1
|
Scheinkman R, Gwillim E, Barbota K, Tordjman L, Houk G, Latta S, Jean-Pierre P, Nouri K. The Dermatology of Recreational Scuba Diving: A Narrative Review. Int J Dermatol 2025. [PMID: 39934957 DOI: 10.1111/ijd.17677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/07/2024] [Accepted: 01/22/2025] [Indexed: 02/13/2025]
Abstract
Scuba diving is a popular watersport in the United States, with over 9 million certified divers. This activity uses specialized equipment that enables swimmers to explore deeper into the ocean for a more extended period than free diving. This popularity has led to the development of diving medicine, a multidisciplinary field that includes dermatologic management. An extensive literature review was conducted on PubMed and Google Scholar, using key search terms related to diving and dermatology to compile relevant peer-reviewed articles. This review examines the dermatological impacts of recreational and commercial diving. We explore hyperbaric oxygen therapy, its effects on the skin, and its potential benefits in wound healing. Furthermore, we present how environmental factors such as ultraviolet (UV) exposure and marine water toxins may increase skin cancer risk. We also discuss the risk of direct injury and envenomation from marine organisms and the risk of bacterial wound infections from different pathogens in marine water. We also reviewed the cutaneous manifestations of decompression sickness. As more people engage in recreational and commercial diving for extended periods, further research on potential dermatological implications is needed. Dermatologists could provide counseling on the use of sun-protective clothing and sunscreen to minimize cancer risk from UV exposure, on self-cleaning wounds to minimize infection risk from marine pathogens and identifying cutaneous infections, signs of decompression sickness, and methods of treating and preventing marine envenomation and bites.
Collapse
Affiliation(s)
- Ryan Scheinkman
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Eran Gwillim
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Kristiana Barbota
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Lea Tordjman
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Garrett Houk
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Steven Latta
- Florida International University Herbert Wertheim College of Medicine, Miami, Florida, USA
| | - Phillippe Jean-Pierre
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Keyvan Nouri
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
2
|
Balestra C, Lévêque C, Mrakic-Sposta S, Vezzoli A, Wauthy P, Germonpré P, Tillmans F, Guerrero F, Lafère P. Physiology of deep closed circuit rebreather mixed gas diving: vascular gas emboli and biological changes during a week-long liveaboard safari. Front Physiol 2024; 15:1395846. [PMID: 38660539 PMCID: PMC11040087 DOI: 10.3389/fphys.2024.1395846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction: Diving decompression theory hypothesizes inflammatory processes as a source of micronuclei which could increase related risks. Therefore, we tested 10 healthy, male divers. They performed 6-8 dives with a maximum of two dives per day at depths ranging from 21 to 122 msw with CCR mixed gas diving. Methods: Post-dive VGE were counted by echocardiography. Saliva and urine samples were taken before and after each dive to evaluate inflammation: ROS production, lipid peroxidation (8-iso-PGF2), DNA damage (8-OH-dG), cytokines (TNF-α, IL-6, and neopterin). Results: VGE exhibits a progressive reduction followed by an increase (p < 0.0001) which parallels inflammation responses. Indeed, ROS, 8-iso-PGF2, IL-6 and neopterin increases from 0.19 ± 0.02 to 1.13 ± 0.09 μmol.min-1 (p < 0.001); 199.8 ± 55.9 to 632.7 ± 73.3 ng.mg-1 creatinine (p < 0.0001); 2.35 ± 0.54 to 19.5 ± 2.96 pg.mL-1 (p < 0.001); and 93.7 ± 11.2 to 299 ± 25.9 μmol·mol-1 creatinine (p = 0.005), respectively. The variation after each dive was held constant around 158.3% ± 6.9% (p = 0.021); 151.4% ± 5.7% (p < 0.0001); 176.3% ± 11.9% (p < 0.0001); and 160.1% ± 5.6% (p < 0.001), respectively. Discussion: When oxy-inflammation reaches a certain level, it exceeds hormetic coping mechanisms allowing second-generation micronuclei substantiated by an increase of VGE after an initial continuous decrease consistent with a depletion of "first generation" pre-existing micronuclei.
