1
|
Koskela K, Lehtimäki L, Uitti J, Oksa P, Tikkakoski A, Sauni R. The prevalence of respiratory symptoms and diseases and declined lung function among foundry workers. J Occup Med Toxicol 2024; 19:41. [PMID: 39448978 PMCID: PMC11515409 DOI: 10.1186/s12995-024-00440-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Foundry workers are occupationally exposed to a variety of inhalable chemical substances. Occupational exposure to vapors, gases, dusts, and fumes can lead to adverse health effects on the respiratory system and cause chronic respiratory diseases, such as interstitial lung diseases (ILDs), chronic obstructive lung disease (COPD), chronic bronchitis, and emphysema. Research on respiratory symptoms, diseases, and lung function in foundry workers over the past few decades has been limited. The aim of this cross-sectional study was to assess the prevalence of respiratory symptoms and diseases and declined lung function of current foundry workers, ex-foundry workers, and unexposed controls. METHODS We assessed respiratory symptoms, diseases, and lung function among 335 current foundry workers, 64 ex-foundry workers, and 161 unexposed controls. The cumulative dust exposure (mg-y) of each participant was calculated, and the median cumulative dust exposure according to the main places of exposure was determined. RESULTS A higher prevalence of chronic bronchitis, as reported in a questionnaire, was found among current and ex-foundry workers compared to unexposed controls, even after adjusting for pack-years of smoking (p = 0.009). Additionally, cough and wheezing in adulthood without respiratory infection, and chronic rhinitis symptoms were more common among current and ex-foundry workers compared to unexposed controls. These differences remained significant even after adjusting for pack-years of smoking and body mass index (BMI) (p = 0.007 and p < 0.001, respectively). Impaired lung function was more prevalent among both ex-foundry workers (29.7%) and current foundry workers (15.5%) compared to the unexposed controls (8.7%), with the difference remaining significant even after adjusting for the pack-years of smoking and BMI (p = 0.009). According to the questionnaire, the number of physician-diagnosed cases of chronic obstructive pulmonary disease (COPD) or chronic bronchitis was unexpectedly low compared to the indications from the symptom questionnaire and lung function test results, suggesting a potential underdiagnosis. The prevalence of silicosis was low (0.8%) among current and ex-foundry workers. CONCLUSIONS Respiratory symptoms are common among foundry workers. Current and ex-foundry workers exhibited lower lung function in spirometry compared to unexposed controls. There is a potential underdiagnosis of COPD and chronic bronchitis among foundry workers.
Collapse
Affiliation(s)
- Kirsi Koskela
- Faculty of Medicine and Health Technology, Tampere University, P.O. Box 100, Tampere, FI-33014, Finland.
- Finnish Institute of Occupational Health, Tampere, Finland.
| | - Lauri Lehtimäki
- Allergy Centre, Tampere University Hospital, Tampere, Finland
| | - Jukka Uitti
- Faculty of Medicine and Health Technology, Tampere University, P.O. Box 100, Tampere, FI-33014, Finland
| | - Panu Oksa
- Finnish Institute of Occupational Health, Tampere, Finland
| | - Antti Tikkakoski
- Department of Clinical Physiology and Nuclear Medicine, Tampere University Hospital, Tampere, Finland
| | - Riitta Sauni
- Faculty of Medicine and Health Technology, Tampere University, P.O. Box 100, Tampere, FI-33014, Finland
| |
Collapse
|
2
|
Hu A, Li R, Chen G, Chen S. Impact of Respiratory Dust on Health: A Comparison Based on the Toxicity of PM2.5, Silica, and Nanosilica. Int J Mol Sci 2024; 25:7654. [PMID: 39062897 PMCID: PMC11277548 DOI: 10.3390/ijms25147654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Respiratory dust of different particle sizes in the environment causes diverse health effects when entering the human body and makes acute or chronic damage through multiple systems and organs. However, the precise toxic effects and potential mechanisms induced by dust of different particle sizes have not been systematically summarized. In this study, we described the sources and characteristics of three different particle sizes of dust: PM2.5 (<2.5 μm), silica (<5 μm), and nanosilica (<100 nm). Based on their respective characteristics, we further explored the main toxicity induced by silica, PM2.5, and nanosilica in vivo and in vitro. Furthermore, we evaluated the health implications of respiratory dust on the human body, and especially proposed potential synergistic effects, considering current studies. In summary, this review summarized the health hazards and toxic mechanisms associated with respiratory dust of different particle sizes. It could provide new insights for investigating the synergistic effects of co-exposure to respiratory dust of different particle sizes in mixed environments.
