1
|
El-Sayed SM, El-Sayed GA, Mansour M A, Haridy Ahmed E, Kamar SA. A comparative study on the effect of melatonin and orlistat combination versus orlistat alone on high fat diet-induced hepatic changes in the adult male albino rats (a histological and morphometric study). Ultrastruct Pathol 2025; 49:20-38. [PMID: 39679624 DOI: 10.1080/01913123.2024.2438380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/10/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is the extremely usual reason of chronic liver disease, extending from simple hepatic steatosis (HS), nonalcoholic steatohepatitis (NASH) to advanced hepatic fibrosis and cirrhosis. Though orlistat is a Food and Drug Administration (FDA) approved drug for long-duration management of obesity, few cases of severe hepatic insult were declared. Melatonin is an efficient antioxidant; it also regulates metabolic processes that lead to fat accumulation and obesity. AIM OF THE WORK The current research aimed to compare the impact of orlistat, melatonin, and their combination on the structural changes of the hepatic tissue of adult male albino rats supplied with high fat diet (HFD). MATERIAL AND METHODS Thirty adult male albino rats divided into five groups. Liver specimens were divided into two parts. One-half was processed to obtain paraffin blocks, and the other half was processed to obtain semithin sections. Morphometric study and statistical analysis were done. RESULTS Hepatic tissue from the HFD group showed steatosis, ballooning, and inflammation and all these parameters were moderately improved - except for inflammation which worsened with therapy. Combined orlistat and melatonin-treated groups showed marked improvement of all parameters as well as marked improvement in the hepatic fibrosis.Orlistat/Melatonin combination therapy is both safe and effective in comparison to orlistat and melatonin monotherapy.
Collapse
Affiliation(s)
- Sayed M El-Sayed
- Anatomy and Embryology Department, Ain Shams University, Cairo, Egypt
| | - Gehan A El-Sayed
- Anatomy and Embryology Department, Ain Shams University, Cairo, Egypt
| | - Mansour M A
- Anatomy and Embryology Department, Ain Shams University, Cairo, Egypt
| | - Enas Haridy Ahmed
- Anatomy and Embryology Department, Ain Shams University, Cairo, Egypt
- Faculty of Medicine, Hail University, Hail, Kingdom of Saudi Arabia
| | - Sherif A Kamar
- Anatomy and Embryology Department, Ain Shams University, Cairo, Egypt
- Faculty of Dentistry, Al-Ahliyya Amman University, Amman, Jordan
| |
Collapse
|
2
|
Zhao K, Zhang Y, Yin Z, Tan L, Juario M, Zhang H, Liu Y, Xu P, Zhang Q, Zhao G, Wang S, Mao H, Xu X, Hu C. GCRV-II major outer capsid protein VP4 promotes cell apoptosis by VDAC2-mediated calcium pathway facilitation. Int J Biol Macromol 2024; 285:138273. [PMID: 39631593 DOI: 10.1016/j.ijbiomac.2024.138273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/26/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
Grass Carp Reovirus (GCRV) is widely concerned because of its widespread prevalence and high mortality to grass carp (Ctenopharyngodon idellus). Viral protein 4 (VP4) is an important major outer capsid protein of GCRV and is involved in the regulation of cell cycle and cycle of GCRV replication. However, the elaborate function of VP4 remains to be explicated. To understand its function, we screened the transcriptome of Ctenopharyngodon idellus kidney (CIK) cells transfected with VP4 and found that VP4 may be involved in regulation of ion transmembrane transporter activity and calcium signaling pathway. It was observed through transmission electron microscopy and confocal microscopy. VP4 causes endoplasmic reticulum (ER) stress and leads to abnormal Calcium ions (Ca2+) concentration in cells. Also, VP4 promoted the loss of mitochondrial membrane potential, which allowed a large amount of Ca2+ to enter mitochondria and led to mitochondrial damage and apoptosis. In this transcriptome, we found that voltage-dependent anion channel 2 (VDAC2) was significantly upregulated. Moreover, the results also showed that the expression of C.idellus voltage-dependent anion channel 2 (CiVDAC2) and the degree of cell apoptosis were increased along with the increase of VP4 transfection. In contrast, knockdown of CiVDAC2 can reduce the concentration of Ca2+ and the occurrence of apoptosis caused by VP4 transfection. In conclusion, the results demonstrated that VP4 can induce cell apoptosis through VDAC2-mediated calcium pathway facilitation. This study provides some insights for the prevention and treatment of GCRV infection in grass carp.
