1
|
Matthews M, Cook E, Naguib N, Wiesner U, Lewis K. Intravital imaging of osteocyte integrin dynamic with locally injectable fluorescent nanoparticles. Bone 2023:116830. [PMID: 37327917 DOI: 10.1016/j.bone.2023.116830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
Osteocytes are the resident mechanosensory cells in bone. They are responsible for skeletal homeostasis and adaptation to mechanical cues. Integrin proteins play a prominent role in osteocyte mechanotransduction, but the details are not well stratified. Intravital imaging with multiphoton microscopy presents an opportunity to study molecular level mechanobiological events in vivo and presents an opportunity to study integrin dynamics in osteocytes. However, fluorescent imaging limitations with respect to excessive optical scattering and low signal to noise ratio caused by mineralized bone matrix make such investigations non-trivial. Here, we demonstrate that ultra-small and bright fluorescent core-shell silica nanoparticles (<7 nm diameter), known as Cornell Prime Dots (C'Dots), are well-suited for the in vivo bone microenvironment and can improve intravital imaging capabilities. We report validation studies for C'Dots as a novel, locally injectable in vivo osteocyte imaging tool for both non-specific cellular uptake and for targeting integrins. The pharmacokinetics of C'Dots reveal distinct sex differences in nanoparticle intracellular dynamics and clearance in osteocytes, which represents a novel topic of study in bone biology. Integrin-targeted C'Dots were used to study osteocyte integrin dynamics. To the best of our knowledge, we report here the first evidence of osteocyte integrin endocytosis and recycling in vivo. Our results provide novel insights in osteocyte biology and will open up new lines of investigation that were previously unavailable in vivo.
Collapse
Affiliation(s)
- Melia Matthews
- Department of Biomedical Engineering, Cornell University, 237 Tower Rd, Ithaca 14850, NY, USA
| | - Emily Cook
- Department of Biomedical Engineering, Cornell University, 237 Tower Rd, Ithaca 14850, NY, USA
| | - Nada Naguib
- Department of Biomedical Engineering, Cornell University, 237 Tower Rd, Ithaca 14850, NY, USA
| | - Uli Wiesner
- Department of Materials Science and Engineering, Cornell University, Bard Hall 210, Ithaca 14850, NY, USA
| | - Karl Lewis
- Department of Biomedical Engineering, Cornell University, 237 Tower Rd, Ithaca 14850, NY, USA.
| |
Collapse
|
2
|
He Y, Gao Y, Ma Q, Zhang X, Zhang Y, Song W. Nanotopographical cues for regulation of macrophages and osteoclasts: emerging opportunities for osseointegration. J Nanobiotechnology 2022; 20:510. [PMID: 36463225 PMCID: PMC9719660 DOI: 10.1186/s12951-022-01721-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
Nanotopographical cues of bone implant surface has direct influences on various cell types during the establishment of osseointegration, a prerequisite of implant bear-loading. Given the important roles of monocyte/macrophage lineage cells in bone regeneration and remodeling, the regulation of nanotopographies on macrophages and osteoclasts has arisen considerable attentions recently. However, compared to osteoblastic cells, how nanotopographies regulate macrophages and osteoclasts has not been properly summarized. In this review, the roles and interactions of macrophages, osteoclasts and osteoblasts at different stages of bone healing is firstly presented. Then, the diversity and preparation methods of nanotopographies are summarized. Special attentions are paid to the regulation characterizations of nanotopographies on macrophages polarization and osteoclast differentiation, as well as the focal adhesion-cytoskeleton mediated mechanism. Finally, an outlook is indicated of coordinating nanotopographies, macrophages and osteoclasts to achieve better osseointegration. These comprehensive discussions may not only help to guide the optimization of bone implant surface nanostructures, but also provide an enlightenment to the osteoimmune response to external implant.