Collapse
Affiliation(s)
| | | | | | - Shi Chen
- Key Laboratory of Molecular Epidemiology of Hunan Province, Hunan Normal University, Changsha 410013, China; (A.H.); (R.L.); (G.C.)
| |
Collapse
|
3
|
Vahabi Shekarloo M, Panjali Z, Mehrifar Y, Ramezanifar S, Naziri SH, Ghasemi Koozekonan A, Moradpour Z, Zendehdel R. Application of a novel exposure limit approach for co-exposure of chemicals: a field study by in-vitro design. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:1269-1277. [PMID: 35674128 DOI: 10.1080/09603123.2022.2084513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
This study has suggested an occupational exposure limit (OEL) based on the co-exposure approach in an iron-foundry industry. Respirable dust was collected in an iron casting industry using the NIOSH 0600 method. The DNA damage was obtained by comet assay. The lower confidence interval of the benchmark dose (BMDL) was employed for exposure limit evaluation. The estimated BMDL of the cell line was extrapolated to human subjects. Based on the Hill model, a BMDL 1.65 µg for chemical mixture has been estimated for the A549 cell line. According to uncertainty factors, permitted daily exposure (PDE) was predicted in humans. However, PDE of 3.9 μg/m3 was specified as the time-weighted average limit for toxic respirable dust in the casting industry. In this study, OEL for active respirable dust in the casting industry has been proposed. The industry-based standard for active respirable dust has been proposed for better management of co-exposure.
Collapse
Affiliation(s)
- Masoomeh Vahabi Shekarloo
- Student Research Committee, Department of Occupational Health and Safety, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Panjali
- Department of Occupational Health Engineering, Faculty of Health and Medical Engineering, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Younes Mehrifar
- Department of Occupational Health and Safety, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soleiman Ramezanifar
- Department of Occupational Health and Safety, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Husein Naziri
- Department of Occupational Health and Safety, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aysa Ghasemi Koozekonan
- Department of Occupational Health and Safety, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Moradpour
- Department of Occupational Health and Safety, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rezvan Zendehdel
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Hedbrant A, Engström C, Andersson L, Eklund D, Westberg H, Persson A, Särndahl E. Occupational quartz and particle exposure affect systemic levels of inflammatory markers related to inflammasome activation and cardiovascular disease. Environ Health 2023; 22:25. [PMID: 36907865 PMCID: PMC10009934 DOI: 10.1186/s12940-023-00980-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The inflammatory responses are central components of diseases associated with particulate matter (PM) exposure, including systemic diseases such as cardiovascular diseases (CVDs). The aim of this study was to determine if exposure to PM, including respirable dust or quartz in the iron foundry environment mediates systemic inflammatory responses, focusing on the NLRP3 inflammasome and novel or established inflammatory markers of CVDs. METHODS The exposure to PM, including respirable dust, metals and quartz were determined in 40 foundry workers at two separate occasions per worker. In addition, blood samples were collected both pre-shift and post-shift and quantified for inflammatory markers. The respirable dust and quartz exposures were correlated to levels of inflammatory markers in blood using Pearson, Kendall τ and mixed model statistics. Analyzed inflammatory markers included: 1) general markers of inflammation, including interleukins, chemokines, acute phase proteins, and white blood cell counts, 2) novel or established inflammatory markers of CVD, such as growth/differentiation factor-15 (GDF-15), CD40 ligand, soluble suppressor of tumorigenesis 2 (sST2), intercellular/vascular adhesion molecule-1 (ICAM-1, VCAM-1), and myeloperoxidase (MPO), and 3) NLRP3 inflammasome-related markers, including interleukin (IL)-1β, IL-18, IL-1 receptor antagonist (IL-1Ra), and caspase-1 activity. RESULTS The average respirator adjusted exposure level to respirable dust and quartz for the 40 foundry workers included in the study was 0.65 and 0.020 mg/m3, respectively. Respirable quartz exposure correlated with several NLRP3 inflammasome-related markers, including plasma levels of IL-1β and IL-18, and several caspase-1 activity measures in monocytes, demonstrating a reverse relationship. Respirable dust exposure mainly correlated with non-inflammasome related markers like CXCL8 and sST2. CONCLUSIONS The finding that NLRP3 inflammasome-related markers correlated with PM and quartz exposure suggest that this potent inflammatory cellular mechanism indeed is affected even at current exposure levels in Swedish iron foundries. The results highlight concerns regarding the safety of current exposure limits to respirable dust and quartz, and encourage continuous efforts to reduce exposure in dust and quartz exposed industries.
Collapse
Affiliation(s)
- Alexander Hedbrant
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, 701 82, Örebro, Sweden.