Collapse
Affiliation(s)
- Kaiwen Zhao
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Yansong Zhang
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Zijia Yin
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Libo Tan
- Department of Human Nutrition, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Ming Juario
- Food & Nutrition Department, HCA Florida West Marion Hospital, Ocala, Florida 34474, USA
| | - Hongying Zhang
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Yulong Liu
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Pengxia Xu
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Qin Zhang
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Guannan Zhao
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Shanghong Wang
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Huiling Mao
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Xiaowen Xu
- School of Life Science, Nanchang University, Nanchang 330031, China; Chongqing Research Institute of Nanchang University, 402660, China.
| | - Chengyu Hu
- School of Life Science, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
3
|
Eldakhakhny B, Bima A, Alamoudi AA, Alnami A, Abo-Elkhair SM, Sakr H, Almoghrabi Y, Ghoneim FM, Nagib RM, Elsamanoudy A. The role of low-carbohydrate, high-fat diet in modulating autophagy and endoplasmic reticulum stress in aortic endothelial dysfunction of metabolic syndrome animal model. Front Nutr 2024; 11:1467719. [PMID: 39610878 PMCID: PMC11603365 DOI: 10.3389/fnut.2024.1467719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/30/2024] [Indexed: 11/30/2024] Open
Abstract
Background Endothelial dysfunction (ED) is induced by insulin resistance, mediated by endoplasmic reticulum (ER) stress and disturbed autophagy. This study investigates the protective role of a low-carbohydrate, high-fat (LCHF) diet on ED, ER stress, and autophagy dysregulation in an experimental animal model of metabolic syndrome. Methods Forty male Sprague-Dawley rats were divided into four groups: a Control group (standard diet) and three Dexamethasone (DEX) treated groups. Group II continued the standard diet, Group III received an LCHF diet, and Group IV received a high-carbohydrate, low-fat (HCLF) diet. At the end of the experiment, aortic tissue samples were obtained and used for histological, immunohistochemical (Endothelin and PCNA, biochemical MDA, TCA, NO, 8-OH-dG, and Nrf2/ARE protein) and molecular (Endothelin, eNOS, Nrf-2 α, p62, LC3, BECN-1, PINK1, CHOP, BNIP3, PCNA) analysis. Results Oxidative stress, autophagy markers, and ED markers are increased in the metabolic syndrome group. LCHF diet mitigates the adverse effects of DEX on endothelial dysfunction and oxidative stress, as evidenced by reduced BMI, HOMA-IR, and improved histological and molecular parameters. Conclusion Oxidative stress, autophagy dysregulation, and ER stress play crucial roles in the pathogenesis of insulin resistance-induced endothelial dysfunction. An LCHF diet offers protective benefits against insulin resistance and related comorbidities, including endothelial dysfunction.