Collapse
Affiliation(s)
- Costantino Balestra
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), Brussels, Belgium
- Physical Activity Teaching Unit, Motor Sciences Department, Université Libre de Bruxelles (ULB), Brussels, Belgium
- DAN Europe Research Division (Roseto-Brussels), Brussels, Belgium
| | - Clément Lévêque
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), Brussels, Belgium
| | | | - Alessandra Vezzoli
- Institute of Clinical Physiology, National Research Council (CNR), Milan, Italy
| | - Pierre Wauthy
- Department of Cardiac Surgery, CHU Brugmann, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Peter Germonpré
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), Brussels, Belgium
- DAN Europe Research Division (Roseto-Brussels), Brussels, Belgium
- Centre for Hyperbaric Oxygen Therapy, Queen Astrid Military Hospital, Brussels, Belgium
| | | | | | - Pierre Lafère
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), Brussels, Belgium
- DAN Europe Research Division (Roseto-Brussels), Brussels, Belgium
- Laboratoire ORPHY EA 4324, University Brest, Brest, France
| |
Collapse
|
3
|
Vascular Function Recovery Following Saturation Diving. Medicina (B Aires) 2022; 58:medicina58101476. [PMID: 36295636 PMCID: PMC9610043 DOI: 10.3390/medicina58101476] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/28/2022] Open
Abstract
Background and Objectives: Saturation diving is a technique used in commercial diving. Decompression sickness (DCS) was the main concern of saturation safety, but procedures have evolved over the last 50 years and DCS has become a rare event. New needs have evolved to evaluate the diving and decompression stress to improve the flexibility of the operations (minimum interval between dives, optimal oxygen levels, etc.). We monitored this stress in saturation divers during actual operations. Materials and Methods: The monitoring included the detection of vascular gas emboli (VGE) and the changes in the vascular function measured by flow mediated dilatation (FMD) after final decompression to surface. Monitoring was performed onboard a diving support vessel operating in the North Sea at typical storage depths of 120 and 136 msw. A total of 49 divers signed an informed consent form and participated to the study. Data were collected on divers at surface, before the saturation and during the 9 h following the end of the final decompression. Results: VGE were detected in three divers at very low levels (insignificant), confirming the improvements achieved on saturation decompression procedures. As expected, the FMD showed an impairment of vascular function immediately at the end of the saturation in all divers but the divers fully recovered from these vascular changes in the next 9 following hours, regardless of the initial decompression starting depth. Conclusion: These changes suggest an oxidative/inflammatory dimension to the diving/decompression stress during saturation that will require further monitoring investigations even if the vascular impairement is found to recover fast.
Collapse
|
4
|
Lambrechts K, Germonpré P, Vandenheede J, Delorme M, Lafère P, Balestra C. Mini Trampoline, a New and Promising Way of SCUBA Diving Preconditioning to Reduce Vascular Gas Emboli? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:5410. [PMID: 35564805 PMCID: PMC9105492 DOI: 10.3390/ijerph19095410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 12/31/2022]
Abstract
Background: Despite evolution in decompression algorithms, decompression illness is still an issue nowadays. Reducing vascular gas emboli (VGE) production or preserving endothelial function by other means such as diving preconditioning is of great interest. Several methods have been tried, either mechanical, cardiovascular, desaturation aimed or biochemical, with encouraging results. In this study, we tested mini trampoline (MT) as a preconditioning strategy. Methods: In total, eight (five females, three males; mean age 36 ± 16 years; body mass index 27.5 ± 7.1 kg/m2) healthy, non-smoking, divers participated. Each diver performed two standardized air dives 1 week apart with and without preconditioning, which consisted of ±2 min of MT jumping. All dives were carried out in a pool (NEMO 33, Brussels, Belgium) at a depth of 25 m for 25 min. VGE counting 30 and 60 min post-dive was recorded by echocardiography together with an assessment of endothelial function by flow-mediated dilation (FMD). Results: VGE were significantly reduced after MT (control: 3.1 ± 4.9 VGE per heartbeat vs. MT: 0.6 ± 1.1 VGE per heartbeat, p = 0.031). Post-dive FMD exhibited a significant decrease in the absence of preconditioning (92.9% ± 7.4 of pre-dive values, p = 0.03), as already described. MT preconditioning prevented this FMD decrease (103.3% ± 7.1 of pre-dive values, p = 0.30). FMD difference is significant (p = 0.03). Conclusions: In our experience, MT seems to be a very good preconditioning method to reduce VGE and endothelial changes. It may become the easiest, cheapest and more efficient preconditioning for SCUBA diving.