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, 701 82, Örebro, Sweden.
| | - Christopher Engström
- Division of Mathematics and Physics, The School of Education, Culture and Communication, Mälardalen University, Box 883, 721 23, Västerås, Sweden
| | - Lena Andersson
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, 701 82, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, 701 82, Örebro, Sweden
- Department of Occupational and Environmental Medicine, Örebro University Hospital, 701 85, Örebro, Sweden
| | - Daniel Eklund
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, 701 82, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, 701 82, Örebro, Sweden
| | - Håkan Westberg
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, 701 82, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, 701 82, Örebro, Sweden
- Department of Occupational and Environmental Medicine, Örebro University Hospital, 701 85, Örebro, Sweden
| | - Alexander Persson
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, 701 82, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, 701 82, Örebro, Sweden
| | - Eva Särndahl
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, 701 82, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, 701 82, Örebro, Sweden
| |
Collapse
|
5
|
An Increase in Plasma Adipsin Levels Is Associated With Higher Cumulative Dust Exposure and Airway Obstruction in Foundry Workers. J Occup Environ Med 2023; 65:203-209. [PMID: 36730948 DOI: 10.1097/jom.0000000000002736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The aim of the study was to assess whether plasma adipokine levels (adipsin, adiponectin, leptin, and resistin) are associated with pulmonary function in foundry workers. METHODS We examined 65 dust-exposed foundry workers and 40 nonexposed controls and analyzed their lung function and plasma adipokine levels at baseline and after approximately 7 years of follow-up. RESULTS A higher increase in plasma adipsin was associated with the development of airway obstruction in exposed subjects during follow-up after adjusting for body mass index changes during the follow-up period. Furthermore, the increase in adipsin levels was positively associated with cumulative dust exposure even after adjusting for smoking and body mass index changes during follow-up ( P = 0.015). CONCLUSION The results suggest that plasma adipsin is involved in the pathogenesis of subclinical airway inflammation and the development of chronic obstruction and is induced by occupational dust exposure.
Collapse
|
6
|
Madsen AM, Uhrbrand K, Kofoed VC, Fischer TK, Frederiksen MW. A cohort study of wastewater treatment plant workers: Association between levels of biomarkers of systemic inflammation and exposure to bacteria and fungi, and endotoxin as measured using two methods. WATER RESEARCH 2023; 231:119625. [PMID: 36680819 DOI: 10.1016/j.watres.2023.119625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/05/2022] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Work in wastewater treatment plants (WWTPs) can be associated with exposure to airborne microorganisms and endotoxin from the working environment. The aim of this study was to obtain knowledge about whether serum levels of the markers of systemic inflammation, C-reactive protein (CRP) and serum amyloid A (SAA), are associated with personal exposure to endotoxin, measured using the Limulus (endotoxinLimulus) and the rFC (endotoxinrFC) assays, as well as bacteria and fungi in a cohort of WWTP workers. Exposure and blood samples were collected for 11 workers over one year. Exposure to endotoxinLimulus-day and endotoxinrFC-day correlated significantly (r = 0.80, p<0.0001, n = 104), but endotoxinLimulus-day was 4.4 (Geometric mean (GM) value) times higher than endotoxinrFC-day (p<0.0001). The endotoxinLimulus-day, endotoxinrFC-day, bacteria, and fungal exposure as well as serum levels of CRP-day (GM=1.4 mg/l) and SAA-day (GM=12 mg/l) differed between workers. Serum levels of SAAday correlated significantly with CRPday (r = 0.30, p = 0.0068). The serum levels of CRPday were associated significantly with exposure to endotoxinLimulus-day. Exposure, SAA and CRP data were also analyzed as av. of each season, and SAAseason was associated positively and significantly with endotoxinLimulus-season and endotoxinrFC-season and negatively with fungalseason exposure. In conclusion, CRPday was associated with the endotoxinLimulus-day and SAAseason with endotoxinLimulus-season and endotoxinrFC-season exposure. Thus, we hereby document that WWTP workers are exposed to airborne endotoxin which seems to have a negative impact on their health.
Collapse
Affiliation(s)
- Anne Mette Madsen
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen, Denmark.