Collapse
Affiliation(s)
- Basmah Eldakhakhny
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Food, Nutrition, and Lifestyle Research Unit, King Fahd for Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulhadi Bima
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aliaa A. Alamoudi
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abrar Alnami
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Salwa Mohamed Abo-Elkhair
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Hussein Sakr
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Yousef Almoghrabi
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fatma Mohamed Ghoneim
- MBBS Program, Department of Physiological Sciences, Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Reham Mohamed Nagib
- Department of Anatomical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ayman Elsamanoudy
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Food, Nutrition, and Lifestyle Research Unit, King Fahd for Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
4
|
Zhao P, Yang W, Xiao H, Zhang S, Gao C, Piao H, Liu L, Li S. Vitamin K2 protects mice against non-alcoholic fatty liver disease induced by high-fat diet. Sci Rep 2024; 14:3075. [PMID: 38321064 PMCID: PMC10847165 DOI: 10.1038/s41598-024-53644-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/03/2024] [Indexed: 02/08/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases worldwide and there is a huge unmet need to find safer and more effective drugs. Vitamin K has been found to regulate lipid metabolism in the liver. However, the effects of vitamin K2 on NAFLD is unclear. This study aims to evaluate the preventive and therapeutic effects of vitamin K2 in the process of fatty liver formation and to explore molecular mechanisms the associated with lipid metabolism. A non-alcoholic fatty liver model was established by high-fat diet administration for three months. Vitamin K2 significantly reduced the body weight, abdominal circumference and body fat percentage of NAFLD mice. Vitamin K2 also showed histological benefits in reducing hepatic steatosis. NAFLD mice induced by high-fat diet showed increased HMGR while vitamin K2 intervention could reverse the pathological lterations. Adiponectin (APN) is an endogenous bioactive polypeptide or protein secreted by adipocytes. We detected APN, SOD, AlaDH and other indicators that may affect the state of high-fat diet mice, but the experimental results showed that the above indicators did not change significantly. It is worth noting that the effect of vitamin K2 supplementation on the lipid-lowering effect of uc OC in vivo needs to be further explored. This study first reported the protective effect of vitamin K2 on high-fat diet-induced NAFLD in mice. The protective effect of vitamin K2 may be related to the improvement of lipid metabolism disorder in NAFLD.
Collapse
Affiliation(s)
- Peizuo Zhao
- Department of Physiology, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Weidong Yang
- Department of Physiology, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Huiyu Xiao
- Department of Physiology, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Shuaishuai Zhang
- Department of Physiology, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Chuanzhou Gao
- Central Laboratory, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Hua Piao
- Department of Physiology, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Lihong Liu
- Department of Physiology, Dalian Medical University, Dalian, Liaoning, People's Republic of China.
| | - Shuzhuang Li
- Department of Physiology, Dalian Medical University, Dalian, Liaoning, People's Republic of China.
| |
Collapse
|
5
|
Bima A, Eldakhakhny B, Alamoudi AA, Awan Z, Alnami A, Abo-Elkhair SM, Sakr H, Ghoneim FM, Elsamanoudy A. Molecular Study of the Protective Effect of a Low-Carbohydrate, High-Fat Diet against Brain Insulin Resistance in an Animal Model of Metabolic Syndrome. Brain Sci 2023; 13:1383. [PMID: 37891752 PMCID: PMC10605073 DOI: 10.3390/brainsci13101383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Brain insulin resistance is linked to metabolic syndrome (MetS). A low-carbohydrate, high-fat (LCHF) diet has been proposed to have a protective effect. Therefore, this study aimed to investigate the brain insulin resistance markers in a rat animal model of MetS and the protective effects of the LCHF diet. Four groups of male rats (10/group) were created. Group I (Control) was fed a regular diet. Groups II-IV were injected with dexamethasone (DEX) to induce MetS. Group II received DEX with a regular diet. Group III (DEX + LCHF) rates were fed a low-carbohydrate, high-fat diet, while Group IV (DEX + HCLF) rats were fed a high-carbohydrate, low-fat (HCLF) diet. At the end of the four-week experiment, HOMA-IR was calculated. Moreover, cerebral gene expression analysis of S-100B, BDNF, TNF-α, IGF-1, IGF-1 R, IGFBP-2, IGFBP-5, Bax, Bcl-2, and caspase-3 was carried out. In the DEX group, rats showed a significant increase in the HOMA-IR and a decrease in the gene expression of IGF-1, IGF-1 R, IGFBP-2, IGFBP-5, BDNF, and Bcl2, with a concomitant rise in S100B, TNF-α, Bax, and caspase-3. The LCHF diet group showed a significantly opposite effect on all parameters. In conclusion, MetS is associated with dysregulated cerebral gene expression of BDNF, S100B, and TNF-α and disturbed IGF-1 signaling, with increased apoptosis and neuroinflammation. Moreover, the LCHF diet showed a protective effect, as evidenced by preservation of the investigated biochemical and molecular parameters.
