1
|
Farhadi R, Farshad A, Najafi A, Rostamzadeh J. Improvement of cryopreserved epididymal ram sperm quality and fertility through curcumin nanoparticles. Theriogenology 2025; 243:117462. [PMID: 40318455 DOI: 10.1016/j.theriogenology.2025.117462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/21/2025] [Accepted: 04/26/2025] [Indexed: 05/07/2025]
Abstract
Artificial insemination (AI) in rams relies on effective sperm preservation; however, freezing and thawing processes induce oxidative stress and sperm damage. This study evaluated the antioxidant effects of curcumin, in both free and nanoparticles (NPs) forms, on cryopreserved ram sperm. Curcumin was incorporated into the sperm extender at concentrations of 0, 25, and 50 μM. The curcumin NPs formulation, prepared using the nanoliposome technique, improved curcumin solubility and bioavailability. The 25 μM curcumin NPs group showed significantly higher sperm motility (total motility: 72.67 ± 1.15 %, progressive motility: 59.2 ± 0.96 %) compared to the control (total motility: 59.75 ± 0.68 %, progressive motility: 46.23 ± 1.50 %) (p < 0.05). Membrane (75.77 ± 0.87 %) and acrosome integrity (80.67 ± 0.87 %) were significantly improved in the 25 μM NPs group compared to those in the control (61.76 ± 0.97 %, 66.77 ± 1.50 %) (p < 0.05). Sperm viability was higher in the 25 μM NPs group (76.76 ± 1.22 %) vs. control (64.93 ± 0.80 %) (p < 0.05), and early apoptosis was reduced (5.06 ± 0.36 % vs. 9.7 ± 0.7 %) (p < 0.05). Oxidative stress markers were also improved, with lower MDA and ROS levels and enhanced antioxidant enzyme activity. The 25 μM curcumin NPs did not alter CYTb copy number. The 25 μM curcumin NPs group had higher fertility outcomes, including pregnancy (58.33 %), birth (58.33 %), and lambing (83.33 %) rates, than the control and 50 μM curcumin groups. These findings indicate that curcumin nanoparticles enhance sperm quality and fertility in cryopreserved ram sperm.
Collapse
Affiliation(s)
- Ramin Farhadi
- Department of Animal Sciences, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran.
| | - Abbas Farshad
- Department of Animal Sciences, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran.
| | - Abouzar Najafi
- Department of Animal and Poultry Sciences, Faculty of Agricultural Technologies, University of Tehran, Tehran, Iran
| | - Jalal Rostamzadeh
- Department of Animal Sciences, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
2
|
Nasiri-Foomani N, Hassani S, Najafi M, Samadi F. Curcumin-loaded niosomal nanocarriers offer a promising approach to improve quality characteristics, apoptotic gene expression, and flow cytometry assessments of stallion spermatozoa after thawing. Cryobiology 2025; 118:105188. [PMID: 39706284 DOI: 10.1016/j.cryobiol.2024.105188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/17/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
The optimization of cryopreservation media to reduce oxidative damage on post-thaw spermatozoa is crucial. This research aimed to assess the antioxidant properties of curcumin-loaded niosomal nanocarriers (CurLNN) on the functional characteristics, the relative expression of apoptotic genes, and flow cytometry assessments of apoptotic-like changes, reactive oxygen species production (ROS), mitochondrial membrane potential, and chromatin integrity in stallion spermatozoa following thawing. Twenty-five ejaculates were diluted in INRA96 freezing media supplemented with 20 μM of either curcumin (Cur) or CurLNN and then cryopreserved. Results demonstrated that spermatozoa treated with Cur, particularly CurLNN, exhibited higher percentages of total and progressive motility, as well as VAP, VSL, and STR kinematics. Additionally, the functionality of the plasma membrane was enhanced, and there was a decrease in spermatozoa abnormality (P < 0.05). The incorporation of cryo-diluent medium with Cur and CurLNN led to increased viability (P < 0.05), while simultaneously reducing the levels of MDA. Flow cytometry analysis revealed a significant enhancement in mitochondrial potential activity, a reduction (P < 0.05) in ROS production, and an increase (P < 0.05) in the proportion of live and a decrease in late apoptotic stallion post-thawed spermatozoa treated with both Cur and CurLNN. Moreover, the relative expression of the Bcl2 anti-apoptotic gene increased (P < 0.05) by the addition of cur and CurLNN in cryo-diluent extender, while inclusion of CurLNN in cryo-diluent medium resulted in a significant reduction (P < 0.05) in the relative expression of the Bax pro-apoptotic gene in stallion post-thawed spermatozoa. In summary, the findings of this study demonstrated that CurLNN exhibits enhanced antioxidant properties, which contribute to the improved functional quality of spermatozoa by alleviating oxidative stress during the cryopreservation process.