| | - Katrine Uhrbrand
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen, Denmark
| | - Victor Carp Kofoed
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen, Denmark
| | - Thea K Fischer
- Dept of Clinical Research, Nordsjaellands Hospital, Denmark; Dept of Virus & Microbiological Special Diagnostics, Statens Serum Institut, Denmark
| | - Margit W Frederiksen
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen, Denmark
| |
Collapse
|
7
|
Alijagic A, Engwall M, Särndahl E, Karlsson H, Hedbrant A, Andersson L, Karlsson P, Dalemo M, Scherbak N, Färnlund K, Larsson M, Persson A. Particle Safety Assessment in Additive Manufacturing: From Exposure Risks to Advanced Toxicology Testing. FRONTIERS IN TOXICOLOGY 2022; 4:836447. [PMID: 35548681 PMCID: PMC9081788 DOI: 10.3389/ftox.2022.836447] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Additive manufacturing (AM) or industrial three-dimensional (3D) printing drives a new spectrum of design and production possibilities; pushing the boundaries both in the application by production of sophisticated products as well as the development of next-generation materials. AM technologies apply a diversity of feedstocks, including plastic, metallic, and ceramic particle powders with distinct size, shape, and surface chemistry. In addition, powders are often reused, which may change the particles' physicochemical properties and by that alter their toxic potential. The AM production technology commonly relies on a laser or electron beam to selectively melt or sinter particle powders. Large energy input on feedstock powders generates several byproducts, including varying amounts of virgin microparticles, nanoparticles, spatter, and volatile chemicals that are emitted in the working environment; throughout the production and processing phases. The micro and nanoscale size may enable particles to interact with and to cross biological barriers, which could, in turn, give rise to unexpected adverse outcomes, including inflammation, oxidative stress, activation of signaling pathways, genotoxicity, and carcinogenicity. Another important aspect of AM-associated risks is emission/leakage of mono- and oligomers due to polymer breakdown and high temperature transformation of chemicals from polymeric particles, both during production, use, and in vivo, including in target cells. These chemicals are potential inducers of direct toxicity, genotoxicity, and endocrine disruption. Nevertheless, understanding whether AM particle powders and their byproducts may exert adverse effects in humans is largely lacking and urges comprehensive safety assessment across the entire AM lifecycle-spanning from virgin and reused to airborne particles. Therefore, this review will detail: 1) brief overview of the AM feedstock powders, impact of reuse on particle physicochemical properties, main exposure pathways and protective measures in AM industry, 2) role of particle biological identity and key toxicological endpoints in the particle safety assessment, and 3) next-generation toxicology approaches in nanosafety for safety assessment in AM. Altogether, the proposed testing approach will enable a deeper understanding of existing and emerging particle and chemical safety challenges and provide a strategy for the development of cutting-edge methodologies for hazard identification and risk assessment in the AM industry.
Collapse
Affiliation(s)
- Andi Alijagic
- Man-Technology-Environment Research Center (MTM), Örebro University, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Magnus Engwall
- Man-Technology-Environment Research Center (MTM), Örebro University, Örebro, Sweden
| | - Eva Särndahl
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Helen Karlsson
- Department of Health, Medicine and Caring Sciences, Occupational and Environmental Medicine Center in Linköping, Linköping University, Linköping, Sweden
| | - Alexander Hedbrant
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Lena Andersson
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Department of Occupational and Environmental Medicine, Örebro University, Örebro, Sweden
| | - Patrik Karlsson
- Department of Mechanical Engineering, Örebro University, Örebro, Sweden
| | | | - Nikolai Scherbak
- Man-Technology-Environment Research Center (MTM), Örebro University, Örebro, Sweden
| | | | - Maria Larsson
- Man-Technology-Environment Research Center (MTM), Örebro University, Örebro, Sweden
| | - Alexander Persson
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
8
|
Respiratory Health and Inflammatory Markers-Exposure to Cobalt in the Swedish Hard Metal Industry. J Occup Environ Med 2021; 62:820-829. [PMID: 33009343 DOI: 10.1097/jom.0000000000001952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To study the relationship between inhalable dust and cobalt, and respiratory symptoms, lung function, exhaled nitric oxide in expired air, and CC16 in the Swedish hard metal industry. METHODS Personal sampling of inhalable dust and cobalt, and medical examination including blood sampling was performed for 72 workers. Exposure-response relationships were determined using logistic, linear, and mixed-model analysis. RESULTS The average inhalable dust and cobalt concentrations were 0.079 and 0.0017 mg/m, respectively. Statistically significant increased serum levels of CC16 were determined when the high and low cumulative exposures for cobalt were compared. Nonsignificant exposure-response relationships were observed between cross-shift inhalable dust or cobalt exposures and asthma, nose dripping, and bronchitis. CONCLUSIONS Our findings suggest an exposure-response relationship between inhalable cumulative cobalt exposure and CC16 levels in blood, which may reflect an injury or a reparation process in the lungs.