Collapse
Affiliation(s)
- Abdulhadi Bima
- Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, Jeddah 21465, Saudi Arabia; (A.B.); (B.E.); (A.A.A.); (Z.A.); (A.A.)
| | - Basmah Eldakhakhny
- Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, Jeddah 21465, Saudi Arabia; (A.B.); (B.E.); (A.A.A.); (Z.A.); (A.A.)
- Food, Nutrition, and Lifestyle Research Unit, King Fahd for Medical Research Centre, King Abdulaziz University, Jeddah 21465, Saudi Arabia
| | - Aliaa A. Alamoudi
- Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, Jeddah 21465, Saudi Arabia; (A.B.); (B.E.); (A.A.A.); (Z.A.); (A.A.)
| | - Zuhier Awan
- Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, Jeddah 21465, Saudi Arabia; (A.B.); (B.E.); (A.A.A.); (Z.A.); (A.A.)
| | - Abrar Alnami
- Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, Jeddah 21465, Saudi Arabia; (A.B.); (B.E.); (A.A.A.); (Z.A.); (A.A.)
| | - Salwa Mohamed Abo-Elkhair
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Hussein Sakr
- Physiology Department, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman;
- Medical Physiology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Fatma Mohamed Ghoneim
- Faculty Development Unit, Physiological Science and Medical Education Department, Fakeeh College for Medical Sciences, Jeddah 23323, Saudi Arabia;
| | - Ayman Elsamanoudy
- Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, Jeddah 21465, Saudi Arabia; (A.B.); (B.E.); (A.A.A.); (Z.A.); (A.A.)
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
| |
Collapse
|
6
|
Luo Y, Jiao Q, Chen Y. Targeting endoplasmic reticulum stress-the responder to lipotoxicity and modulator of non-alcoholic fatty liver diseases. Expert Opin Ther Targets 2022; 26:1073-1085. [PMID: 36657744 DOI: 10.1080/14728222.2022.2170780] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Endoplasmic reticulum (ER) stress occurs with aberrant lipid accumulation and resultant adverse effects and widely exists in nonalcoholic fatty liver disease (NAFLD). It triggers the unfolded protein response (UPR) to restore ER homeostasis and actively participates in NAFLD pathological processes, including hepatic steatosis, inflammation, hepatocyte death, and fibrosis. Such acknowledges drive the discovery of novel NAFLD biomarker and therapeutic targets and the development of ER-stress targeted NAFLD drugs. AREAS COVERED This article discusses and updates the role of ER stress and UPR in NAFLD, the underlying action mechanism, and especially their full participation in NAFLD pathophysiology. It characterizes key molecular targets useful for the prevention and treatment of NAFLD and highlights the recent ER stress-targeted therapeutic strategies for NAFLD. EXPERT OPINION Targeting ER Stress is a valuable and promising strategy for NAFLD treatment, but its smooth translation into clinical application still requires better clarification of the different UPR patterns in diverse NAFLD physiological states. Further understanding of the distinct effects of these various patterns on NAFLD, the thresholds deciding their final impacts, and their actions via non-liver tissues and cells would be of great help to develop a precise and effective therapy for NAFLD. [Figure: see text].