Collapse
Affiliation(s)
- Niloofar Nasiri-Foomani
- Department of Animal and Poultry Physiology, Faculty of Animal Science, Gorgan University of Agricultural Science and Natural Resources, Golestan, Gorgan, Iran
| | - Saeed Hassani
- Department of Animal and Poultry Physiology, Faculty of Animal Science, Gorgan University of Agricultural Science and Natural Resources, Golestan, Gorgan, Iran
| | - Mojtaba Najafi
- Department of Animal and Poultry Physiology, Faculty of Animal Science, Gorgan University of Agricultural Science and Natural Resources, Golestan, Gorgan, Iran
| | - Firooz Samadi
- Department of Animal and Poultry Physiology, Faculty of Animal Science, Gorgan University of Agricultural Science and Natural Resources, Golestan, Gorgan, Iran.
| |
Collapse
|
3
|
Imam A, Oyegbola C, Busari M, Gbemisola AM, Abubakar L, Odunayo AT, Attai AG, Iyiola AM, Imam WA, Akorede AA, Ijomone OM, Ajao MS. λ-cyhalothrin induced sex-specific inflammation, glia activation and GABAergic interneuron disruption in the hippocampus of rats. BMC Pharmacol Toxicol 2025; 26:22. [PMID: 39881343 PMCID: PMC11780781 DOI: 10.1186/s40360-025-00860-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/27/2025] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND Glia mediated neuroinflammation and degeneration of inhibitory GABAergic interneurons are some of the hall marks of pyrethroid neurotoxicity. Here we investigated the sex specific responses of inflammatory cytokines, microglia, astrocyte and parvalbumin positive inhibitory GABAergic interneurons to λ-cyhalothrin (LCT) exposures in rats. METHODS Equal numbers of male and female rats were given oral corn oil, 2 mg/kg.bw and 4 mg/kg.bw of LCT for fourteen days. They were euthanized on day 15, brains were excised and hippocampus (n = 5/group) isolated for interleukin 1 beta (IL-1β) and tumor necrotic factor alpha (TNF-α) analysis. The remaining brains (n = 3/group) were processed for Ionized calcium binding adaptor molecule 1 (Iba1), glial fibrillary acidic protein (GFAP) and parvalbumin (PV) distribution in the hippocampus. All quantitative data was subjected to one way analysis of variance (ANOVA). RESULTS LCT caused sex and dose dependent increase in IL-1β and TNF-α concentrations, distribution of microglia (Iba1+) and astrocytes (GFAP+), and reduction of PV + GABAergic interneurons. These effects were greater in males compared to females, and dose-dependent in both sexes. CONCLUSION LCT specifically induced inflammation and disrupted GABAergic interneurons' integrities via activation of microglia and reactive astrogliosis and such effects are dose-dependent and sexually dimorphic.
Collapse
Affiliation(s)
- Aminu Imam
- Department of Anatomy, College of Health Sciences, University of Ilorin, Ilorin, 240003, Nigeria.
| | - Christianah Oyegbola
- Department of Anatomy, College of Health Sciences, University of Ilorin, Ilorin, 240003, Nigeria
| | - Maryam Busari
- Department of Anatomy, College of Health Sciences, University of Ilorin, Ilorin, 240003, Nigeria
| | - Adewumi Mercy Gbemisola
- Department of Anatomy, College of Health Sciences, University of Ilorin, Ilorin, 240003, Nigeria
| | - Laaro Abubakar
- Department of Anatomy, College of Health Sciences, University of Ilorin, Ilorin, 240003, Nigeria
| | - Ajala Taofeeqoh Odunayo
- Department of Anatomy, College of Health Sciences, University of Ilorin, Ilorin, 240003, Nigeria
| | - Alhassan Godwin Attai
- Department of Anatomy, College of Health Sciences, University of Ilorin, Ilorin, 240003, Nigeria
| | - Ajibola Musa Iyiola
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Wahab Abdulmajeed Imam
- Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, 240003, Nigeria
| | - Aalimah Akinosho Akorede
- Department of Anatomy, College of Health Sciences, University of Ilorin, Ilorin, 240003, Nigeria
- Department of Biology, Illinois State University, Normal, IL, 61761, USA
| | - Omamuyovwi Meashack Ijomone
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo City, 351103, Nigeria
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo City, 351103, Nigeria
| | - Moyosore Salihu Ajao
- Department of Anatomy, College of Health Sciences, University of Ilorin, Ilorin, 240003, Nigeria
| |
Collapse
|
4
|
Nawar NF, Beltagy DM, Mohamed TM, Tousson E, El-Keey MM. Ameliorative anti-coagulant, anti-oxidative and anti-ferroptotic activities of nanocurcumin and donepezil on coagulation, oxidation and ferroptosis in Alzheimer's disease. Toxicol Res (Camb) 2024; 13:tfae054. [PMID: 38617712 PMCID: PMC11007267 DOI: 10.1093/toxres/tfae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/12/2024] [Accepted: 04/01/2024] [Indexed: 04/16/2024] Open
Abstract
Alzheimer's disease (ad) is a neurological condition that worsens over time and is characterized by the buildup of amyloid (Aβ) plaques in the brain parenchyma. Neuroprotection and cholinesterase inhibition have been the two primary techniques used in the creation of medications to date. In ad, a novel sort of programmed cell death known as ferroptosis takes place along with iron buildup, lipid peroxidation, and glutathione deficiency. The objective of the current investigation was to examine the neuroprotective and anti-ferroptotic role of nanocurcumin and Donepezil against model of aluminum chloride AlCl3 and D-galactose induced ad. The experiment was performed on 70 rats divided into (G1: control, G2: NCMN, G3: Donepezil, G4: ad-model, G5: Donepezil co-treatment, G6: NCMN co-treatment and G7: NCMN+Donepezil co-treatment). Hematological parameters and biochemical investigations as oxidative stress, liver function, kidney function, iron profile and plasma fibrinogen were evaluated. Treatment with Nanocurcumin alone or in combination with Donepezil improved oxidative stress, liver functions, and kidney functions, improve iron profile and decreased plasma fibrinogen.
