1
|
Unal S, Mi R, Musicki B, Hoke A, Burnett AL. Mapping of functional erectogenic nerves on the rat prostate. J Sex Med 2025; 22:217-224. [PMID: 39657061 DOI: 10.1093/jsxmed/qdae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/10/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Preservation of erectogenic nerves during radical prostatectomy (RP) is hampered by limited understanding of their precise localization, due to their complex, intertwined paths, and the inherent individual variations across patients. Because erection utilizes a subset of cavernous nerves (CNs) that in response to sexual stimuli reveal phosphorylation of neuronal nitric oxide synthase (nNOS) on its stimulatory site Ser-1412, we hypothesized that delineation of nerves containing phosphorylated (P)-nNOS on Ser-1412 would establish the location of functional erectogenic nerves within the periprostatic region. AIM To identify the distribution and quantity of functional erection-relevant ([P-nNOS]-containing) nerves in the periprostatic area and discriminate them among the CNs distribution. We further evaluated whether functional communication exists between contralateral CNs. METHODS Young adult male Sprague-Dawley rats underwent electrical stimulation of the CNs to induce penile erection via phosphorylation of nNOS on Ser-1412 (6 V for 2 min, n = 6). No stimulation group served as control (n = 6). The prostate and adjacent structures were collected and processed for whole-mount double-staining with TuJ1 antibody (a pan-axonal marker) and P-nNOS (n = 3 for stimulation, n = 3 for no stimulation), or total nNOS and P-nNOS (n = 3 for stimulation, n = 3 for no stimulation), followed by modified optical clearing and microscopic examination. Nerve quantification was done by systematic counting. OUTCOMES Location and quantification of functional erectogenic nerves. RESULTS In the male rat, we obtained a map of P-nNOS-containing nerves in the periprostatic area, which are relevant for penile erection. Only 17.5% of all nerves, and only 28.4% of the total nNOS-containing nerves in the periprostatic region are functionally erectogenic nerves. Furthermore, there is no functional innervation between contralateral (stimulated and non-stimulated) CNs. CLINICAL IMPLICATIONS This basic science study is expected to provide a foundation for subsequent studies at the human level. Understanding the erection-relevant nerve distribution in the periprostatic area is expected to advance nerve-sparing RP at the human level to improve sexual function outcomes. STRENGTHS AND LIMITATIONS This is the first study to describe and quantitate a subset of functional erection-relevant (P-nNOS-containing) nerves in the periprostatic area. Our study differs from previous studies where nerves containing total nNOS were localized without specifying which nerves produce erection. However, because this study comprised a relatively small number of rats, further studies with a bigger sample size or other model animals are warranted. CONCLUSION Only a subset of nerve fibers in the periprostatic region represent functional erectogenic nerves, characterized by the expression of P-nNOS (Ser-1412).
Collapse
Affiliation(s)
- Selman Unal
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
- Department of Urology, Ankara Yildirim Beyazit University School of Medicine, Ankara, 06800, Turkey
| | - Ruifa Mi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Biljana Musicki
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Ahmet Hoke
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Arthur L Burnett
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| |
Collapse
|
2
|
Feng SW, North TM, Wivell P, Pletcher A, Popratiloff A, Shibata M. Macrophages of multiple hematopoietic origins reside in the developing prostate. Development 2024; 151:dev203070. [PMID: 39082371 PMCID: PMC11385323 DOI: 10.1242/dev.203070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
Tissue-resident macrophages contribute to the organogenesis of many tissues. Growth of the prostate is regulated by androgens during puberty, yet androgens are considered immune suppressive. In this study, we characterized the localization, androgen receptor expression and hematopoietic origin of prostate macrophages, and transiently ablated macrophages during postnatal prostate organogenesis in the mouse. We show that myeloid cells were abundant in the prostate during puberty. However, nuclear androgen receptor expression was not detected in most macrophages. We found Cx3cr1, a marker for macrophages, monocytes and dendritic cells, expressed in interstitial macrophages surrounding the prostate and associated with nerve fibers. Furthermore, we provide evidence for the co-existence of embryonic origin, self-renewing, tissue-resident macrophages and recruited macrophages of bone-marrow monocyte origin in the prostate during puberty. Our findings suggest that prostate macrophages promote neural patterning and may shed further light on our understanding of the role of the innate immune system in prostate pathology in response to inflammation and in cancer.