Collapse
|
9
|
Nitter TB, Hilt B, Svendsen KVH, Buhagen M, Jørgensen RB. Association between exposure to different stone aggregates from asphalt and blood coagulability: A human exposure chamber study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146309. [PMID: 33714824 DOI: 10.1016/j.scitotenv.2021.146309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
A large fraction of particulate matter (PM), especially PM10, concentrations are due to non-exhaust emissions, such as road abrasion and wear on tires and brake pads. Concentrating on road abrasion, we aimed to investigate blood coagulability in healthy adults after exposure to two types of stone materials commonly used in asphalt on Norwegian roads. This study followed a randomized, double-blind, cross-over study design. Using an exposure chamber, 24 healthy young volunteers were exposed to aggregates of two different types of rocks and placebo dust: quartz diorite, rhomb porphyry, and lactose (placebo dust). Each exposure session lasted for 4 hours (h), and blood samples were collected before exposure (baseline), 4 h post-exposure, and 24 h post-exposure to analyse potential changes in the von Willebrand factor (vWF) as well as of fibrinogen, d-dimer, leukocytes, and thrombocytes. The dust concentration in the exposure chamber was measured with real-time instruments and gravimetric samples of total dust, respirable dust, PM10, PM2.5, and ultrafine particles (UFP). The results were analysed using a linear mixed-effect model. Leukocyte blood counts increased post-exposure for all exposure materials; however, none of the increases were statistically significant. The concentration of fibrinogen increased after exposure to quartz diorite, while it decreased after exposures to rhomb porphyry and lactose. Type of material was a statistically significant explanatory variable for the concentration of fibrinogen, with the most significant increase occurring 24 h post-exposure to quartz diorite. After exposure to the three materials, vWF decreased. For the thrombocytes, an increase in blood count was observed 24 h post-exposure to quartz diorite and rhomb porphyry, with a modest (p = 0.09) positive association for quartz diorite. Although the results are limited, we conclude that the different effects observed post-exposure to quartz diorite support considering potential health effects when choosing materials in the production of asphalt.
Collapse
Affiliation(s)
- Therese Bergh Nitter
- Department of Industrial Economics and Technology Management, Norwegian University of Science and Technology (NTNU), Norway.
| | - Bjørn Hilt
- Department of Occupational Medicine, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway; Department of Public Health and Nursing, NTNU, Norway
| | - Kristin V Hirsch Svendsen
- Department of Industrial Economics and Technology Management, Norwegian University of Science and Technology (NTNU), Norway
| | - Morten Buhagen
- Department of Occupational Medicine, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway; Department of Public Health and Nursing, NTNU, Norway
| | - Rikke Bramming Jørgensen
- Department of Industrial Economics and Technology Management, Norwegian University of Science and Technology (NTNU), Norway
| |
Collapse
|
10
|
Andersson L, Hedbrant A, Persson A, Bryngelsson IL, Sjögren B, Stockfelt L, Särndahl E, Westberg H. Inflammatory and coagulatory markers and exposure to different size fractions of particle mass, number and surface area air concentrations in the Swedish hard metal industry, in particular to cobalt. Biomarkers 2021; 26:557-569. [PMID: 34128444 DOI: 10.1080/1354750x.2021.1941260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE To study the relationship between inhalation of airborne particles and cobalt in the Swedish hard metal industry and markers of inflammation and coagulation in blood. METHODS Personal sampling of inhalable cobalt and dust were performed for subjects in two Swedish hard metal plants. Stationary measurements were used to study concentrations of inhalable, respirable, and total dust and cobalt, PM10 and PM2.5, the particle surface area and the particle number concentrations. The inflammatory markers CC16, TNF, IL-6, IL-8, IL-10, SAA and CRP, and the coagulatory markers FVIII, vWF, fibrinogen, PAI-1 and D-dimer were measured. A complete sampling was performed on the second or third day of a working week following a work-free weekend, and additional sampling was taken on the fourth or fifth day. The mixed model analysis was used, including covariates. RESULTS The average air concentrations of inhalable dust and cobalt were 0.11 mg/m3 and 0.003 mg/m3, respectively. For some mass-based exposure measures of cobalt and total dust, statistically significant increased levels of FVIII, vWF and CC16 were found. CONCLUSIONS The observed relationships between particle exposure and coagulatory biomarkers may indicate an increased risk of cardiovascular disease.
