1
|
Lu JW, Lin LI, Sun Y, Liu D, Gong Z. Effect of Lipopolysaccharides on Liver Tumor Metastasis of twist1a/krasV12 Double Transgenic Zebrafish. Biomedicines 2022; 10:biomedicines10010095. [PMID: 35052775 PMCID: PMC8773574 DOI: 10.3390/biomedicines10010095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 12/24/2022] Open
Abstract
The poor prognosis of patients diagnosed with hepatocellular carcinoma (HCC) is directly associated with the multi-step process of tumor metastasis. TWIST1, a basic helix-loop-helix (bHLH) transcription factor, is the most important epithelial-mesenchymal transition (EMT) gene involved in embryonic development, tumor progression, and metastasis. However, the role that TWIST1 gene plays in the process of liver tumor metastasis in vivo is still not well understood. Zebrafish can serve as a powerful model for cancer research. Thus, in this study, we crossed twist1a+ and kras+ transgenic zebrafish, which, respectively, express hepatocyte-specific mCherry and enhanced green fluorescent protein (EGFP); they also drive overexpression of their respective transcription factors. This was found to exacerbate the development of metastatic HCC. Fluorescence of mCherry and EGFP-labeled hepatocytes revealed that approximately 37.5% to 45.5% of the twist1a+/kras+ double transgenic zebrafish exhibited spontaneous tumor metastasis from the liver to the abdomen and tail areas, respectively. We also investigated the inflammatory effects of lipopolysaccharides (LPS) on the hepatocyte-specific co-expression of twist1a+ and kras+ in double transgenic zebrafish. Following LPS exposure, co-expression of twist1a+ and kras+ was found to increase tumor metastasis by 57.8%, likely due to crosstalk with the EMT pathway. Our results confirm that twist1a and kras are important mediators in the development of metastatic HCC. Taken together, our in-vivo model demonstrated that co-expression of twist1a+/kras+ in conjunction with exposure to LPS enhanced metastatic HCC offers a useful platform for the study of tumor initiation and metastasis in liver cancer.
Collapse
Affiliation(s)
- Jeng-Wei Lu
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore;
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei 10048, Taiwan;
- Correspondence: (J.-W.L.); (Z.G.); Tel.: +65-6516-2860 (Z.G.)
| | - Liang-In Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei 10048, Taiwan;
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei 10048, Taiwan
| | - Yuxi Sun
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore;
- Brain Research Center, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China;
| | - Dong Liu
- Brain Research Center, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China;
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore;
- Correspondence: (J.-W.L.); (Z.G.); Tel.: +65-6516-2860 (Z.G.)
| |
Collapse
|
2
|
Matrix Metalloproteinases Shape the Tumor Microenvironment in Cancer Progression. Int J Mol Sci 2021; 23:ijms23010146. [PMID: 35008569 PMCID: PMC8745566 DOI: 10.3390/ijms23010146] [Citation(s) in RCA: 223] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer progression with uncontrolled tumor growth, local invasion, and metastasis depends largely on the proteolytic activity of numerous matrix metalloproteinases (MMPs), which affect tissue integrity, immune cell recruitment, and tissue turnover by degrading extracellular matrix (ECM) components and by releasing matrikines, cell surface-bound cytokines, growth factors, or their receptors. Among the MMPs, MMP-14 is the driving force behind extracellular matrix and tissue destruction during cancer invasion and metastasis. MMP-14 also influences both intercellular as well as cell-matrix communication by regulating the activity of many plasma membrane-anchored and extracellular proteins. Cancer cells and other cells of the tumor stroma, embedded in a common extracellular matrix, interact with their matrix by means of various adhesive structures, of which particularly invadopodia are capable to remodel the matrix through spatially and temporally finely tuned proteolysis. As a deeper understanding of the underlying functional mechanisms is beneficial for the development of new prognostic and predictive markers and for targeted therapies, this review examined the current knowledge of the interplay of the various MMPs in the cancer context on the protein, subcellular, and cellular level with a focus on MMP14.