Collapse
Affiliation(s)
- Sally W Feng
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
- The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
| | - Tanya M North
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
- The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
| | - Peri Wivell
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
- The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
| | - Andrew Pletcher
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
- The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
| | - Anastas Popratiloff
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
- GW Nanofabrication and Imaging Center, The George Washington University, Washington, DC 20052, USA
| | - Maho Shibata
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
- The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
| |
Collapse
|
3
|
He H, Luo H, Qian B, Xu H, Zhang G, Zou X, Zou J. Autonomic Nervous System Dysfunction Is Related to Chronic Prostatitis/Chronic Pelvic Pain Syndrome. World J Mens Health 2024; 42:1-28. [PMID: 37118962 PMCID: PMC10782122 DOI: 10.5534/wjmh.220248] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 04/30/2023] Open
Abstract
Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is a common and non-lethal urological condition with painful symptoms. The complexity of CP/CPPS's pathogenesis and lack of efficient etiological diagnosis results in incomplete treatment and recurrent episodes, causing long-term mental and psychological suffering in patients. Recent findings indicate that the autonomic nervous system involves in CP/CPPS, including sensory, sympathetic, parasympathetic, and central nervous systems. Neuro-inflammation and sensitization of sensory nerves lead to persistent inflammation and pain. Sympathetic and parasympathetic alterations affect the cardiovascular and reproductive systems and the development of prostatitis. Central sensitization lowers pain thresholds and increases pelvic pain perception in chronic prostatitis. Therefore, this review summarized the detailed processes and mechanisms of the critical role of the autonomic nervous system in developing CP/CPPS. Furthermore, it describes the neurologically relevant substances and channels or receptors involved in this process, which provides new perspectives for new therapeutic approaches to CP/CPPS.
Collapse
Affiliation(s)
- Hailan He
- Department of Graduate, First Clinical Colledge, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Hui Luo
- Department of Graduate, First Clinical Colledge, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Biao Qian
- Department of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Institute of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, Jiangxi, China
| | - Hui Xu
- Department of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Institute of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, Jiangxi, China
| | - Guoxi Zhang
- Department of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Institute of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, Jiangxi, China
| | - Xiaofeng Zou
- Department of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Institute of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, Jiangxi, China
| | - Junrong Zou
- Department of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Institute of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, Jiangxi, China.
| |
Collapse
|
4
|
Turco AE, Oakes SR, Keil Stietz KP, Dunham CL, Joseph DB, Chathurvedula TS, Girardi NM, Schneider AJ, Gawdzik J, Sheftel CM, Wang P, Wang Z, Bjorling DE, Ricke WA, Tang W, Hernandez LL, Keast JR, Bonev AD, Grimes MD, Strand DW, Tykocki NR, Tanguay RL, Peterson RE, Vezina CM. A mechanism linking perinatal 2,3,7,8 tetrachlorodibenzo-p-dioxin exposure to lower urinary tract dysfunction in adulthood. Dis Model Mech 2021; 14:271057. [PMID: 34318329 PMCID: PMC8326766 DOI: 10.1242/dmm.049068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022] Open
Abstract
Benign prostatic hyperplasia/lower urinary tract dysfunction (LUTD) affects nearly all men. Symptoms typically present in the fifth or sixth decade and progressively worsen over the remainder of life. Here, we identify a surprising origin of this disease that traces back to the intrauterine environment of the developing male, challenging paradigms about when this disease process begins. We delivered a single dose of a widespread environmental contaminant present in the serum of most Americans [2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD), 1 µg/kg], and representative of a broader class of environmental contaminants, to pregnant mice and observed an increase in the abundance of a neurotrophic factor, artemin, in the developing mouse prostate. Artemin is required for noradrenergic axon recruitment across multiple tissues, and TCDD rapidly increases prostatic noradrenergic axon density in the male fetus. The hyperinnervation persists into adulthood, when it is coupled to autonomic hyperactivity of prostatic smooth muscle and abnormal urinary function, including increased urinary frequency. We offer new evidence that prostate neuroanatomical development is malleable and that intrauterine chemical exposures can permanently reprogram prostate neuromuscular function to cause male LUTD in adulthood. Summary: We describe a new mechanism of benign prostate disease, initiated by fetal chemical exposure, which durably increases prostatic noradrenergic axon density and causes smooth muscle hyperactivity and urinary voiding dysfunction.