Collapse
Affiliation(s)
- Nagat F Nawar
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Doha M Beltagy
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Damanhour University, Damanhour 22511, Egypt
| | - Tarek M Mohamed
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Ehab Tousson
- Department of Zoology, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Mai M El-Keey
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
5
|
Beltagy DM, Nawar NF, Mohamed TM, Tousson E, El-Keey MM. The synergistic effect of nanocurcumin and donepezil on Alzheimer's via PI3K/AKT/GSK-3β pathway modulating. Prostaglandins Other Lipid Mediat 2024; 170:106791. [PMID: 37918555 DOI: 10.1016/j.prostaglandins.2023.106791] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023]
Abstract
Alzheimer's disease (AD) hallmarks include amyloid-βeta (Aβ) and tau proteins aggregates, neurite degeneration, microglial activation with cognitive impairment. Phosphatidylinositol-3-kinase/protein kinase B/Glycogen synthase kinase-3-beta (PI3K/AKT/GSK-3) pathway is essential for neuroprotection, cell survival and proliferation by blocking apoptosis. This study aimed to assess protective role of nanocurcumin (NCMN) as strong antioxidant and anti-inflammatory agent with elucidating its synergistic effects with Donepezil as acetylcholinesterase inhibitor on AD in rats via modulating PI3K/AKT/GSK-3β pathway. The experiment was performed on 70 male Wistar albino rats divided into seven groups (control, NCMN, Donepezil, AD-model, Donepezil co-treatment, NCMN only co-treatment, and NCMN+Donepezil combined treatment). Behavioral and biochemical investigations as cholinesterase activity, oxidative stress (malondialdehyde, reduced glutathione, nitric oxide, superoxidedismutase, and catalase), tumor necrosis factor-alpha, Tau, β-site amyloid precursor protein cleaving enzyme-1 (BACE-1), Phosphatase and tensin homolog (Pten), mitogen-activated protein kinase-1 (MAPK-1), Glycogen synthase kinase-3-beta (GSK-3β) and toll-like receptor-4 were evaluated. Treatment with NCMN improved memory, locomotion, neuronal differentiation by activating PI3K/AKT/GSK-3β pathway. These results were confirmed by histological studies in hippocampus.
Collapse
Affiliation(s)
- Doha M Beltagy
- Biochemistry Department, Faculty of Science, Damanhour University, Egypt.
| | - Nagat F Nawar
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Egypt
| | - Tarek M Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Egypt
| | - Ehab Tousson
- Department of Zoology, Faculty of Science, Tanta University, Egypt
| | - Mai M El-Keey
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Egypt
| |
Collapse
|
6
|
Yang Q, Liu J, Ding J, Liu J. Neurodevelopmental toxicity of bisphenol AF in zebrafish larvae and the protective effects of curcumin. J Appl Toxicol 2023; 43:1806-1818. [PMID: 37423901 DOI: 10.1002/jat.4514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/11/2023]
Abstract
Bisphenol AF (BPAF) is one of the most commonly used alternatives of bisphenol A in the plastics industry. The effects of BPAF on nervous development are unclear. Curcumin (CUR) has been determined to be an anti-inflammatory and antioxidant agent. In this study, the effects of BPAF on neurotoxicity of zebrafish embryos/larvae and whether CUR could reverse effects induced by BPAF were investigated. The results showed that BPAF treatment induced deficits in locomotor behavior, altered the larval brain development, caused aberrant expression of neurogenesis related genes (elavl3, zn5, α-tubulin, syn2a, and gap43), decreased acetylcholinesterase (AChE) activity, and induced oxidative stress, cell apoptosis, and neuroinflammation in zebrafish larvae. CUR addition could block the adverse effects of BPAF on nervous development by attenuated oxidative stress and cell apoptosis induced by BPAF in zebrafish, enhanced the activity of AChE, and increased the expression of genes involved in the pro-inflammatory cytokines (IL-6, IL-1β, TNF-α, and IL-8). The results of this study indicate that BPAF could induce aberrant development on nervous system. However, CUR exerts neuroprotective effects on BPAF-induced neurotoxicity in zebrafish larvae.