Collapse
|
3
|
Tampa M, Georgescu SR, Mitran MI, Mitran CI, Matei C, Caruntu A, Scheau C, Nicolae I, Matei A, Caruntu C, Constantin C, Neagu M. Current Perspectives on the Role of Matrix Metalloproteinases in the Pathogenesis of Basal Cell Carcinoma. Biomolecules 2021; 11:biom11060903. [PMID: 34204372 PMCID: PMC8235174 DOI: 10.3390/biom11060903] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Basal cell carcinoma (BCC) is the most common skin malignancy, which rarely metastasizes but has a great ability to infiltrate and invade the surrounding tissues. One of the molecular players involved in the metastatic process are matrix metalloproteinases (MMPs). MMPs are enzymes that can degrade various components of the extracellular matrix. In the skin, the expression of MMPs is increased in response to various stimuli, including ultraviolet (UV) radiation, one of the main factors involved in the development of BCC. By modulating various processes that are linked to tumor growth, such as invasion and angiogenesis, MMPs have been associated with UV-related carcinogenesis. The sources of MMPs are multiple, as they can be released by both neoplastic and tumor microenvironment cells. Inhibiting the action of MMPs could be a useful therapeutic option in BCC management. In this review that reunites the latest advances in this domain, we discuss the role of MMPs in the pathogenesis and evolution of BCC, as molecules involved in tumor aggressiveness and risk of recurrence, in order to offer a fresh and updated perspective on this field.
Collapse
Affiliation(s)
- Mircea Tampa
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.T.); (C.M.)
- Department of Dermatology, Victor Babes Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania;
| | - Simona Roxana Georgescu
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.T.); (C.M.)
- Department of Dermatology, Victor Babes Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania;
- Correspondence: (S.R.G.); (A.C.)
| | - Madalina Irina Mitran
- Department of Microbiology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.I.M.); (C.I.M.)
| | - Cristina Iulia Mitran
- Department of Microbiology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.I.M.); (C.I.M.)
| | - Clara Matei
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.T.); (C.M.)
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Faculty of Dental Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
- Correspondence: (S.R.G.); (A.C.)
| | - Cristian Scheau
- Department of Physiology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.S.); (A.M.); (C.C.)
| | - Ilinca Nicolae
- Department of Dermatology, Victor Babes Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania;
| | - Andreea Matei
- Department of Physiology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.S.); (A.M.); (C.C.)
| | - Constantin Caruntu
- Department of Physiology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.S.); (A.M.); (C.C.)
- Department of Dermatology, Prof. N.C. Paulescu National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Carolina Constantin
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.C.); (M.N.)
- Department of Pathology, Colentina University Hospital, Bucharest 020125, Romania
| | - Monica Neagu
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.C.); (M.N.)
- Department of Pathology, Colentina University Hospital, Bucharest 020125, Romania
- Faculty of Biology, University of Bucharest, Bucharest 76201, Romania
| |
Collapse
|
4
|
Post-translational activation of Mmp2 correlates with patterns of active collagen degradation during the development of the zebrafish tail. Dev Biol 2021; 477:155-163. [PMID: 34058190 DOI: 10.1016/j.ydbio.2021.05.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 11/23/2022]
Abstract
Matrix metalloproteinase-2 (a.k.a. Gelatinase A, or Mmp2 in zebrafish) is known to have roles in pathologies such as arthritis, in which its function is protective, as well as in cancer metastasis, in which it is activated as part of the migration and invasion of metastatic cells. It is also required during development and the regeneration of tissue architecture after wound healing, but its roles in tissue remodelling are not well understood. Gelatinase A is activated post-translationally by proteolytic cleavage, making information about its transcription and even patterns of protein accumulation difficult to relate to biologically relevant activity. Using a transgenic reporter of endogenous Mmp2 activation in zebrafish, we describe its accumulation and post-translational proteolytic activation during the embryonic development of the tail. Though Mmp2 is expressed relatively ubiquitously, it seems to be active only at specific locations and times. Mmp2 is activated robustly in the neural tube and in maturing myotome boundaries. It is also activated in the notochord during body axis straightening, in patches scattered throughout the epidermal epithelium, in the gut, and on cellular protrusions extending from mesenchymal cells in the fin folds. The activation of Mmp2 in the notochord, somite boundaries and fin folds associates with collagen remodelling in the notochord sheath, myotome boundary ECM and actinotrichia respectively. Mmp2 is likely an important effector of ECM remodelling during the morphogenesis of the notochord, a driving structure in vertebrate development. It also appears to function in remodelling the ECM associated with growing epithelia and the maturation of actinotrichia in the fin folds, mediated by mesenchymal cell podosomes.