Collapse
Affiliation(s)
- Kate Lambrechts
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1180 Brussels, Belgium; (K.L.); (P.G.); (J.V.); (M.D.); (P.L.)
| | - Peter Germonpré
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1180 Brussels, Belgium; (K.L.); (P.G.); (J.V.); (M.D.); (P.L.)
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
- Centre for Hyperbaric Oxygen Therapy, Queen Astrid Military Hospital, 1120 Brussels, Belgium
| | - Joaquim Vandenheede
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1180 Brussels, Belgium; (K.L.); (P.G.); (J.V.); (M.D.); (P.L.)
- Motor Sciences Department, Physical Activity Teaching Unit, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Manon Delorme
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1180 Brussels, Belgium; (K.L.); (P.G.); (J.V.); (M.D.); (P.L.)
| | - Pierre Lafère
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1180 Brussels, Belgium; (K.L.); (P.G.); (J.V.); (M.D.); (P.L.)
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
- Laboratoire ORPHY, EA4324, Université de Bretagne Occidentale (UBO), 29238 Brest, France
| | - Costantino Balestra
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1180 Brussels, Belgium; (K.L.); (P.G.); (J.V.); (M.D.); (P.L.)
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
- Motor Sciences Department, Physical Activity Teaching Unit, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| |
Collapse
|
5
|
Effect of SCUBA Diving on Ophthalmic Parameters. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58030408. [PMID: 35334584 PMCID: PMC8949343 DOI: 10.3390/medicina58030408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 11/17/2022]
Abstract
Background and Objective: Several cases of central serous chorioretinopathy (CSC) in divers have been reported in our medical retina center over the past few years. This study was designed to evaluate possible changes induced by SCUBA diving in ophthalmic parameters and especially subfoveal choroidal thickness (SFCT), since the choroid seems to play a crucial role in physiopathology of CSC. Materials and Methods: Intraocular pressure (IOP), SFCT, pachymetry, flow-mediated dilation (FMD), blood pressure, and heart rate were measured in 15 healthy volunteer divers before diving, 30 and 60 min after a standard deep dive of 25 m depth for 25 min in a dedicated diving pool (NEMO 33). Results: SFCT reduces significantly to 96.63 ± 13.89% of pre-dive values (p = 0.016) 30 min after diving. It recovers after 60 min reaching control values. IOP decreases to 88.05 ± 10.04% of pre-dive value at 30 min, then increases to 91.42 ± 10.35% of its pre-dive value (both p < 0.0001). Pachymetry shows a slight variation, but is significantly increased to 101.63 ± 1.01% (p = 0.0159) of the pre-dive value, and returns to control level after 60 min. FMD pre-dive was 107 ± 6.7% (p < 0.0001), but post-dive showed a diminished increase to 103 ± 6.5% (p = 0.0132). The pre-post difference was significant (p = 0.03). Conclusion: Endothelial dysfunction leading to arterial stiffness after diving may explain the reduced SFCT observed, but SCUBA diving seems to have miscellaneous consequences on eye parameters. Despite this clear influence on SFCT, no clear relationship between CSC and SCUBA diving can be drawn.