Collapse
Affiliation(s)
- Qian Yang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Jianmei Liu
- Research and Development Center for Watershed Environmental Eco-Engineering, Beijing Normal University, Zhuhai, China
| | - Jie Ding
- Research and Development Center for Watershed Environmental Eco-Engineering, Beijing Normal University, Zhuhai, China
| | - Jining Liu
- Research and Development Center for Watershed Environmental Eco-Engineering, Beijing Normal University, Zhuhai, China
| |
Collapse
|
7
|
Mahmoud M, Abd-Allah SM, Abdel-Halim BR, Khalil AAY. Ameliorative effect of chitosan nanoparticles in capacitation media on post-thawing in vitro fertilizing ability of bovine spermatozoa. Reprod Domest Anim 2023; 58:1428-1438. [PMID: 37635322 DOI: 10.1111/rda.14458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/29/2023] [Accepted: 08/09/2023] [Indexed: 08/29/2023]
Abstract
This study aimed to investigate the effect of supplementation of chitosan nanoparticles (CSNPs) on the capacitation of bovine spermatozoa during the in vitro fertilization process. Hyperactivated motility (HAM) and acrosome reaction (AR) of sperm cells as well as in vitro fertilization and cleavage rates are the main parameters used to estimate the effect of CSNPs on bovine spermatozoa's fertilizing ability. In this study, three different concentrations of CSNPs (10, 20 and 100 μg/mL) were prepared and characterized. Motile spermatozoa were separated from frozen-thawed semen by a swim-up technique and capacitated in Sperm-TALP medium supplemented with heparin only without CSNPs treatment (positive control), heparin + 10 μg/mL CSNPs, heparin + 20 μg/mL CSNPs, heparin + 100 μg/mL CSNPs and the last one served as a negative control tube which supplemented with 10 μg/mL CSNPs without adding heparin. Sperm cells were incubated for 90 min at 39°C in a 5% CO2 incubator and evaluated every 30 min at intervals. Cumulus oophorus complex (COCs) were matured in a 5% CO2 incubator at 39°C and inseminated in vitro with frozen-thawed bull sperm of the above concentrations. The inseminated oocytes were incubated at 39°C in a 5% CO2 incubator for 24 h and then examined for evidence of fertilization. The results of this investigation showed that HAM and AR were best affected by CSNPs at a concentration of 20 μg/mL during an incubation time of 60 min. As time went on, the overall proportion of spermatozoa with progressive motility (PM) decreased across all groups, and a substantially lower value was found at the dose mentioned above. Additionally, the impact of sperm treated with CSNPs on fertilization rate was assessed. The outcomes demonstrated that in comparison to the other concentrations (10 and 100 μg/mL), the positive control and the negative control, the proportion of fertilized oocytes was significantly higher in the CSNPs concentration (20 μg/mL). In conclusion, it could be inferred from this investigation that CSNPs support sperm functions during IVF and can be used for biomedical interventions in bovine spermatozoa. Additionally, a high IVF rate was achieved by using sperm treated with CSNPs as CSNPs enhance sperm capacitation and acrosome reaction.
Collapse
Affiliation(s)
- Mona Mahmoud
- Department of Theriogenology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Saber M Abd-Allah
- Department of Theriogenology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Bakar R Abdel-Halim
- Department of Theriogenology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Abdeltawab A Y Khalil
- Department of Theriogenology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
8
|
Neuroprotective Effects of Nano-Curcumin against Cypermethrin Associated Oxidative Stress and Up-Regulation of Apoptotic and Inflammatory Gene Expression in Rat Brains. Antioxidants (Basel) 2023; 12:antiox12030644. [PMID: 36978892 PMCID: PMC10045852 DOI: 10.3390/antiox12030644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Cypermethrin (CPM) is the most toxic synthetic pyrethroid that has established neurotoxicity through oxidative stress and neurochemical agitation in experimental rats. The toxic effects are supposed to be mediated by modifying the sodium channels, reducing Na-K ATPase, acetylcholine esterase (AchE), and monoamine oxidase (MAO). The use of curcumin nanoparticles (NC) that have potent antioxidant, anti-inflammatory and antiapoptotic properties with improved bioavailability attenuates neurotoxicity in rat brains. To test this hypothesis, animals were divided into five groups, each having six animals. Group-I control received vehicle only, while Group-II was treated with 50 mg/kg CPM. Group-III and Group-IV received both CPM and NC 2.5 mg/kg and 5 mg/kg, respectively. Group-V received 5 mg of NC alone. The CPM and NC were given by oral route. Afterwards, brain antioxidant status was measured by assessing lipid peroxidation (LPO), 4-HNE, glutathione reduced (GSH), antioxidant enzyme catalase, and superoxide dismutase (SOD) along with neurotoxicity markers Na-K ATPase, AchE, and MAO. Inflammation and apoptosis indices were estimated by ELISA, qRT-PCR, and immunohistochemistry, while morphologic changes were examined by histopathology. Observations from the study confirmed CPM-induced neurotoxicity by altering Na-K ATPase, AchE, and MAO, and by decreasing the activity of antioxidant enzymes and GSH. Oxidative stress marker LPO and the level of inflammatory interleukins IL-6, IL-1β, and TNF-α were notably high, and elevated expressions of Bax, NF-kB, and caspase-3 and -9 were reported in CPM group. However, NC treatment against CPM offers protection by improving antioxidant status and lowering LPO, inflammation, and apoptosis. The neurotoxicity marker’s enzyme successfully attenuated after NC treatment. Therefore, this study supports the administration of NC effectively ameliorated CPM-induced neurotoxicity in experimental rats.
Collapse
|
9
|
Bissacotti BF, Copetti PM, Bottari NB, Gündel SDS, Machado AK, Sagrillo MR, Ourique AF, Morsch VMM, da Silva AS. Impact of free curcumin and curcumin nanocapsules on viability and oxidative status of neural cell lines. Drug Chem Toxicol 2023; 46:155-165. [PMID: 34930069 DOI: 10.1080/01480545.2021.2015242] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Curcumin is an active polyphenol substance found in the highest concentrations in the roots of Curcuma longa. Its health benefits have led to recent increases in the consumption of curcumin. It has anti-inflammatory and antioxidant activities and is a potent neuroprotective against diseases of the brain. Nevertheless, its low bioavailability and its relative difficulty crossing the blood-brain barrier limit curcumin's use for these purposes. Curcumin-loaded nanoparticles may be an effective treatment for several diseases although there is a paucity of studies reporting its safety in the central nervous system (CNS). Therefore, this study aimed to identify non-neurotoxic concentrations of free curcumin and two nanoformulations of curcumin. Cell lines BV-2 and SH-SY5Y, both originating from the CNS, were evaluated after 24, 48, and 72 h of treatment with free curcumin and nanocapsules We measured viability, proliferation, and dsDNA levels. We measured levels of reactive oxygen species and nitric oxide as proxies for oxidative stress in culture supernatants. We found that free curcumin was toxic at 10 and 20 µM, principally at 72 h. Nanoformulations were more neurotoxic than the free form. Safe concentrations of free curcumin are between 1-5 µM, and these concentrations were lower for nanoformulations. We determined the ideal concentrations of free curcumin and nanocapsules serving as a basis for studies of injuries that affect the CNS.
