 342.2 ± 183.0 ng/dl). PKiRKO females have normal puberty onset, cyclicity, LH and FSH levels and fertility. Overall, these findings indicate that absence of pituitary Kiss1r reduces FSH levels in male mice without affecting testis function. PKiRKO mice have normal reproductive function in both males and females.
Collapse
Affiliation(s)
- Yaping Ma
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Olubusayo Awe
- Department of Cellular and Molecular Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sally Radovick
- Department of Pediatrics, Rutgers University Medical School, New Brunswick, NJ, United States
| | - Xiaofeng Yang
- Department of Cardiovascular Sciences, Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, United States
| | - Sara Divall
- Department of Pediatrics, University of Washington, Seattle's Children's Hospital, Seattle, United States
| | - Andrew Wolfe
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sheng Wu
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Cellular and Molecular Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Cardiovascular Sciences, Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
4
|
Kamei N, Higo S, Mizuno T, Mori K, Sakamoto A, Ozawa H. Identification of Brain Regions Activated by Sevoflurane and Propofol and Regional Changes in Gene Expression. Acta Histochem Cytochem 2022; 55:37-46. [PMID: 35444347 PMCID: PMC8913278 DOI: 10.1267/ahc.21-00091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/13/2021] [Indexed: 01/01/2023] Open
Abstract
General anesthetics have different efficacies and side effect incidences based on their mechanism of action. However, detailed comparative studies of anesthetics are incomplete. In this study, target brain regions and gene expression changes in these brain regions were determined for sevoflurane and propofol to understand the mechanisms that cause differences among anesthetics. Rats were anesthetized with sevoflurane or propofol for 1 hr, and brain regions with anesthesia-induced changes in neuronal activity were examined by immunohistochemistry and in situ hybridization for c-Fos. Among the identified target brain regions, gene expression analysis was performed in the habenula, the solitary nucleus and the medial vestibular nucleus from laser microdissected samples. Genes altered by sevoflurane and propofol were different and included genes involved in the incidence of postoperative nausea and vomiting and emergence agitation, such as Egr1 and Gad2. GO enrichment analysis showed that the altered genes tended to be evenly distributed in all functional category. The detailed profiles of target brain regions and induced gene expression changes of sevoflurane and propofol in this study will provide a basis for analyzing the effects of each anesthetic agent and the risk of adverse events.
Collapse
Affiliation(s)
- Nobutaka Kamei
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School
| | - Shimpei Higo
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School
| | - Tomoki Mizuno
- Department of Anesthesiology and Pain Medicine, Graduate school of Medicine, Nippon Medical School
| | - Keisuke Mori
- Department of Anesthesiology and Pain Medicine, Graduate school of Medicine, Nippon Medical School
| | - Atsuhiro Sakamoto
- Department of Anesthesiology and Pain Medicine, Graduate school of Medicine, Nippon Medical School
| | - Hitoshi Ozawa
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School
| |
Collapse
|
5
|
Dragan M, Nguyen MU, Guzman S, Goertzen C, Brackstone M, Dhillo WS, Bech PR, Clarke S, Abbara A, Tuck AB, Hess DA, Pine SR, Zong WX, Wondisford FE, Su X, Babwah AV, Bhattacharya M. G protein-coupled kisspeptin receptor induces metabolic reprograming and tumorigenesis in estrogen receptor-negative breast cancer. Cell Death Dis 2020; 11:106. [PMID: 32034133 PMCID: PMC7005685 DOI: 10.1038/s41419-020-2305-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/27/2020] [Indexed: 12/23/2022]
Abstract
Triple-negative breast cancer (TNBC) is a highly metastatic and deadly disease. TNBC tumors lack estrogen receptor (ERα), progesterone receptor (PR), and HER2 (ErbB2) and exhibit increased glutamine metabolism, a requirement for tumor growth. The G protein-coupled kisspeptin receptor (KISS1R) is highly expressed in patient TNBC tumors and promotes malignant transformation of breast epithelial cells. This study found that TNBC patients displayed elevated plasma kisspeptin levels compared with healthy subjects. It also provides the first evidence that in addition to promoting tumor growth and metastasis in vivo, KISS1R-induced glutamine dependence of tumors. In addition, tracer-based metabolomics analyses revealed that KISS1R promoted glutaminolysis and nucleotide biosynthesis by increasing c-Myc and glutaminase levels, key regulators of glutamine metabolism. Overall, this study establishes KISS1R as a novel regulator of TNBC metabolism and metastasis, suggesting that targeting KISS1R could have therapeutic potential in the treatment of TNBC.
Collapse
Affiliation(s)
- Magdalena Dragan
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Mai-Uyen Nguyen
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Stephania Guzman
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Cameron Goertzen
- Cancer Invasion and Metastasis Laboratory, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Muriel Brackstone
- Department of Surgery, London Health Sciences Centre, London, ON, Canada
| | - Waljit S Dhillo
- Section of Investigative Medicine, Imperial College London, London, UK
| | - Paul R Bech
- Section of Investigative Medicine, Imperial College London, London, UK
| | - Sophie Clarke
- Section of Investigative Medicine, Imperial College London, London, UK
| | - Ali Abbara
- Section of Investigative Medicine, Imperial College London, London, UK
| | - Alan B Tuck
- Department of Pathology, The University of Western Ontario, London, ON, Canada
| | - David A Hess
- Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada
| | - Sharon R Pine
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA.,Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Wei-Xing Zong
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA.,Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, New Brunswick, NJ, USA
| | - Frederic E Wondisford
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA.,Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA.,Child Health Institute of New Jersey, New Brunswick, NJ, USA
| | - Xiaoyang Su
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA.,Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Andy V Babwah
- Child Health Institute of New Jersey, New Brunswick, NJ, USA.,Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Moshmi Bhattacharya
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA. .,Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA. .,Child Health Institute of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|