Collapse
Affiliation(s)
- Anne E Turco
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison,Madison, WI 53705, USA
| | - Steven R Oakes
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kimberly P Keil Stietz
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Cheryl L Dunham
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Diya B Joseph
- Department of Urology, University of Texas Southwestern, Dallas, TX 75390, USA
| | | | - Nicholas M Girardi
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Andrew J Schneider
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Joseph Gawdzik
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Celeste M Sheftel
- Cellular and Molecular Pharmacology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Peiqing Wang
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zunyi Wang
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Dale E Bjorling
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - William A Ricke
- Department of Urology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Weiping Tang
- Department of Urology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Laura L Hernandez
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Janet R Keast
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Adrian D Bonev
- Department of Pharmacology, University of Vermont, Burlington, VT 05405, USA
| | - Matthew D Grimes
- Department of Urology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Douglas W Strand
- Department of Urology, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Nathan R Tykocki
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 58823, USA
| | - Robyn L Tanguay
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Richard E Peterson
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison,Madison, WI 53705, USA.,School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Chad M Vezina
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison,Madison, WI 53705, USA.,Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
5
|
Neurophysiological control of urinary bladder storage and voiding-functional changes through development and pathology. Pediatr Nephrol 2021; 36:1041-1052. [PMID: 32415328 DOI: 10.1007/s00467-020-04594-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 10/24/2022]
Abstract
The effective storage of urine and its expulsion relies upon the coordinated activity of parasympathetic, sympathetic, and somatic innervations to the lower urinary tract (LUT). At birth, all mammalian neonates lack the ability to voluntary regulate bladder storage or voiding. The ability to control urinary bladder activity is established as connections to the central nervous system (CNS) form through development. The neural regulation of the LUT has been predominantly investigated in adult animal models where comparatively less is known about the neonatal and postnatal neurophysiological development that facilitate urinary continence. Furthermore, congenital neurological or anatomical defects can adversely affect both storage and voiding functions through postnatal development and into adulthood, leading to secondary conditions including vesicoureteral reflux, chronic urinary tract infections, and end-stage renal disease. Therefore, the aim of the review is to provide the current knowledge available on neurophysiological regulation of the LUT through pre- to postnatal development of human and animal models and the consequences of congenital anomalies that can affect LUT neural function.