Collapse
Affiliation(s)
- Lena Andersson
- Department of Occupational and Environmental Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.,School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.,Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Alexander Hedbrant
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.,Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Alexander Persson
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.,Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Ing-Liss Bryngelsson
- Department of Occupational and Environmental Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Bengt Sjögren
- Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Leo Stockfelt
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Eva Särndahl
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.,Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Håkan Westberg
- Department of Occupational and Environmental Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.,School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.,Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
11
|
Zhang H, Zhang X, Wang Q, Xu Y, Feng Y, Yu Z, Huang C. Ambient air pollution and stillbirth: An updated systematic review and meta-analysis of epidemiological studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 278:116752. [PMID: 33689950 DOI: 10.1016/j.envpol.2021.116752] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 05/22/2023]
Abstract
Stillbirth has a great impact on contemporary and future generations. Increasing evidence show that ambient air pollution exposure is associated with stillbirth. However, previous studies showed inconsistent findings. To clarify the effect of maternal air pollution exposure on stillbirth, we searched for studies examining the associations between air pollutants, including particulate matter (diameter ≤ 2.5 μm [PM2.5] and ≤10 μm [PM10]) and gaseous pollutants (sulfur dioxide [SO2], nitrogen dioxide [NO2], carbon monoxide [CO] and ozone [O3]), and stillbirth published in PubMed, Web of Science, Embase and Cochrane Library until December 11, 2020. The pooled effect estimates and 95% confidence intervals (CI) were calculated, and the heterogeneity was evaluated using Cochran's Q test and I2 statistic. Publication bias was assessed using funnel plots and Egger's tests. Of 7546 records, 15 eligible studies were included in this review. Results of long-term exposure showed that maternal third trimester PM2.5 and CO exposure (per 10 μg/m3 increment) increased the odds of stillbirth, with estimated odds ratios (ORs) of 1.094 (95% CI: 1.008-1.180) and 1.0009 (95% CI: 1.0001-1.0017), respectively. Entire pregnancy exposure to PM2.5 was also associated with stillbirth (OR: 1.103, 95% CI: 1.074-1.131). A 10 μg/m3 increment in O3 in the first trimester was associated with stillbirth, and the estimated OR was 1.028 (95% CI: 1.001-1.055). Short-term exposure (on lag day 4) to O3 was also associated with stillbirth (OR: 1.002, 95% CI: 1.001-1.004). PM10, SO2 and NO2 exposure had no significant effects on the incidence of stillbirth. Additional well-designed cohort studies and investigations regarding potential biological mechanisms are warranted to elaborate the suggestive association that may help improve intergenerational inequality.
Collapse
Affiliation(s)
- Huanhuan Zhang
- School of Public Health, Zhengzhou University, Zhengzhou, China; Shanghai Typhoon Institute, China Meteorological Administration, Shanghai, China; Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Service, Shanghai, China
| | - Xiaoan Zhang
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiong Wang
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yuanzhi Xu
- Department of Clinical Medicine, Medical School of Zhengzhou University, Zhengzhou, China
| | - Yang Feng
- School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Zengli Yu
- School of Public Health, Zhengzhou University, Zhengzhou, China.
| | - Cunrui Huang
- School of Public Health, Zhengzhou University, Zhengzhou, China; Shanghai Typhoon Institute, China Meteorological Administration, Shanghai, China; Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Service, Shanghai, China; School of Public Health, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
12
|
THE STATE OF BLOOD INDICES IN THE FOUNDRY WORKERS. WORLD OF MEDICINE AND BIOLOGY 2021. [DOI: 10.26724/2079-8334-2021-2-76-117-121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Molecularly Distinct NLRP3 Inducers Mediate Diverse Ratios of Interleukin-1 β and Interleukin-18 from Human Monocytes. Mediators Inflamm 2020; 2020:4651090. [PMID: 33144845 PMCID: PMC7599400 DOI: 10.1155/2020/4651090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/10/2020] [Accepted: 09/29/2020] [Indexed: 11/17/2022] Open
Abstract
Inflammasomes cleave and activate interleukin- (IL-) 1β and IL-18 which have both shared and unique biological functions. IL-1β is an important mediator of the acute phase response to infections and tissue damage, whereas IL-18 takes part in activation and tailoring of the adaptive immune response. While IL-1β has served as the prototypic indicator of inflammasome activation, few studies have compared the potential differences in IL-1β and IL-18 production during inflammasome activation. Since these cytokines partake in different immune pathways, the involvement of inflammasome activity in different conditions needs to be described beyond IL-1β production alone. To address a potential heterogeneity in inflammasome functionality, ATP, chitosan, or silica oxide (SiO2) were used to induce NLRP3 inflammasome activation in THP-1 cells and the subsequent outcomes were quantified. Despite using doses of the inflammasome inducers yielding similar release of IL-1β, SiO2-stimulated cells showed a lower concentration of released IL-18 compared to ATP and chitosan. Hence, the cells stimulated with SiO2 responded with a distinctly different IL-18 : IL-1β ratio. The difference in the IL-18 : IL-1β ratio for SiO2 was constant over different doses. While all downstream responses were strictly dependent on a functional NLRP3 inflammasome, the differences did not depend on the level of gene expression, caspase-1 activity, or pyroptosis. We suggest that the NLRP3 inflammasome response should be considered a dynamic process, which can be described by taking the ratio between IL-1β and IL-18 into account and moving away from an on/off perspective of inflammasome activation.