Collapse
Affiliation(s)
- Yu Luo
- School of Pharmaceutical Science, University of South China, Hengyang, Hunan, China
| | - Qiangqiang Jiao
- School of Pharmaceutical Science, University of South China, Hengyang, Hunan, China
| | - Yuping Chen
- School of Pharmaceutical Science, University of South China, Hengyang, Hunan, China.,Institute of Pharmacy & Pharmacology, University of South China, Hengyang, Hunan, China
| |
Collapse
|
7
|
Elsherbini DMA, Ghoneim FM, El-Mancy EM, Ebrahim HA, El-Sherbiny M, El-Shafey M, Al-Serwi RH, Elsherbiny NM. Astrocytes profiling in acute hepatic encephalopathy: Possible enrolling of glial fibrillary acidic protein, tumor necrosis factor-alpha, inwardly rectifying potassium channel (Kir 4.1) and aquaporin-4 in rat cerebral cortex. Front Cell Neurosci 2022; 16:896172. [PMID: 36060277 PMCID: PMC9428715 DOI: 10.3389/fncel.2022.896172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Hepatic encephalopathy (HE) is a neurological disarray manifested as a sequel to chronic and acute liver failure (ALF). A potentially fatal consequence of ALF is brain edema with concomitant astrocyte enlargement. This study aims to outline the role of astrocytes in acute HE and shed light on the most critical mechanisms driving this role. Rats were allocated into two groups. Group 1, the control group, received the vehicle. Group 2, the TAA group, received TAA (300 mg/kg) for 3 days. Serum AST, ALT, and ammonia were determined. Liver and cerebral cortical sections were processed for hematoxylin and eosin staining. Additionally, mRNA expression and immunohistochemical staining of cortical GFAP, TNFα, Kir4.1, and AQP4 were performed. Cortical sections from the TAA group demonstrated neuropil vacuolation and astrocytes enlargement with focal gliosis. GFAP, TNFα, and AQP4 revealed increased mRNA expression, positive immunoreactivity, and a positive correlation to brain water content. In contrast, Kir 4.1 showed decreased mRNA expression and immunoreactivity and a negative correlation to brain water content. In conclusion, our findings revealed altered levels of TNFα, Kir 4.1, GFAP, and AQP4 in HE-associated brain edema. A more significant dysregulation of Kir 4.1 and TNFα was observed compared to AQP4 and GFAP.
Collapse
Affiliation(s)
- Dalia Mahmoud Abdelmonem Elsherbini
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- *Correspondence: Dalia Mahmoud Abdelmonem Elsherbini,
| | - Fatma M. Ghoneim
- Department of Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Eman Mohammed El-Mancy
- Deanship of Common First Year, Jouf University, Sakaka, Saudi Arabia
- Department of Zoology, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Hasnaa Ali Ebrahim
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
- Mohamed El-Sherbiny,
| | - Mohamed El-Shafey
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Physiological Sciences, Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia
| | - Rasha Hamed Al-Serwi
- Department of Basic Dental Sciences, College of Dentistry, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Nehal M. Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
8
|
Gunewardena S, Huck I, Walesky C, Robarts D, Weinman S, Apte U. Progressive loss of hepatocyte nuclear factor 4 alpha activity in chronic liver diseases in humans. Hepatology 2022; 76:372-386. [PMID: 35006629 PMCID: PMC9762158 DOI: 10.1002/hep.32326] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS Hepatocyte nuclear factor 4 alpha (HNF4α) is indispensable for hepatocyte differentiation and critical for maintaining liver health. Here, we demonstrate that loss of HNF4α activity is a crucial step in the pathogenesis of chronic liver diseases (CLDs) that lead to development of HCC. APPROACH AND RESULTS We developed an HNF4α target gene signature, which can accurately determine HNF4α activity, and performed an exhaustive in silico analysis using hierarchical and K-means clustering, survival, and rank-order analysis of 30 independent data sets containing over 3500 individual samples. The association of changes in HNF4α activity to CLD progression of various etiologies, including HCV- and HBV-induced liver cirrhosis (LC), NAFLD/NASH, and HCC, was determined. Results revealed a step-wise reduction in HNF4α activity with each progressive stage of pathogenesis. Cluster analysis of LC gene expression data sets using the HNF4α signature showed that loss of HNF4α activity was associated with progression of Child-Pugh class, faster decompensation, incidence of HCC, and lower survival with and without HCC. A moderate decrease in HNF4α activity was observed in NAFLD from normal liver, but a further significant decline was observed in patients from NAFLD to NASH. In HCC, loss of HNF4α activity was associated with advanced disease, increased inflammatory changes, portal vein thrombosis, and substantially lower survival. CONCLUSIONS In conclusion, these data indicate that loss of HNF4α function is a common event in the pathogenesis of CLDs leading to HCC and is important from both diagnostic and therapeutic standpoints.