Collapse
|
6
|
Smith-Anttila CJA, Morrison V, Keast JR. Spatiotemporal mapping of sensory and motor innervation of the embryonic and postnatal mouse urinary bladder. Dev Biol 2021; 476:18-32. [PMID: 33744254 DOI: 10.1016/j.ydbio.2021.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/03/2021] [Accepted: 03/11/2021] [Indexed: 12/23/2022]
Abstract
The primary function of the urinary bladder is to store urine (continence) until a suitable time for voiding (micturition). These distinct processes are determined by the coordinated activation of sensory and motor components of the nervous system, which matures to enable voluntary control at the time of weaning. Our aim was to define the development and maturation of the nerve-organ interface of the mouse urinary bladder by mapping the organ and tissue distribution of major classes of autonomic (motor) and sensory axons. Innervation of the bladder was evident from E13 and progressed dorsoventrally. Increasing defasciculation of axon bundles to single axons within the muscle occurred through the prenatal period, and in several classes of axons underwent further maturation until P7. Urothelial innervation occurred more slowly than muscle innervation and showed a clear regional difference, from E18 the bladder neck having the highest density of urothelial nerves. These features of innervation were similar in males and females but varied in timing and tissue density between different axon classes. We also analysed the pelvic ganglion, the major source of motor axons that innervate the lower urinary tract and other pelvic organs. Cholinergic, nitrergic (subset of cholinergic) and noradrenergic neuronal cell bodies were present prior to visualization of these axon classes within the bladder. Examination of cholinergic structures within the pelvic ganglion indicated that connections from spinal preganglionic neurons to pelvic ganglion neurons were already present by E12, a time at which these autonomic ganglion neurons had not yet innervated the bladder. These putative preganglionic inputs increased in density prior to birth as axon terminal fields continued to expand within the bladder tissues. Our studies also revealed in numerous pelvic ganglion neurons an unexpected transient expression of calcitonin gene-related peptide, a peptide commonly used to visualise the peptidergic class of visceral sensory axons. Together, our outcomes enhance our understanding of neural regulatory elements in the lower urinary tract during development and provide a foundation for studies of plasticity and regenerative capacity in the adult system.
Collapse
Affiliation(s)
| | - Victoria Morrison
- Department of Anatomy and Neuroscience, University of Melbourne, Vic, 3010, Australia
| | - Janet R Keast
- Department of Anatomy and Neuroscience, University of Melbourne, Vic, 3010, Australia.
| |
Collapse
|
7
|
Keil Stietz KP, Kennedy CL, Sethi S, Valenzuela A, Nunez A, Wang K, Wang Z, Wang P, Spiegelhoff A, Puschner B, Bjorling DE, Lein PJ. In utero and lactational PCB exposure drives anatomic changes in the juvenile mouse bladder. Curr Res Toxicol 2021; 2:1-18. [PMID: 34337439 PMCID: PMC8317607 DOI: 10.1016/j.crtox.2021.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Bladder dysfunction, including incontinence, difficulty emptying the bladder, or urgency to urinate is a pervasive health and quality of life concern. However, risk factors for developing these symptoms are not completely understood, and the influence of exposure to environmental chemicals, especially during development, on the formation and function of the bladder is understudied. Environmental contaminants such as polychlorinated biphenyls (PCBs) are known to pose a risk to the developing brain; however, their influence on the development of peripheral target organs, such as bladder, are unknown. To address this data gap, C57Bl/6J mouse dams were exposed to an environmentally-relevant PCB mixture at 0, 0.1, 1 or 6 mg/kg daily beginning two weeks prior to mating and continuing through gestation and lactation. Bladders were collected from offspring at postnatal days (P) 28-31. PCB concentrations were detected in bladders in a dose-dependent manner. PCB effects on the bladder were sex- and dose-dependent. Overall, PCB effects were observed in male, but not female, bladders. PCBs increased bladder volume and suburothelial βIII-tubulin-positive nerve density compared to vehicle control. A subset of these nerves were sensory peptidergic axons indicated by increased calcitonin gene-related protein (CGRP) positive nerve fibers in mice exposed to the highest PCB dose compared to the lowest PCB dose. PCB-induced increased nerve density was also positively correlated with the number of mast cells in the bladder, suggesting inflammation may be involved. There were no detectable changes in epithelial composition or apoptosis as indicated by expression of cleaved caspase 3, suggesting PCBs do not cause overt toxicity. Bladder volume changes were not accompanied by changes in bladder mass or epithelial thickness, indicating that obstruction was not likely involved. Together, these results are the first to suggest that following developmental exposure, PCBs can distribute to the bladder and alter neuroanatomic development and bladder volume in male mice.