Collapse
|
6
|
Levenez M, Lambrechts K, Mrakic-Sposta S, Vezzoli A, Germonpré P, Pique H, Virgili F, Bosco G, Lafère P, Balestra C. Full-Face Mask Use during SCUBA Diving Counters Related Oxidative Stress and Endothelial Dysfunction. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19020965. [PMID: 35055791 PMCID: PMC8776018 DOI: 10.3390/ijerph19020965] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/29/2022]
Abstract
Impaired flow mediated dilation (FMD), an index of vascular stress, is known after SCUBA diving. This is related to a dysfunction of nitric oxide (NO) availability and a disturbance of the redox status, possibly induced by hyperoxic/hyperbaric gas breathing. SCUBA diving is usually performed with a mask only covering “half face” (HF) and therefore forcing oral breathing. Nasal NO production is involved in vascular homeostasis and, as consequence, can significantly reduce NO possibly promoting vascular dysfunction. More recently, the utilization of “full-face” (FF) mask, allowing nasal breathing, became more frequent, but no reports are available describing their effects on vascular functions in comparison with HF masks. In this study we assessed and compared the effects of a standard shallow dive (20 min at 10 m) wearing either FF or a HF mask on different markers of vascular function (FMD), oxidative stress (ROS, 8-iso-PGF2α) and NO availability and metabolism (NO2, NOx and 3-NT and iNOS expression). Data from a dive breathing a hypoxic (16% O2 at depth) gas mixture with HF mask are shown allowing hyperoxic/hypoxic exposure. Our data suggest that nasal breathing might significantly reduce the occurrence of vascular dysfunction possibly due to better maintenance of NO production and bioavailability, resulting in a better ability to counter reactive oxygen and nitrogen species. Besides the obvious outcomes in terms of SCUBA diving safety, our data permit a better understanding of the effects of oxygen concentrations, either in normal conditions or as a strategy to induce selected responses in health and disease.
Collapse
Affiliation(s)
- Morgan Levenez
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1180 Brussels, Belgium; (M.L.); (K.L.); (P.G.); (H.P.); (P.L.)
| | - Kate Lambrechts
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1180 Brussels, Belgium; (M.L.); (K.L.); (P.G.); (H.P.); (P.L.)
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology, National Research Council (IFC-CNR), Piazza dell’Ospedale Maggiore, 20162 Milano, Italy; (S.M.-S.); (A.V.)
| | - Alessandra Vezzoli
- Institute of Clinical Physiology, National Research Council (IFC-CNR), Piazza dell’Ospedale Maggiore, 20162 Milano, Italy; (S.M.-S.); (A.V.)
| | - Peter Germonpré
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1180 Brussels, Belgium; (M.L.); (K.L.); (P.G.); (H.P.); (P.L.)
- Hyperbaric Centre, Queen Astrid Military Hospital, 1120 Brussels, Belgium
- DAN Europe Research Division, Contrada Padune, 64026 Roseto, Italy
| | - Hadrien Pique
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1180 Brussels, Belgium; (M.L.); (K.L.); (P.G.); (H.P.); (P.L.)
| | - Fabio Virgili
- Council for Agricultural Research and Economics—Food and Nutrition Research Centre (CREA-AN), Via Ardeatina 548, 00187 Rome, Italy
- Correspondence: (F.V.); (C.B.)
| | - Gerardo Bosco
- Environmental Physiology & Medicine Laboratory, Department of Biomedical Sciences, University of Padova, 35122 Padova, Italy;
| | - Pierre Lafère
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1180 Brussels, Belgium; (M.L.); (K.L.); (P.G.); (H.P.); (P.L.)
- DAN Europe Research Division, Contrada Padune, 64026 Roseto, Italy
| | - Costantino Balestra
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1180 Brussels, Belgium; (M.L.); (K.L.); (P.G.); (H.P.); (P.L.)
- DAN Europe Research Division, Contrada Padune, 64026 Roseto, Italy
- Physical Activity Teaching Unit, Motor Sciences Department, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
- Correspondence: (F.V.); (C.B.)
| |
Collapse
|
7
|
Berenji Ardestani S, Matchkov VV, Hansen K, Jespersen NR, Pedersen M, Eftedal I. Extensive Simulated Diving Aggravates Endothelial Dysfunction in Male Pro-atherosclerotic ApoE Knockout Rats. Front Physiol 2021; 11:611208. [PMID: 33424633 PMCID: PMC7786538 DOI: 10.3389/fphys.2020.611208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/04/2020] [Indexed: 11/13/2022] Open
Abstract
Introduction The average age of the diving population is rising, and the risk of atherosclerosis and cardiovascular disease in divers are accordingly increasing. It is an open question whether this risk is altered by diving per se. In this study, we examined the effect of 7-weeks simulated diving on endothelial function and mitochondrial respiration in atherosclerosis-prone rats. Methods Twenty-four male ApoE knockout (KO) rats (9-weeks-old) were fed a Western diet for 8 weeks before 12 rats were exposed to simulated heliox dry-diving in a pressure chamber (600 kPa for 60 min, decompression of 50 kPa/min). The rats were dived twice-weekly for 7 weeks, resulting in a total of 14 dives. The remaining 12 non-diving rats served as controls. Endothelial function of the pulmonary and mesenteric arteries was examined in vitro using an isometric myograph. Mitochondrial respiration in cardiac muscle tissues was measured using high-resolution respirometry. Results and Conclusion Both ApoE KO diving and non-diving rats showed changes in endothelial function at the end of the intervention, but the extent of these changes was larger in the diving group. Altered nitric oxide signaling was primarily involved in these changes. Mitochondrial respiration was unaltered. In this pro-atherosclerotic rat model of cardiovascular changes, extensive diving appeared to aggravate endothelial dysfunction rather than promote adaptation to oxidative stress.