Collapse
Affiliation(s)
- Bianca Fagan Bissacotti
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Priscila Marquezan Copetti
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Nathieli Bianchin Bottari
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | | | | | | | | | - Vera Maria Melchiors Morsch
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Aleksandro Schafer da Silva
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, Brazil.,Graduate Program of Animal Science, Universidade do Estado de Santa Catarina, Chapecó, Brazil
| |
Collapse
|
10
|
Rahman MA, Shuvo AA, Bepari AK, Hasan Apu M, Shill MC, Hossain M, Uddin M, Islam MR, Bakshi MK, Hasan J, Rahman A, Rahman GMS, Reza HM. Curcumin improves D-galactose and normal-aging associated memory impairment in mice: In vivo and in silico-based studies. PLoS One 2022; 17:e0270123. [PMID: 35767571 PMCID: PMC9242463 DOI: 10.1371/journal.pone.0270123] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 06/03/2022] [Indexed: 12/14/2022] Open
Abstract
Aging-induced memory impairment is closely associated with oxidative stress. D-Galactose (D-gal) evokes severe oxidative stress and mimics normal aging in animals. Curcumin, a natural flavonoid, has potent antioxidant and anti-aging properties. There are several proteins like glutathione S-transferase A1 (GSTA1), glutathione S-transferase omega-1 (GSTO1), kelch-like ECH-associated protein 1 (KEAP1), beta-secretase 1 (BACE1), and amine oxidase [flavin-containing] A (MAOA) are commonly involved in oxidative stress and aging. This study aimed to investigate the interaction of curcumin to these proteins and their subsequent effect on aging-associated memory impairment in two robust animal models: D-Gal and normal aged (NA) mice. The aging mice model was developed by administering D-gal intraperitoneally (i.p). Mice (n = 64) were divided into the eight groups (8 mice in each group): Vehicle, Curcumin-Control, D-gal (100mg/kg; i.p), Curcumin + D-gal, Astaxanthin (Ast) + D-gal, Normal Aged (NA), Curcumin (30mg/kg Orally) + NA, Ast (20mg/kg Orally) + NA. Retention and freezing memories were assessed by passive avoidance (PA) and contextual fear conditioning (CFC). Molecular docking was performed to predict curcumin binding with potential molecular targets. Curcumin significantly increased retention time (p < 0.05) and freezing response (p < 0.05) in PA and CFC, respectively. Curcumin profoundly ameliorated the levels of glutathione, superoxide dismutase, catalase, advanced oxidation protein products, nitric oxide, and lipid peroxidation in mice hippocampi. In silico studies revealed favorable binding energies of curcumin with GSTA1, GSTO1, KEAP1, BACE1, and MAOA. Curcumin improves retention and freezing memory in D-gal and nature-induced aging mice. Curcumin ameliorates the levels of oxidative stress biomarkers in mice. Anti-aging effects of curcumin could be attributed to, at least partially, the upregulation of antioxidant enzymes through binding with GSTA1, GSTO1, KEAP1, and inhibition of oxidative damage through binding with BACE1 and MAOA.
Collapse
Affiliation(s)
- Md. Ashrafur Rahman
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, Bangladesh
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Science Center (TTUHSC), Amarillo, TX, United States of America
- * E-mail: (MAR); (HMR)
| | - Arif Anzum Shuvo
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, Bangladesh
| | - Asim Kumar Bepari
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, Bangladesh
| | - Mehedi Hasan Apu
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, Bangladesh
| | - Manik Chandra Shill
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, Bangladesh
| | - Murad Hossain
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, Bangladesh
| | - Mohammed Uddin
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
- Cellular Intelligence (Ci) Lab, GenomeArc Inc., Toronto, ON, Canada
| | - Md. Rabiul Islam
- Department of Pharmacy, University of Asia Pacific, Dhaka, Bangladesh
| | - Monjurul Kader Bakshi
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, Bangladesh
| | - Javed Hasan
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, Bangladesh
| | - Atiqur Rahman
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, Bangladesh
| | | | - Hasan Mahmud Reza
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, Bangladesh
- * E-mail: (MAR); (HMR)
| |
Collapse
|
11
|
Ashry A, Taha NM, Lebda MA, Abdo W, El-Diasty EM, Fadl SE, Morsi Elkamshishi M. Ameliorative effect of nanocurcumin and Saccharomyces cell wall alone and in combination against aflatoxicosis in broilers. BMC Vet Res 2022; 18:178. [PMID: 35568841 PMCID: PMC9107200 DOI: 10.1186/s12917-022-03256-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/18/2022] [Indexed: 01/21/2023] Open
Abstract