Collapse
Affiliation(s)
- Kimberly P. Keil Stietz
- Department of Molecular Biosciences, University of California-Davis, School of Veterinary Medicine, Davis, CA, USA,Department of Comparative Biosciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI, USA,Corresponding author at: Department of Comparative Biosciences University of Wisconsin-Madison School of Veterinary Medicine, 2015 Linden Drive, Madison, WI 53706, USA.
| | - Conner L. Kennedy
- Department of Comparative Biosciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI, USA
| | - Sunjay Sethi
- Department of Molecular Biosciences, University of California-Davis, School of Veterinary Medicine, Davis, CA, USA
| | - Anthony Valenzuela
- Department of Molecular Biosciences, University of California-Davis, School of Veterinary Medicine, Davis, CA, USA
| | - Alexandra Nunez
- Department of Comparative Biosciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI, USA
| | - Kathy Wang
- Department of Comparative Biosciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI, USA
| | - Zunyi Wang
- Department of Surgical Sciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI, USA
| | - Peiqing Wang
- Department of Surgical Sciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI, USA
| | - Audrey Spiegelhoff
- Department of Comparative Biosciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI, USA
| | - Birgit Puschner
- Department of Molecular Biosciences, University of California-Davis, School of Veterinary Medicine, Davis, CA, USA
| | - Dale E. Bjorling
- Department of Surgical Sciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI, USA
| | - Pamela J. Lein
- Department of Molecular Biosciences, University of California-Davis, School of Veterinary Medicine, Davis, CA, USA
| |
Collapse
|
8
|
Turco AE, Thomas S, Crawford LK, Tang W, Peterson RE, Li L, Ricke WA, Vezina CM. In utero and lactational 2,3,7,8-tetrachlorodibenzo- p-dioxin (TCDD) exposure exacerbates urinary dysfunction in hormone-treated C57BL/6J mice through a non-malignant mechanism involving proteomic changes in the prostate that differ from those elicited by testosterone and estradiol. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2020; 8:59-72. [PMID: 32211455 PMCID: PMC7076297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
A recent study directed new focus on the fetal and neonatal environment as a risk factor for urinary dysfunction in aging males. Male mice were exposed in utero and via lactation (IUL) to the persistent environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and then administered slow-release, subcutaneous implants of testosterone and estradiol (T+E2) as adults to mimic the hormonal environment of aging men. IUL TCDD exposure worsened T+E2-induced voiding dysfunction. Mice in the previous study were genetically prone to prostatic neoplasia and it was therefore unclear whether TCDD exacerbates voiding dysfunction through a malignant or non-malignant mechanism. We demonstrate here that IUL TCDD exposure acts via a non-malignant mechanism to exacerbate T+E2-mediated male mouse voiding dysfunction characterized by a progressive increase in spontaneous void spotting. We deployed a proteomic approach to narrow the possible mechanisms. We specifically tested whether IUL TCDD exacerbates urinary dysfunction by acting through the same prostatic signaling pathways as T+E2. The prostatic protein signature of TCDD/T+E2-exposed mice differed from that of mice exposed to T+E2 alone, indicating that the mechanism of action of TCDD differs from that of T+E2. We identified 3641 prostatic proteins in total and determined that IUL TCDD exposure significantly changed the abundance of 102 proteins linked to diverse molecular and physiological processes. We shed new light on the mechanism of IUL TCDD-mediated voiding dysfunction by demonstrating that the mechanism is independent of tumorigenesis and involves molecular pathways distinct from those affected by T+E2.