Collapse
Affiliation(s)
- Yide He
- grid.233520.50000 0004 1761 4404State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 China
| | - Yuanxue Gao
- grid.233520.50000 0004 1761 4404State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 China
| | - Qianli Ma
- grid.5510.10000 0004 1936 8921Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317 Oslo, Norway
| | - Xige Zhang
- grid.233520.50000 0004 1761 4404State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Shaanxi Xi’an, 710032 China
| | - Yumei Zhang
- grid.233520.50000 0004 1761 4404State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 China
| | - Wen Song
- grid.233520.50000 0004 1761 4404State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 China
| |
Collapse
|
3
|
Sharma N, Weivoda MM, Søe K. Functional Heterogeneity Within Osteoclast Populations-a Critical Review of Four Key Publications that May Change the Paradigm of Osteoclasts. Curr Osteoporos Rep 2022; 20:344-355. [PMID: 35838878 DOI: 10.1007/s11914-022-00738-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/26/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW In this review, we critically evaluate the literature for osteoclast heterogeneity, including heterogeneity in osteoclast behavior, which has hitherto been unstudied and has only recently come to attention. We give a critical review centered on four recent high-impact papers on this topic and aim to shed light on the elusive biology of osteoclasts and focus on the variant features of osteoclasts that diverge from the classical viewpoint. RECENT FINDINGS Osteoclasts originate from the myeloid lineage and are best known for their unique ability to resorb bone. For decades, osteoclasts have been defined simply as multinucleated cells positive for tartrate-resistant acid phosphatase activity and quantified relative to the bone perimeter or surface in histomorphometric analyses. However, several recent, high-profile studies have demonstrated the existence of heterogeneous osteoclast populations, with variable origins and functions depending on the microenvironment. This includes long-term persisting osteoclasts, inflammatory osteoclasts, recycling osteoclasts (osteomorphs), and bone resorption modes. Most of these findings have been revealed through murine studies and have helped identify new targets for human studies. These studies have also uncovered distinct sets of behavioral patterns in heterogeneous osteoclast cultures. The underlying osteoclast heterogeneity likely drives differences in bone remodeling, altering patient risk for osteoporosis and fracture. Thus, identifying the underlying key features of osteoclast heterogeneity may help in better targeting bone diseases.
Collapse
Affiliation(s)
- Neha Sharma
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, Odense, Denmark
- Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Molecular Medicine, University of Southern Denmark, J. B. Winsløws Vej 25, 1. Floor, 5000, Odense C, Denmark
| | | | - Kent Søe
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, Odense, Denmark.
- Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
- Department of Molecular Medicine, University of Southern Denmark, J. B. Winsløws Vej 25, 1. Floor, 5000, Odense C, Denmark.
| |
Collapse
|
4
|
Taguchi T, Lopez MJ. An overview of de novo bone generation in animal models. J Orthop Res 2021; 39:7-21. [PMID: 32910496 PMCID: PMC7820991 DOI: 10.1002/jor.24852] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 02/04/2023]
Abstract
Some of the earliest success in de novo tissue generation was in bone tissue, and advances, facilitated by the use of endogenous and exogenous progenitor cells, continue unabated. The concept of one health promotes shared discoveries among medical disciplines to overcome health challenges that afflict numerous species. Carefully selected animal models are vital to development and translation of targeted therapies that improve the health and well-being of humans and animals alike. While inherent differences among species limit direct translation of scientific knowledge between them, rapid progress in ex vivo and in vivo de novo tissue generation is propelling revolutionary innovation to reality among all musculoskeletal specialties. This review contains a comparison of bone deposition among species and descriptions of animal models of bone restoration designed to replicate a multitude of bone injuries and pathology, including impaired osteogenic capacity.
Collapse
Affiliation(s)
- Takashi Taguchi
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary MedicineLouisiana State UniversityBaton RougeLouisianaUSA
| | - Mandi J. Lopez
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary MedicineLouisiana State UniversityBaton RougeLouisianaUSA
| |
Collapse
|
5
|
Taatjes DJ, Roth J. In focus in HCB. Histochem Cell Biol 2020; 154:597-607. [PMID: 33277679 DOI: 10.1007/s00418-020-01944-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2020] [Indexed: 11/26/2022]
Affiliation(s)
- Douglas J Taatjes
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA.
| | - Jürgen Roth
- University of Zurich, CH-8091, Zurich, Switzerland
| |
Collapse
|
6
|
He S, Zhuo L, Cao Y, Liu G, Zhao H, Song R, Liu Z. Effect of cadmium on osteoclast differentiation during bone injury in female mice. ENVIRONMENTAL TOXICOLOGY 2020; 35:487-494. [PMID: 31793751 DOI: 10.1002/tox.22884] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
Cadmium (Cd) is a toxic heavy metal that represents an occupational hazard and environmental pollutant toxic heavy metal, which can cause osteoporosis following accumulation in the body. The purpose of this study was to investigate the effect of Cd on bone tissue osteoclast differentiation in vivo. Female BALB/c mice were randomly divided into three groups and given drinking water with various concentrations of Cd (0, 5, and 25 mg/L) for 16 weeks, after which the mice were sacrificed after collecting urine and blood. The level of Cd, calcium (Ca), phosphorus (P), trace elements, and some biochemical indicators were measured, and the bone was fixed in a 4% formaldehyde solution for histological observation. Bone marrow cells were isolated to determine the expression of osteoclast-associated mRNA and proteins. Cd was increased in the blood, urine, and bone in response to Cd in drinking water in a dose-dependent manner. The content of iron (Fe), manganese (Mn), and zinc (Zn) was significantly increased, whereas Ca and P were decreased in bone compared to the control group. Cd affected the histological structure of the bone, and induced the upregulation and downregulation of tartrate-resistant acid phosphatase 5b (TRACP-5b) and estradiol in the serum, respectively. Cd had no significant effect on the alkaline phosphatase activity in the serum. The expression of osteoclast marker proteins, including TRACP, cathepsin K, matrix metalloprotein 9, and carbonic anhydrases were all increased in the Cd-treated bone marrow cells. Cd significantly increased the expression of receptor activator of nuclear factor kappa B ligand (RANKL), but had lower effect on the expression of osteoprotegerin (OPG) in both bone marrow cells and bone tissue. Thus, Cd exposure destroyed the bone microstructure, promoted the formation of osteoclasts in the bone tissue, and accelerated bone resorption, in which the OPG/RANKL pathway may play an important role.