Collapse
Affiliation(s)
- Sumedha Gunewardena
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS
| | - Ian Huck
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS
| | - Chad Walesky
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS
| | - Dakota Robarts
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS
| | - Steven Weinman
- Department of Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Udayan Apte
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
9
|
Flessa C, Kyrou I, Nasiri‐Ansari N, Kaltsas G, Kassi E, Randeva HS. Endoplasmic reticulum stress in nonalcoholic (metabolic associated) fatty liver disease (NAFLD/MAFLD). J Cell Biochem 2022; 123:1585-1606. [PMID: 35490371 DOI: 10.1002/jcb.30247] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/09/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023]
Affiliation(s)
- Christina‐Maria Flessa
- Department of Biological Chemistry, Medical School National and Kapodistrian University of Athens Athens Greece
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM) University Hospitals Coventry and Warwickshire NHS Trust Coventry UK
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM) University Hospitals Coventry and Warwickshire NHS Trust Coventry UK
- Division of Translational and Experimental Medicine, Metabolic and Vascular Health, Warwick Medical School University of Warwick Coventry UK
- Centre for Sport, Exercise and Life Sciences, Research Institute for Health & Wellbeing Coventry University Coventry UK
- Aston Medical School, College of Health and Life Sciences Aston University Birmingham UK
- Department of Food Science & Human Nutrition Agricultural University of Athens Athens Greece
| | - Narjes Nasiri‐Ansari
- Department of Biological Chemistry, Medical School National and Kapodistrian University of Athens Athens Greece
| | - Gregory Kaltsas
- Endocrine Unit, 1st Department of Propaedeutic and Internal Medicine, Laiko Hospital National and Kapodistrian University of Athens Athens Greece
| | - Eva Kassi
- Department of Biological Chemistry, Medical School National and Kapodistrian University of Athens Athens Greece
- Endocrine Unit, 1st Department of Propaedeutic and Internal Medicine, Laiko Hospital National and Kapodistrian University of Athens Athens Greece
| | - Harpal S. Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM) University Hospitals Coventry and Warwickshire NHS Trust Coventry UK
- Division of Translational and Experimental Medicine, Metabolic and Vascular Health, Warwick Medical School University of Warwick Coventry UK
| |
Collapse
|
10
|
Modulation of Dyslipidemia Markers Apo B/Apo A and Triglycerides/HDL-Cholesterol Ratios by Low-Carbohydrate High-Fat Diet in a Rat Model of Metabolic Syndrome. Nutrients 2022; 14:nu14091903. [PMID: 35565871 PMCID: PMC9102123 DOI: 10.3390/nu14091903] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023] Open
Abstract
Metabolic syndrome (MetS) risks cardiovascular diseases due to its associated Dyslipidemia. It is proposed that a low-carbohydrate, high-fat (LCHF) diet positively ameliorates the MetS and reverses insulin resistance. Therefore, we aimed to investigate the protecting effect of the LCHF diet on MetS-associated Dyslipidemia in an experimental animal model. Forty male Sprague-Dawley rats were divided into four groups (10/group): the control group, dexamethasone-induced MetS (DEX) (250 µg/kg/day), LCHF-fed MetS group (DEX + LCHF), and High-Carbohydrate-Low-Fat-fed MetS group (DEX + HCLF). At the end of the four-week experiment, fasting glucose, insulin, lipid profile (LDL-C, HDL-C, Triglyceride), oxidized-LDL, and small dense-LDL using the ELISA technique were estimated. HOMA-IR, Apo B/Apo A1 ratio, and TG/HDL were calculated. Moreover, histological examination of the liver by H & E and Sudan III stain was carried out. In the DEX group, rats showed a significant (p < 0.05) increase in the HOMA-IR, atherogenic parameters, such as s-LDL, OX-LDL, Apo B/Apo A1 ratio, and TG/HDL. The LCHF diet significantly improved the parameters of Dyslipidemia (p < 0.05) by decreasing the Apo B/Apo A1 and TG/HDL-C ratios. Decreased steatosis in LCHF-fed rats compared to HCLF was also revealed. In conclusion, the LCHF diet ameliorates MetS-associated Dyslipidemia, as noted from biochemical results and histological examination.