Collapse
Affiliation(s)
- Anne E Turco
- Molecular and Environmental Toxicology Center, University of Wisconsin-MadisonMadison, WI, USA
- George M. O’Brien Center of Research Excellence, University of Wisconsin-MadisonMadison, WI, USA
| | - Samuel Thomas
- Molecular and Environmental Toxicology Center, University of Wisconsin-MadisonMadison, WI, USA
- George M. O’Brien Center of Research Excellence, University of Wisconsin-MadisonMadison, WI, USA
- Department of Urology, University of Wisconsin-MadisonMadison, WI, USA
| | - LaTasha K Crawford
- School of Veterinary Medicine, University of Wisconsin-MadisonMadison, WI, USA
| | - Weiping Tang
- School of Pharmacy, University of Wisconsin-MadisonMadison, WI, USA
| | - Richard E Peterson
- Molecular and Environmental Toxicology Center, University of Wisconsin-MadisonMadison, WI, USA
- School of Pharmacy, University of Wisconsin-MadisonMadison, WI, USA
| | - Lingjun Li
- Molecular and Environmental Toxicology Center, University of Wisconsin-MadisonMadison, WI, USA
- School of Pharmacy, University of Wisconsin-MadisonMadison, WI, USA
- Department of Chemistry, University of Wisconsin-MadisonMadison, WI, USA
| | - William A Ricke
- Molecular and Environmental Toxicology Center, University of Wisconsin-MadisonMadison, WI, USA
- School of Pharmacy, University of Wisconsin-MadisonMadison, WI, USA
- George M. O’Brien Center of Research Excellence, University of Wisconsin-MadisonMadison, WI, USA
- Department of Urology, University of Wisconsin-MadisonMadison, WI, USA
| | - Chad M Vezina
- Molecular and Environmental Toxicology Center, University of Wisconsin-MadisonMadison, WI, USA
- School of Veterinary Medicine, University of Wisconsin-MadisonMadison, WI, USA
- George M. O’Brien Center of Research Excellence, University of Wisconsin-MadisonMadison, WI, USA
- Department of Urology, University of Wisconsin-MadisonMadison, WI, USA
| |
Collapse
|
9
|
Ruetten H, Wegner KA, Kennedy CL, Turco A, Zhang HL, Wang P, Sandhu J, Sandhu S, Morkrid J, Wang Z, Macoska J, Peterson RE, Bjorling DE, Ricke WA, Marker PC, Vezina CM. Impact of sex, androgens, and prostate size on C57BL/6J mouse urinary physiology: urethral histology. Am J Physiol Renal Physiol 2020; 318:F617-F627. [PMID: 31904290 DOI: 10.1152/ajprenal.00540.2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The National Institutes of Health leveled new focus on sex as a biological variable with the goal of understanding sex-specific differences in health and physiology. We previously published a functional assessment of the impact of sex, androgens, and prostate size on C57BL/6J mouse urinary physiology (Ruetten H, Wegner KA, Zhang HL, Wang P, Sandhu J, Sandhu S, Mueller B, Wang Z, Macoska J, Peterson RE, Bjorling DE, Ricke WA, Marker PC, Vezina CM. Am J Physiol Renal Physiol 317: F996-F1009, 2019). Here, we measured and compared five characteristics of urethral histology (urethral lumen diameter and area, epithelial cell count, epithelial and rhabdosphincter thickness, epithelial cell area, and total urethral area) in male and female 9-wk-old C57BL/6J mice using hematoxylin and eosin staining. We also compared male mice with castrated male mice, male and female mice treated with the steroid 5α-reductase inhibitor finasteride or testosterone, or male mice harboring alleles (Pbsn4cre/+; R26RDta/+) that reduce prostate lobe mass. The three methods used to reduce prostate mass (castration, finasteride, and Pbsn4cre/+; R26RDta/+) changed urethral histology, but none feminized male urethral histology (increased urethral epithelial area). Exogenous testosterone caused increased epithelial cell count in intact females but did not masculinize female urethral histology (decrease epithelial area). Our results lay a critical foundation for future studies as we begin to parse out the influence of hormones and cellular morphology on male and female urinary function.
Collapse
Affiliation(s)
- Hannah Ruetten
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin.,University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
| | - Kyle A Wegner
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts.,Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Conner L Kennedy
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts.,Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Anne Turco
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts.,Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Helen L Zhang
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin.,University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
| | - Peiqing Wang
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin.,University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts.,Department of Surgical Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jaskiran Sandhu
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin.,University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
| | - Simran Sandhu
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin.,University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
| | - Jacquelyn Morkrid
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Zunyi Wang
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts.,Department of Surgical Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jill Macoska
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts.,Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts
| | - Richard E Peterson
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Dale E Bjorling
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts.,Department of Surgical Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - William A Ricke
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts.,Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Urology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Paul C Marker
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts.,Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Chad M Vezina
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin.,University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts.,Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|