Collapse
|
14
|
Dermal and inhalable cobalt exposure-Uptake of cobalt for workers at Swedish hard metal plants. PLoS One 2020; 15:e0237100. [PMID: 32760159 PMCID: PMC7410254 DOI: 10.1371/journal.pone.0237100] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/20/2020] [Indexed: 11/19/2022] Open
Abstract
Purpose Cobalt exposure is known to cause adverse effects on health. A major use of cobalt is in the manufacture of hard metal. Exposure can lead to asthma, hard metal lung disease, contact allergy and increased risk of cancer. Cobalt is mainly absorbed from the pulmonary tract, however penetration through skin may occur. The relationships between exposure to inhalable cobalt in air and on skin and the uptake in blood and urine will be investigated, as well as the association between dermal symptoms and dermal exposure. Methods Cobalt exposure in 71 workers in hard metal production facilities was measured as inhalable cobalt in the breathing zone and cobalt found on skin with acid wash. Uptake of cobalt was determined with concentrations in blood and urine. Correlations between exposure and uptake were analysed. Results Inhalable cobalt in air and cobalt in blood and urine showed rank correlations with coefficients 0.40 and 0.25. Cobalt on skin and uptake in blood and urine presented correlation coefficients of 0.36 and 0.17. Multiple linear regression of cobalt in air and on skin with cobalt in blood showed regression coefficients with cobalt in blood (β = 203 p < 0.0010, and β = 0.010, p = 0.0040) and with cobalt in urine (β = 5779, p = 0.0010, and β = 0.10, p = 0.60). Conclusions Our data presents statistically significant correlations between exposure to cobalt in air with uptake of cobalt in blood and urine. Cobalt on skin was statistically significant with cobalt in blood but not with urine.
Collapse
|
15
|
Hadrup N, Zhernovkov V, Jacobsen NR, Voss C, Strunz M, Ansari M, Schiller HB, Halappanavar S, Poulsen SS, Kholodenko B, Stoeger T, Saber AT, Vogel U. Acute Phase Response as a Biological Mechanism-of-Action of (Nano)particle-Induced Cardiovascular Disease. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907476. [PMID: 32227434 DOI: 10.1002/smll.201907476] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 05/15/2023]
Abstract
Inhaled nanoparticles constitute a potential health hazard due to their size-dependent lung deposition and large surface to mass ratio. Exposure to high levels contributes to the risk of developing respiratory and cardiovascular diseases, as well as of lung cancer. Particle-induced acute phase response may be an important mechanism of action of particle-induced cardiovascular disease. Here, the authors review new important scientific evidence showing causal relationships between inhalation of particle and nanomaterials, induction of acute phase response, and risk of cardiovascular disease. Particle-induced acute phase response provides a means for risk assessment of particle-induced cardiovascular disease and underscores cardiovascular disease as an occupational disease.
Collapse
Affiliation(s)
- Niels Hadrup
- National Research Centre for the Working Environment, Copenhagen, DK-2100, Denmark
| | - Vadim Zhernovkov
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland
| | | | - Carola Voss
- Comprehensive Pneumology Center (CPC)/Institute of Lung Biology and Disease (ILBD), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, D-85764, Germany
| | - Maximilian Strunz
- Comprehensive Pneumology Center (CPC)/Institute of Lung Biology and Disease (ILBD), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, D-85764, Germany
| | - Meshal Ansari
- Comprehensive Pneumology Center (CPC)/Institute of Lung Biology and Disease (ILBD), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, D-85764, Germany
| | - Herbert B Schiller
- Comprehensive Pneumology Center (CPC)/Institute of Lung Biology and Disease (ILBD), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, D-85764, Germany
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Sarah S Poulsen
- National Research Centre for the Working Environment, Copenhagen, DK-2100, Denmark
| | - Boris Kholodenko
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland
| | - Tobias Stoeger
- Comprehensive Pneumology Center (CPC)/Institute of Lung Biology and Disease (ILBD), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, D-85764, Germany
| | - Anne Thoustrup Saber
- National Research Centre for the Working Environment, Copenhagen, DK-2100, Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, DK-2100, Denmark
- DTU Health, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| |
Collapse
|
16
|
Quartz Dust Exposure Affects NLRP3 Inflammasome Activation and Plasma Levels of IL-18 and IL-1Ra in Iron Foundry Workers. Mediators Inflamm 2020; 2020:8490908. [PMID: 32256196 PMCID: PMC7091550 DOI: 10.1155/2020/8490908] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/21/2019] [Indexed: 11/17/2022] Open
Abstract