Collapse
|
5
|
Taatjes DJ, Roth J. In focus in HCB. Histochem Cell Biol 2020; 154:597-607. [PMID: 33277679 DOI: 10.1007/s00418-020-01944-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2020] [Indexed: 11/26/2022]
Affiliation(s)
- Douglas J Taatjes
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA.
| | - Jürgen Roth
- University of Zurich, CH-8091, Zurich, Switzerland
| |
Collapse
|
6
|
Weaver ML, Piedade WP, Meshram NN, Famulski JK. Hyaloid vasculature and mmp2 activity play a role during optic fissure fusion in zebrafish. Sci Rep 2020; 10:10136. [PMID: 32576859 PMCID: PMC7311462 DOI: 10.1038/s41598-020-66451-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/18/2020] [Indexed: 02/03/2023] Open
Abstract
Vertebrate retinal development requires timely and precise fusion of the optic fissure (OF). Failure of this event leads to congenital vision impairment in the form of coloboma. Recent studies have suggested hyaloid vasculature to be involved in OF fusion. In order to examine this link, we analyzed OF fusion and hyaloid vasculogenesis in the zebrafish pax2a noi mutant line. We first determined that pax2a-/- embryos fail to accumulate F-actin in the OF prior to basement membrane (BM) degradation. Furthermore, using 3D and live imaging we observed reduced OF hyaloid vascularization in pax2a-/- embryos. When examining the connection between pax2a loss of function and hyaloid vasculature, we observed significant reduction of talin1 expression, a regulator of hyaloid vasculature. In addition, cranial VEGF expression was found to be reduced in pax2a-/- embryos. Pharmacological inhibition of VEGF signaling phenocopied the pax2a-/- vasculature, F-actin and BM degradation phenotypes. Lastly, we determined that OF associated hyaloid vasculature is a source of mmp2, mmp14a and mmp14b expression and showed that mmp2 is functionally necessary for degradation of OF BM. Taken together we propose a pax2a driven mechanism that ensures proper and timely hyaloid vasculature invasion of the OF in order to facilitate availability of the BM remodeler mmp2.
Collapse
Affiliation(s)
- Megan L Weaver
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | - Warlen P Piedade
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | | | - Jakub K Famulski
- Department of Biology, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
7
|
Small CD, el-Khoury M, Deslongchamps G, Benfey TJ, Crawford BD. Matrix Metalloproteinase 13 Activity is Required for Normal and Hypoxia-Induced Precocious Hatching in Zebrafish Embryos. J Dev Biol 2020; 8:jdb8010003. [PMID: 32023839 PMCID: PMC7151336 DOI: 10.3390/jdb8010003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/22/2020] [Accepted: 01/25/2020] [Indexed: 12/11/2022] Open
Abstract
Hypoxia induces precocious hatching in zebrafish, but we do not have a clear understanding of the molecular mechanisms regulating the activation of the hatching enzyme or how these mechanisms trigger precocious hatching under unfavorable environmental conditions. Using immunohistochemistry, pharmacological inhibition of matrix metalloproteinase 13 (Mmp13), and in vivo zymography, we show that Mmp13a is present in the hatching gland just as embryos become hatching competent and that Mmp13a activity is required for both normal hatching and hypoxia-induced precocious hatching. We conclude that Mmp13a likely functions in activating the hatching enzyme zymogen and that Mmp13a activity is necessary but not sufficient for hatching in zebrafish. This study highlights the broad nature of MMP function in development and provides a non-mammalian example of extra-embryonic processes mediated by MMP activity.
Collapse
Affiliation(s)
- Christopher D. Small
- Biology Department, University of New Brunswick, Fredericton, NB E3B 5A3, Canada; (C.D.S.); (M.e.-K.); (T.J.B.)
| | - Megan el-Khoury
- Biology Department, University of New Brunswick, Fredericton, NB E3B 5A3, Canada; (C.D.S.); (M.e.-K.); (T.J.B.)
| | | | - Tillmann J. Benfey
- Biology Department, University of New Brunswick, Fredericton, NB E3B 5A3, Canada; (C.D.S.); (M.e.-K.); (T.J.B.)
| | - Bryan D. Crawford
- Biology Department, University of New Brunswick, Fredericton, NB E3B 5A3, Canada; (C.D.S.); (M.e.-K.); (T.J.B.)
- Correspondence:
| |
Collapse
|
8
|
Matchett EF, Wang S, Crawford BD. Paralogues of Mmp11 and Timp4 Interact during the Development of the Myotendinous Junction in the Zebrafish Embryo. J Dev Biol 2019; 7:jdb7040022. [PMID: 31816958 PMCID: PMC6955687 DOI: 10.3390/jdb7040022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023] Open
Abstract
The extracellular matrix (ECM) of the myotendinous junction (MTJ) undergoes dramatic physical and biochemical remodeling during the first 48 h of development in zebrafish, transforming from a rectangular fibronectin-dominated somite boundary to a chevron-shaped laminin-dominated MTJ. Matrix metalloproteinase 11 (Mmp11, a.k.a. Stromelysin-3) is both necessary and sufficient for the removal of fibronectin at the MTJ, but whether this protease acts directly on fibronectin and how its activity is regulated remain unknown. Using immunofluorescence, we show that both paralogues of Mmp11 accumulate at the MTJ during this time period, but with Mmp11a present early and later replaced by Mmp11b. Moreover, Mmp11a also accumulates intracellularly, associated with the Z-discs of sarcomeres within skeletal muscle cells. Using the epitope-mediated MMP activation (EMMA) assay, we show that despite having a weaker paired basic amino acid motif in its propeptide than Mmp11b, Mmp11a is activated by furin, but may also be activated by other mechanisms intracellularly. One or both paralogues of tissue inhibitors of metalloproteinase-4 (Timp4) are also present at the MTJ throughout this process, and yeast two-hybrid assays reveal distinct and specific interactions between various domains of these proteins. We propose a model in which Mmp11a activity is modulated (but not inhibited) by Timp4 during early MTJ remodeling, followed by a phase in which Mmp11b activity is both inhibited and spatially constrained by Timp4 in order to maintain the structural integrity of the mature MTJ.