Background The adverse effect of aflatoxin in broilers is well known. However, dietary supplementation of Saccharomyces cell wall and/or Nanocurcumin may decrease the negative effect of aflatoxin B1 because of the bio-adsorbing feature of the functional ingredients in Yeast Cell Wall and the detoxification effect of curcumin nanoparticles. The goal of this study was to see how Saccharomyces cell wall/Nanocurcumin alone or in combination with the aflatoxin-contaminated diet ameliorated the toxic effects of aflatoxin B1 on broiler development, blood and serum parameters, carcass traits, histology, immune histochemistry, liver gene expression, and aflatoxin residue in the liver and muscle tissue of broilers for 35 days. Moreover, the withdrawal time of aflatoxin was measured after feeding the aflatoxicated group an aflatoxin-free diet. Broiler chicks one day old were distributed into five groups according to Saccharomyces cell wall and/or nanocurcumin with aflatoxin supplementation. The G1 group was given a formulated diet without any supplements. The G2 group was supplemented with aflatoxin (0.25 mg/kg diet) in the formulated diet. The G3 group was supplemented with aflatoxin (0.25 mg/kg diet) and Saccharomyces cell wall (1 kg/ton diet) in the formulated diet. The G4 group was supplemented with aflatoxin (0.25 mg/kg diet) and nanocurcumin (400 mg/kg) in the formulated diet. The G5 group was supplemented with aflatoxin (0.25 mg/kg diet) and Saccharomyces cell wall (1 kg/ton diet) in combination with nanocurcumin (200 mg/kg) in the formulated diet. Results According to the results of this study, aflatoxin supplementation had a detrimental impact on the growth performance, blood and serum parameters, carcass traits, and aflatoxin residue in the liver and muscle tissue of broilers. In addition, aflatoxin supplementation led to a liver injury that was indicated by serum biochemistry and pathological lesions in the liver tissue. Moreover, the shortening of villi length in aflatoxicated birds resulted in a decrease in both the crypt depth ratio and the villi length ratio. The expression of CYP1A1 and Nrf2 genes in the liver tissue increased and decreased, respectively, in the aflatoxicated group. In addition, the aflatoxin residue was significantly (P ≤ 0.05) decreased in the liver tissue of the aflatoxicated group after 2 weeks from the end of the experiment. Conclusion Saccharomyces cell wall alone or with nanocurcumin attenuated these negative effects and anomalies and improved all of the above-mentioned metrics. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03256-x.
Collapse
Affiliation(s)
- Aya Ashry
- Biochemistry Dept., Faculty of Veterinary Medicine, Matrouh University, Matrouh, Egypt.
| | - Nabil M Taha
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 21526, Egypt
| | - Mohamed A Lebda
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 21526, Egypt
| | - Walied Abdo
- Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Eman M El-Diasty
- Mycology and Mycotoxins Department, Animal Health Research Institute (ARC), Dokki, Egypt
| | - Sabreen E Fadl
- Biochemistry Dept., Faculty of Veterinary Medicine, Matrouh University, Matrouh, Egypt
| | - Mohamed Morsi Elkamshishi
- Department of Animal Hygiene and Zoonoses, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Egypt
| |
Collapse
|
12
|
Alinaghipour A, Ashabi G, Riahi E, Soheili M, Salami M, Nabavizadeh F. Effects of nano-curcumin on noise stress-induced hippocampus-dependent memory impairment: behavioral and electrophysiological aspects. Pharmacol Rep 2022; 74:461-469. [DOI: 10.1007/s43440-022-00354-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/11/2022]
|
13
|
Turkez H, Arslan ME, Barboza JN, Kahraman CY, de Sousa DP, Mardinoğlu A. Therapeutic Potential of Ferulic Acid in Alzheimer's Disease. Curr Drug Deliv 2021; 19:860-873. [PMID: 34963433 DOI: 10.2174/1567201819666211228153801] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/16/2021] [Accepted: 10/27/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's Disease (AD) is one of the most important neurodegenerative diseases and it covers 60% of whole dementia cases. AD is a constantly progressing neurodegenerative disease as a result of the production of β-amyloid (Aβ) protein and the accumulation of hyper-phosphorylated Tau protein; it causes breakages in the synaptic bonds and neuronal deaths to a large extent. Millions of people worldwide suffer from AD because there is no definitive drug for disease prevention, treatment or slowdown. Over the last decade, multiple target applications have been developed for AD treatments. These targets include Aβ accumulations, hyper-phosphorylated Tau proteins, mitochondrial dysfunction, and oxidative stress resulting in toxicity. Various natural or semisynthetic antioxidant formulations have been shown to protect brain cells from Aβ induced toxicity and provide promising potentials for AD treatment. Ferulic acid (FA), a high-capacity antioxidant molecule, is naturally synthesized from certain plants. FA has been shown to have different substantial biological properties, such as anticancer, antidiabetic, antimicrobial, anti-inflammatory, hepatoprotective, and cardioprotective actions, etc. Furthermore, FA exerted neuroprotection via preventing Aβ-fibril formation, acting as an anti-inflammatory agent, and inhibiting free radical generation and acetylcholinesterase (AChE) enzyme activity. In this review, we present key biological roles of FA and several FA derivatives in Aβ-induced neurotoxicity, protection against free radical attacks, and enzyme inhibitions and describe them as possible therapeutic agents for the treatment of AD.