Collapse
|
11
|
Ghoneim FM, Abo-Elkhair SM, Elsamanoudy AZ, Shabaan DA. Evaluation of Endothelial Dysfunction and Autophagy in Fibromyalgia-Related Vascular and Cerebral Cortical Changes and the Ameliorative Effect of Fisetin. Cells 2021; 11:48. [PMID: 35011610 PMCID: PMC8750434 DOI: 10.3390/cells11010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/17/2022] Open
Abstract
Fibromyalgia (FM) is a common chronic pain syndrome that affects 1% to 5% of the population. We aimed to investigate the role of endothelial dysfunction and autophagy in fibromyalgia-related vascular and cerebral cortical changes in a reserpine-induced rat model of fibromyalgia at the histological and molecular levels and to study the ameliorative effect of fisetin. Forty adult female albino rats were divided into four groups (10 each): two control groups, the reserpine-induced fibromyalgia group, and the fisetin-treated group. The carotid arteries and brains of the animals were dissected. Frozen tissue samples were used for total RNA extraction and qPCR analysis of eNOS, caspase-3, Bcl-2, LC-3, BECN-1, CHOP, and TNF-α expression. Histological, immunohistochemical (eNOS), and ultrastructure studies were conducted. The carotid arteries revealed excessive autophagy and endothelial, vascular, and apoptotic changes. The cerebral cortex showed similar findings apart from endoplasmic reticulum stress. Additionally, there was decreased gene expression of eNOS and Bcl-2 and increased expression of caspase-3, LC-3, BECN-1, CHOP, and TNF-α. In the fisetin-treated rats, improvements in the histological and molecular results were detected. In conclusion, oxidative stress, enhanced apoptosis, and excessive autophagy are fundamental pathophysiologic mechanisms of reserpine-induced fibromyalgia. Moreover, fisetin has an ameliorative effect against fibromyalgia.
Collapse
Affiliation(s)
- Fatma Mohamed Ghoneim
- Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; (F.M.G.); (D.A.S.)
| | - Salwa Mohamed Abo-Elkhair
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Ayman Zaky Elsamanoudy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
- Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, Jeddah 21465, Saudi Arabia
| | - Dalia A. Shabaan
- Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; (F.M.G.); (D.A.S.)
| |
Collapse
|
12
|
MicroRNA-150 affects endoplasmic reticulum stress via MALAT1-miR-150 axis-mediated NF-κB pathway in LPS-challenged HUVECs and septic mice. Life Sci 2020; 265:118744. [PMID: 33181172 DOI: 10.1016/j.lfs.2020.118744] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/24/2022]
Abstract
AIMS Sepsis is a systemic inflammatory complication, which is the common cause of death in critical patients. This study aimed to evaluate the potential regulatory mechanisms of miR-150 in lipopolysaccharide (LPS)-challenged HUVECs and cecal ligation and puncture (CLP)-induced septic mice. MATERIALS AND METHODS Human umbilical vein endothelial cells (HUVECs) were challenged with LPS. Pulmonary arterial endothelial cells (PAECs) were isolated from CLP-induced septic mice. The mRNA and protein levels of target molecules were detected by RT-qPCR and Western blotting. Apoptosis of HUVECs was determined by Annexin V/PI staining on a flow cytometry. The interaction between miR-150 and MALAT1 was assessed by luciferase reporter assay, RIP and RNA pull-down assay. KEY FINDINGS MiR-150 was downregulated in LPS-induced HUVECs. MiR-150 mimics restrained LPS-induced inflammatory response by reducing TNF-α and IL-6 levels, but increasing IL-10 level. Moreover, miR-150 mimics downregulated endoplasmic reticulum (ER) stress-related proteins, GRP78 and CHOP levels in LPS-exposed HUVECs. Additionally, LPS-induced apoptosis was suppressed by miR-150 mimics via decreasing cleaved caspase-3 and Bax levels, while enhancing Bcl-2 level. Mechanistically, MALAT1 could competitively bind to miR-150. LPS-induced apoptosis, ER stress and inflammation were promoted by MALAT1 overexpression, but reversed by siMALAT1. Furthermore, miR-150 inhibitor strengthened LPS-induced apoptosis, ER stress and inflammation, which could be attenuated by siMALAT1 via regulating NF-κB pathway. Finally, agomiR-150 repressed ER stress and inflammatory response in PAECs isolated from septic mice via decreasing MALAT1 level. SIGNIFICANCE Our findings suggest that miR-150 affects sepsis-induced endothelial injury by regulating ER stress and inflammation via MALAT1-mediated NF-κB pathway.