Collapse
|
9
|
Intracellular Localization in Zebrafish Muscle and Conserved Sequence Features Suggest Roles for Gelatinase A Moonlighting in Sarcomere Maintenance. Biomedicines 2019; 7:biomedicines7040093. [PMID: 31795436 PMCID: PMC6966518 DOI: 10.3390/biomedicines7040093] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/19/2019] [Accepted: 11/25/2019] [Indexed: 12/24/2022] Open
Abstract
Gelatinase A (Mmp2 in zebrafish) is a well-characterized effector of extracellular matrix remodeling, extracellular signaling, and along with other matrix metalloproteinases (MMPs) and extracellular proteases, it plays important roles in the establishment and maintenance of tissue architecture. Gelatinase A is also found moonlighting inside mammalian striated muscle cells, where it has been implicated in the pathology of ischemia-reperfusion injury. Gelatinase A has no known physiological function in muscle cells, and its localization within mammalian cells appears to be due to inefficient recognition of its N-terminal secretory signal. Here we show that Mmp2 is abundant within the skeletal muscle cells of zebrafish, where it localizes to the M-line of sarcomeres and degrades muscle myosin. The N-terminal secretory signal of zebrafish Mmp2 is also challenging to identify, and this is a conserved characteristic of gelatinase A orthologues, suggesting a selective pressure acting to prevent the efficient secretion of this protease. Furthermore, there are several strongly conserved phosphorylation sites within the catalytic domain of gelatinase A orthologues, some of which are phosphorylated in vivo, and which are known to regulate the activity of this protease. We conclude that gelatinase A likely participates in uncharacterized physiological functions within the striated muscle, possibly in the maintenance of sarcomere proteostasis, that are likely regulated by kinases and phosphatases present in the sarcomere.
Collapse
|
10
|
Gonzalez-Molina J, Gramolelli S, Liao Z, Carlson JW, Ojala PM, Lehti K. MMP14 in Sarcoma: A Regulator of Tumor Microenvironment Communication in Connective Tissues. Cells 2019; 8:cells8090991. [PMID: 31466240 PMCID: PMC6770050 DOI: 10.3390/cells8090991] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/24/2019] [Accepted: 08/27/2019] [Indexed: 12/12/2022] Open
Abstract
Sarcomas are deadly malignant tumors of mesenchymal origin occurring at all ages. The expression and function of the membrane-type matrix metalloproteinase MMP14 is closely related to the mesenchymal cell phenotype, and it is highly expressed in most sarcomas. MMP14 regulates the activity of multiple extracellular and plasma membrane proteins, influencing cell–cell and cell–extracellular matrix (ECM) communication. This regulation mediates processes such as ECM degradation and remodeling, cell invasion, and cancer metastasis. Thus, a comprehensive understanding of the biology of MMP14 in sarcomas will shed light on the mechanisms controlling the key processes in these diseases. Here, we provide an overview of the function and regulation of MMP14 and we discuss their relationship with clinical and pre-clinical MMP14 data in both adult and childhood sarcomas.
Collapse
Affiliation(s)
- Jordi Gonzalez-Molina
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 17177 Stockholm, Sweden.
- Department of Oncology-Pathology, Karolinska Institutet, 17176 Stockholm, Sweden.
| | - Silvia Gramolelli
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Zehuan Liao
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 17177 Stockholm, Sweden
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Joseph W Carlson
- Department of Oncology-Pathology, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Päivi M Ojala
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Section of Virology, Division of Infectious Diseases, Department of Medicine, Imperial College London, London W2 1NY, UK
| | - Kaisa Lehti
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 17177 Stockholm, Sweden.
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland.
| |
Collapse
|
11
|
In focus in HCB. Histochem Cell Biol 2018; 149:193-195. [PMID: 29411101 DOI: 10.1007/s00418-018-1647-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2018] [Indexed: 10/18/2022]
|