Collapse
Affiliation(s)
- Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, 25240, Erzurum, Turkey
- Department of Pharmacy, University G. d'Annunzio Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Mehmet Enes Arslan
- Department of Molecular Biology and Genetics, Erzurum Technical University, 25200, Erzurum, Turkey
| | - Joice Nascimento Barboza
- Department of Pharmaceutical Sciences, Federal University of Paraíba, 58051-970, João Pessoa, PB, Brazil
| | - Cigdem Yuce Kahraman
- Department of Medical Genetics, Faculty of Medicine, Atatürk University, 25240, Erzurum, Turkey
| | - Damiao Pergentino de Sousa
- Department of Pharmaceutical Sciences, Federal University of Paraíba, 58051-970, João Pessoa, PB, Brazil
| | - Adil Mardinoğlu
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, SE-17121, Sweden
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, United Kingdom
| |
Collapse
|
14
|
Ashtary-Larky D, Rezaei Kelishadi M, Bagheri R, Moosavian SP, Wong A, Davoodi SH, Khalili P, Dutheil F, Suzuki K, Asbaghi O. The Effects of Nano-Curcumin Supplementation on Risk Factors for Cardiovascular Disease: A GRADE-Assessed Systematic Review and Meta-Analysis of Clinical Trials. Antioxidants (Basel) 2021; 10:1015. [PMID: 34202657 PMCID: PMC8300831 DOI: 10.3390/antiox10071015] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Previous studies have indicated that curcumin supplementation may be beneficial for cardiometabolic health; however, current evidence regarding the effects of its nanorange formulations, popularly known as "nano-curcumin", remains unclear. This systematic review and meta-analysis aimed to determine the impact of nano-curcumin supplementation on risk factors for cardiovascular disease. METHODS PubMed, Scopus, Embase, and ISI web of science were systematically searched up to May 2021 using relevant keywords. All randomized controlled trials (RCTs) investigating the effects of nano-curcumin supplementation on cardiovascular disease risk factors were included. Meta-analysis was performed using random-effects models, and subgroup analysis was performed to explore variations by dose and baseline risk profiles. RESULTS According to the results of this study, nano-curcumin supplementation was associated with improvements in the glycemic profile by decreasing fasting blood glucose (FBG) (WMD: -18.14 mg/dL; 95% CI: -29.31 to -6.97; p = 0.001), insulin (WMD: -1.21 mg/dL; 95% CI: -1.43 to -1.00; p < 0.001), and HOMA-IR (WMD: -0.28 mg/dL; 95% CI: -0.33 to -0.23; p < 0.001). Interestingly, nano-curcumin supplementation resulted in increases in high-density lipoprotein (HDL) (WMD: 5.77 mg/dL; 95% CI: 2.90 to 8.64; p < 0.001). In terms of other lipid profile markers (triglyceride (TG), total cholesterol (TC), and low-density lipoprotein (LDL)), subgroup analyses showed that nano-curcumin supplementation had more favorable effects on lipid profiles in individuals with dyslipidemia at baseline. Nano-curcumin supplementation also showed favorable anti-inflammatory effects by decreasing C-reactive protein (CRP) (WMD: -1.29 mg/L; 95% CI: -2.15 to -0.44; p = 0.003) and interleukin-6 (IL-6) (WMD: -2.78 mg/dL; 95% CI: -3.76 to -1.79; p< 0.001). Moreover, our results showed the hypotensive effect of nano-curcumin, evidenced by a decrease in systolic blood pressure (SBP). CONCLUSIONS In conclusion, our meta-analysis suggests that nano-curcumin supplementation may decline cardiovascular disease risk by improving glycemic and lipid profiles, inflammation, and SBP. Future large-scale investigations with longer durations are needed to expand on our findings.
Collapse
Affiliation(s)
- Damoon Ashtary-Larky
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran;
| | - Mahnaz Rezaei Kelishadi
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran;
| | - Reza Bagheri
- Department of Exercise Physiology, University of Isfahan, Isfahan 8174673441, Iran;
| | - Seyedeh Parisa Moosavian
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran;
| | - Alexei Wong
- Department of Health and Human Performance, Marymount University, Arlington, VA 22207, USA;
| | - Sayed Hossein Davoodi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1416753955, Iran;
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology, Research Institute, Shahid Beheshti University of Medical Sciences, Tehran 1416753955, Iran;
| | - Pardis Khalili
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology, Research Institute, Shahid Beheshti University of Medical Sciences, Tehran 1416753955, Iran;
| | - Frédéric Dutheil
- CNRS, LaPSCo, Physiological and Psychosocial Stress, CHU Clermont-Ferrand, University Hospital of Clermont-Ferrand, Preventive and Occupational Medicine, WittyFit, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France;
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa 359-1192, Japan
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1416753955, Iran;
| |
Collapse
|
15
|
Ahmed WMS, Abdel-Azeem NM, Ibrahim MA, Helmy NA, Radi AM. Neuromodulatory effect of cinnamon oil on behavioural disturbance, CYP1A1, iNOStranscripts and neurochemical alterations induced by deltamethrin in rat brain. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111820. [PMID: 33385678 DOI: 10.1016/j.ecoenv.2020.111820] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
The objective of this study was to investigate the influence of deltamethrin (DLM)on brain function and to find whether DLM-induced neurotoxicity is prevented by the treatment with cinnamon oil. Four groups of ten Wistar albino male rats each were used. Group I (control) received saline only. Group II received cinnamon oil alone at 0.5 mg/kg B.W. intraperitonally, whereas Group III received orally DLM alone at 6 mg/kg B.W. Groups IV was treated with cinnamon oil plus DLM for 21 days to induce neurotoxicity. Rat behaviour, brain acetylcholine esterase (AChE), serotonin, oxidative stress profile were assessed. Serum sampling for the assessment of corticosterone concentration was also carried out. Finally, we demonstrate the gene expression of CYP1A1 and iNOS and the histological picture of the brain. Considering the behaviour assessment, DLM administration alone caused neurobehavioral deficits manifested by anxiety-like behavior which represented ina marked decrease in the sleeping frequency and duration, and marked increase the digging frequency and a wake non-active behavior duration. Moreover, the open field result showed a significant decrease in central square entries and duration. The neurochemical analysis revealed that DLM significantly suppressed AChE activity and elevated serotonin and corticosterone concentrations. Furthermore, results revealed thatthe brain reduced glutathione (GSH) content, superoxide dismutase (SOD) activity and malondialdehyde (MDA) concentration were significantly altered in DLM treated rats. Neurochemical disturbances were confirmed by histopathological changes in the brain. Furthermore, DLM up-regulates the mRNA expression of brain CYP1A1 and iNOS. Co-treatment with cinnamon oil exhibited significant improvement in behavioural performance and the brain antioxidant capacities with an increase in AChE activity and diminished the concentration of serotonin, serum corticosterone and MDA. Cinnamon oil treatment resulted in down-regulation of CYP1A1 and iNOS and improve the histologically picture. In conclusion, cinnamon oil ameliorated DLM-induced neurotoxicity through preventing oxidative stress-induced genotoxicity and apoptosis of brain in rats.