Purpose To study the association between inhalation of particulate matter or quartz in Swedish iron foundries and the effects on NLRP3 inflammasome activation. Methods Particle exposure measurements were performed during an eight-hour work day for 85 foundry workers at three Swedish iron foundries. Personal sampling was used for measurement of respirable quartz and dust and stationary measurements to obtain exposure measurements for inhalable dust and PM10. The NLRP3 inflammasome markers, interleukin- (IL-) 1β and IL-18, and inhibitors IL-1 receptor antagonist (IL-1Ra) and IL-18 binding protein (IL-18BP) were measured in plasma. Inflammasome activation was measured by caspase-1 enzymatic activity in monocytes in whole blood by flow cytometry, and expression of inflammasome-related genes was quantified using real-time PCR. Multiple linear regression analysis was used to investigate associations between PM exposures and inflammatory markers. Sex, age, smoking, current infection, BMI, and single nucleotide polymorphism in the inflammasome regulating genes CARD8 (C10X) and NLRP3 (Q705K) were included as covariates. Results The average exposure levels of respirable dust and quartz were 0.85 and 0.052 mg/m3, respectively. A significant exposure-response was found for respirable dust and IL-18 and for inhalable dust and IL-1Ra. Whole blood, drawn from study participants, was stimulated ex vivo with inflammasome priming stimuli LPS or Pam3CSK4, resulting in a 47% and 49% increase in caspase-1 enzymatic activity in monocytes. This increase in caspase-1 activity was significantly attenuated in the higher exposure groups for most PM exposure measures. Conclusions The results indicate that exposure levels of PM in the iron foundry environment can affect the NLRP3 inflammasome and systemic inflammation.
Collapse
|
17
|
Andersson L, Bryngelsson IL, Hedbrant A, Persson A, Johansson A, Ericsson A, Lindell I, Stockfelt L, Särndahl E, Westberg H. Respiratory health and inflammatory markers - Exposure to respirable dust and quartz and chemical binders in Swedish iron foundries. PLoS One 2019; 14:e0224668. [PMID: 31675355 PMCID: PMC6824619 DOI: 10.1371/journal.pone.0224668] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/19/2019] [Indexed: 01/13/2023] Open
Abstract
Purpose To study the relationship between respirable dust, quartz and chemical binders in Swedish iron foundries and respiratory symptoms, lung function (as forced expiratory volume FEV1 and vital capacity FVC), fraction of exhaled nitric oxide (FENO) and levels of club cell secretory protein 16 (CC16) and CRP. Methods Personal sampling of respirable dust and quartz was performed for 85 subjects in three Swedish iron foundries. Full shift sampling and examination were performed on the second or third day of a working week after a work free weekend, with additional sampling on the fourth or fifth day. Logistic, linear and mixed model analyses were performed including, gender, age, smoking, infections, sampling day, body mass index (BMI) and chemical binders as covariates. Results The adjusted average respirable quartz and dust concentrations were 0.038 and 0.66 mg/m3, respectively. Statistically significant increases in levels of CC16 were associated with exposure to chemical binders (p = 0.05; p = 0.01) in the regression analysis of quartz and respirable dust, respectively. Non-significant exposure-responses were identified for cumulative quartz and the symptoms asthma and breathlessness. For cumulative chemical years, non-significant exposure–response were observed for all but two symptoms. FENO also exhibited a non significant exposure-response for both quartz and respirable dust. No exposure-response was determined for FEV1 or FVC, CRP and respirable dust and quartz. Conclusions Our findings suggest that early markers of pulmonary effect, such as increased levels of CC16 and FENO, are more strongly associated with chemical binder exposure than respirable quartz and dust in foundry environments.
Collapse
Affiliation(s)
- Lena Andersson
- Department of Occupational and Environmental Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Department of Medical Sciences, School of Medicine and Health, Örebro University, Örebro, Sweden
- * E-mail:
| | - Ing-Liss Bryngelsson
- Department of Occupational and Environmental Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Alexander Hedbrant
- Department of Medical Sciences, School of Medicine and Health, Örebro University, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
| | - Alexander Persson
- Department of Medical Sciences, School of Medicine and Health, Örebro University, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
| | - Anders Johansson
- Department of Occupational and Environmental Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Annette Ericsson
- Department of Occupational and Environmental Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Ina Lindell
- Department of Occupational and Environmental Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Leo Stockfelt
- Unit of Occupational and Environmental Medicine, Sahlgrenska Academy, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Eva Särndahl
- Department of Medical Sciences, School of Medicine and Health, Örebro University, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
| | - Håkan Westberg
- Department of Occupational and Environmental Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Department of Medical Sciences, School of Medicine and Health, Örebro University, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
| |
Collapse
|