Collapse
Affiliation(s)
- Shuangjiang He
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Liling Zhuo
- Department of Life Science, Zaozhuang College, Zaozhuang, China
| | - Ying Cao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Gang Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Hongyan Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
7
|
Blin-Wakkach C, de Vries TJ. Editorial: Advances in Osteoimmunology. Front Immunol 2019; 10:2595. [PMID: 31798574 PMCID: PMC6863927 DOI: 10.3389/fimmu.2019.02595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 10/21/2019] [Indexed: 01/25/2023] Open
Affiliation(s)
- Claudine Blin-Wakkach
- Université Côte d'Azur, Nice, France.,CNRS UMR7370, Laboratoire de PhysioMédecine Moléculaire, Nice, France
| | - Teun J de Vries
- Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University, Amsterdam, Netherlands
| |
Collapse
|
8
|
Liu Y, Yuan Q, Zhang S. Three-dimensional intravital imaging in bone research. JOURNAL OF BIOPHOTONICS 2019; 12:e201960075. [PMID: 31593614 DOI: 10.1002/jbio.201960075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/11/2019] [Accepted: 09/16/2019] [Indexed: 02/05/2023]
Abstract
Intravital imaging has emerged as a novel and efficient tool for visualization of in situ dynamics of cellular behaviors and cell-microenvironment interactions in live animals, based on desirable microscopy techniques featuring high resolutions, deep imaging and low phototoxicity. Intravital imaging, especially based on multi-photon microscopy, has been used in bone research for dynamics visualization of a variety of physiological and pathological events at the cellular level, such as bone remodeling, hematopoiesis, immune responses and cancer development, thus, providing guidance for elucidating novel cellular mechanisms in bone biology as well as guidance for new therapies. This review is aimed at interpreting development and advantages of intravital imaging in bone research, and related representative discoveries concerning bone matrices, vessels, and various cells types involved in bone physiologies and pathologies. Finally, current limitations, further refinement, and extended application of intravital imaging in bone research are concluded.
Collapse
Affiliation(s)
- Yuhao Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shiwen Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Dessordi R, Santana RDC, Navarro AM. Influence of antiretroviral therapy on bone metabolism of patients with chronic hepatitis B: a review. Rev Soc Bras Med Trop 2019; 52:e20180441. [PMID: 31596347 DOI: 10.1590/0037-8682-0441-2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 08/21/2019] [Indexed: 11/21/2022] Open
Abstract
Hepatitis B is a major public health problem worldwide and associated with significant mortality. To prevent or delay the deleterious effects of chronic infection by the hepatitis B virus, patients should be carefully followed, and antiviral therapy indicated according to specific recommendations. Currently, available drugs inhibit viral replication and slow or stop the progression of inflammation and fibrosis of the liver. However, the drugs for oral use in the treatment of hepatitis B, jointly referred to as nucleoside/nucleotide analogs, are indicated for prolonged use and have potential side effects. The reduction in bone mineral density was associated with the use of tenofovir, already evaluated in patients infected with HIV because the drug is also part of the therapeutic arsenal for this viral infection. There are few studies on the effects of tenofovir in patients with mono hepatitis B. Therefore, this literature review proposes to examine how hepatitis B acts in the body and the mechanisms by which antiretroviral drugs (especially tenofovir) can affect bone metabolism.
Collapse
Affiliation(s)
- Renata Dessordi
- Universidade Estadual Paulista "Júlio de Mesquita Filho", Programa de Pós-Graduação Stricto Sensu em Alimentos e Nutrição, São Paulo, SP, Brasil.,Universidade Estadual Paulista, Faculdade de Ciências Farmacêuticas do Estado de São Paulo, Departamento de Alimentos e Nutrição, São Paulo, SP, Brasil
| | - Rodrigo de Carvalho Santana
- Universidade de São Paulo, Escola de Medicina de Ribeirão Preto, Departamento de Clínica Médica, Ribeirão Preto, SP, Brasil
| | - Anderson Marliere Navarro
- Universidade Estadual Paulista, Faculdade de Ciências Farmacêuticas do Estado de São Paulo, Departamento de Alimentos e Nutrição, São Paulo, SP, Brasil.,Universidade de São Paulo, Escola de Medicina de Ribeirão Preto, Departamento de Clínica Médica, Ribeirão Preto, SP, Brasil
| |
Collapse
|
10
|
|