Collapse
Affiliation(s)
- Walaa M S Ahmed
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Naglaa M Abdel-Azeem
- Department of Animal and Poultry Management and Wealth Development, Faculty of Veterinary Medicine,Beni-Suef University, Beni-Suef 62511, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza Egypt
| | - Nermeen A Helmy
- Department of Physiology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Abeer M Radi
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| |
Collapse
|
16
|
Abdelnour SA, Hassan MAE, Mohammed AK, Alhimaidi AR, Al-Gabri N, Al-Khaldi KO, Swelum AA. The Effect of Adding Different Levels of Curcumin and Its Nanoparticles to Extender on Post-Thaw Quality of Cryopreserved Rabbit Sperm. Animals (Basel) 2020; 10:ani10091508. [PMID: 32858961 PMCID: PMC7552309 DOI: 10.3390/ani10091508] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary In rabbit farms, artificial insemination is usually accepted using semen preserved around 18 °C. However, the use of cryopreserved rabbit semen is limited, due to excess oxidative stress and produce sperm dysfunction. The advancements in nanotechnology tools have allowed molecular-based targeting of cells through effective, safe, and biocompatible magnetic nanoparticles with promising potentials in reproductive sciences. In these regards, the current work aimed to explore the potential role if the effect of curcumin nanoparticles supplementation in semen extender on post/thawed rabbit sperm quality. Results revealed that the CUNPs (1.5 µg/mL) showed superior enhancements impacts for the post-thawing sperm motion and redox status, as well as a significant reduction in apoptotic and necrotic sperm cells. This confirmed the constructive application of nanoparticle to enhance the cryopreserved rabbit’s sperm function. Abstract The cryopreservation process adversely affects sperm function and quality traits, causing some changes at biochemical and structural levels, due to mechanical, thermal, osmotic, and oxidative damage. Supplementation with curcumin nanoparticles could prevent and even revert this effect and could enhance the post/thawed sperm quality in the rabbit. The study amid to explore the effect of curcumin (CU) and curcumin nanoparticles (CUNPs) supplementation in semen extender on post/thawed rabbit sperm quality. Twelve fertile, healthy rabbit bucks were included, and the ejaculates were collected using artificial vaginas. Rabbit pooled semen was cryopreserved in tris-yolk fructose (TYF) extender without any supplement (control group) or extender supplemented with CU at levels of 0.5, 1 or 1.5 µg/mL (CU0.5, CU1.0, and CU1.5, respectively) or CUNPs at levels of 0.5, 1, 1.5 (CUNPs0.5, CUNPs1.0, and CUNPs1.5, respectively) and was packed in straws (0.25 mL) and stored in liquid nitrogen (−196 °C). Results revealed that CUNPs1.5 had a positive influence (p < 0.05) on post-thawing sperm progressive motility, viability, and membrane integrity as compared with the other groups. Percentages of dead sperm, abnormalities, early apoptotic, apoptotic, and necrotic sperm cells reduced (p < 0.05) in CUNPs1.5 as compared to other treatments. Using 1.5 µg/mL of CUNPs significantly improved total antioxidant capacity (TAC), GPx, while MDA and POC reduced (p < 0.05) in CU1.5 in comparison with other groups. SOD values were enhanced (p < 0.05) in CUNPs1.0 and CUNPs1.5 in relation with other treatments. Conclusively, the addition of curcumin and its nanoparticles to the extender can improve the post-thawed quality of rabbit sperm via redox signaling and reduce the apoptosis process.
Collapse
Affiliation(s)
- Sameh A. Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
- Correspondence: (S.A.A.); (A.A.S.)
| | | | - Amer K. Mohammed
- Department of Animal Production, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt;
| | - Ahmad R. Alhimaidi
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Naif Al-Gabri
- Department of Pathology, Faculty of Veterinary Medicine, Thamar University, Dhamar 2153, Yemen;
- Laboratory of Regional Djibouti Livestock Quarantine, Abu Yasar international Est. 1999, Djibouti
| | | | - Ayman A. Swelum
- Department of Animal production, College of Food and Agriculture Sciences, King Saud University, P. O. Box 2460, Riyadh 11451, Saudi Arabia
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Sharkia 44519, Egypt
- Correspondence: (S.A.A.); (A.A.S.)
| |
Collapse
|