Collapse
|
13
|
Vays VB, Vangeli IM, Averina OA, Lovat ML, Bakeeva LE. Ultrastructure of Hepatocytes from Laboratory Mice Fed a Standard Dry Laboratory Animal Diet. BIOCHEMISTRY (MOSCOW) 2020; 85:1082-1112. [PMID: 33050854 DOI: 10.1134/s0006297920090084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The significant destructive changes in ultrastructure of hepatocytes from laboratory mice kept in different vivariums in Moscow and fed with dry laboratory animal diets acquired from different domestic manufacturers that were not standardized for initial products were demonstrated using electron microscopy. Furthermore, disruption in the ultrastructure of liver parenchymal cells occurred regardless of the animal status (SPF or conventional), conditions of various vivariums, as well as the feed manufacturer. At the same time, studies on ultrastructure of liver hepatocytes from mice kept in the Charles River Laboratory facilities in Germany and fed with the Altromin Spezialfutter laboratory animal diet (GmbH & Co., Germany) that was produced using quality control of ingredients did not reveal destructive changes in the internal ultrastructure of hepatocytes. However, if these mice were later fed with the food produced in local manufactures, changes in the structure of liver cells developed after 2 months. Thus, feeding with dry diet from the domestic producers of an unspecified composition causes significant changes in the ultrastructure of hepatocytes in control animals, reflecting the development of some pathological processes in the body.
Collapse
Affiliation(s)
- V B Vays
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - I M Vangeli
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - O A Averina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - M L Lovat
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - L E Bakeeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
14
|
Blocking the Bromodomains Function Contributes to Disturbances in Alga Chara vulgaris Spermatids Differentiation. Cells 2020; 9:cells9061352. [PMID: 32486024 PMCID: PMC7349737 DOI: 10.3390/cells9061352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 12/04/2022] Open
Abstract
Bromodomain containing (BRD) proteins play an essential role in many cellular processes. The aim of this study was to estimate activity of bromodomains during alga Chara vulgaris spermatids differentiation. The effect of a bromodomain inhibitor, JQ1 (100 μM), on the distribution of individual stages of spermatids and their ultrastructure was studied. The material was Feulgen stained and analysed in an electron microscope. JQ1 caused shortening of the early stages of spermiogenesis and a reverse reaction at the later stages. Additionally, in the same antheridium, spermatids at distant developmental stages were present. On the ultrastructural level, chromatin fibril system disorders and significantly distended endoplasmic reticulum (ER) cisternae already at the early stages were observed. Many autolytic vacuoles were also visible. The ultrastructural disturbances intensified after prolonged treatment with JQ1. The obtained data show that JQ1 treatment led to changes in the spermatid number and disturbances in chromatin condensation and to cytoplasm reduction. The current studies show some similarities between C. vulgaris and mammals spermiogenesis. Taken together, these results suggest that JQ1 interferes with the spermatid differentiation on many interdependent levels and seems to induce ER stress, which leads to spermatid degeneration. Studies on the role of bromodomains in algae spermiogenesis have not been conducted so far.
Collapse
|