Collapse
Affiliation(s)
- Simin Berenji Ardestani
- MEMBRANES, Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark.,Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Vladimir V Matchkov
- MEMBRANES, Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Kasper Hansen
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Forensic Medicine, Aarhus University, Aarhus, Denmark.,Section for Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | | | - Michael Pedersen
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Ingrid Eftedal
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway.,Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
| |
Collapse
|
8
|
Guerrero F, Lambrechts K, Wang Q, Mazur A, Théron M, Marroni A. Endothelial function may be enhanced in the cutaneous microcirculation after a single air dive. Diving Hyperb Med 2020; 50:214-219. [PMID: 32957122 DOI: 10.28920/dhm50.3.214-219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/17/2020] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The effects of scuba diving on the vessel wall have been studied mainly at the level of large conduit arteries. Data regarding the microcirculation are scarce and indicate that these two vascular beds are affected differently by diving. METHODS We assessed the changes in cutaneous microcirculation before an air scuba dive, then 30 min and 24 h after surfacing. Endothelium-dependent and independent vasomotion were successively elicited by iontophoretic administration of acetylcholine and sodium nitroprusside respectively, and cutaneous blood flux was monitored by laser Doppler flowmetry. RESULTS The response to sodium nitroprusside was significantly lower 30 min after surfacing than before diving (50 (SEM 6)% of the pre-dive values, P = 0.0003) and returned to normal values 24 h post-dive (102 (29)% of the pre-dive values, P = 0.113). When compared to pre-dive values, acetylcholine elicited a hyperaemia which was not statistically different 30 min after surfacing (123 (17)% of the pre-dive values, P = 0.230), but significantly increased 24 h post-dive (148 (10)% of the pre-dive values, P = 0.005). CONCLUSION Microvascular smooth muscle function is transiently impaired after diving. On the contrary, microvascular endothelial function is enhanced for up to 24 h after diving. This further suggests that the microcirculation reacts differently than large conduit arteries to scuba diving. The impact of modifications occurring in the microvascular bed on the physiological effects of diving merits further study.
Collapse
Affiliation(s)
- François Guerrero
- Univ Brest, ORPHY EA4324, IBSAM, 6 avenue Le Gorgeu, 29200 Brest, France.,Corresponding author: François Guerrero, EA4324 ORPHY, 6 Av. Le Gorgeu CS 93837, 29238 BREST Cedex 3, France,
| | - Kate Lambrechts
- Univ Brest, ORPHY EA4324, IBSAM, 6 avenue Le Gorgeu, 29200 Brest, France
| | - Qiong Wang
- Univ Brest, ORPHY EA4324, IBSAM, 6 avenue Le Gorgeu, 29200 Brest, France
| | - Aleksandra Mazur
- Univ Brest, ORPHY EA4324, IBSAM, 6 avenue Le Gorgeu, 29200 Brest, France
| | - Michael Théron
- Univ Brest, ORPHY EA4324, IBSAM, 6 avenue Le Gorgeu, 29200 Brest, France
| | | |
Collapse
|
9
|
Caldwell HG, Hoiland RL, Barak OF, Mijacika T, Burma JS, Dujić Ž, Ainslie PN. Alterations in resting cerebrovascular regulation do not affect reactivity to hypoxia, hyperoxia or neurovascular coupling following a SCUBA dive. Exp Physiol 2020; 105:1540-1549. [PMID: 32618374 DOI: 10.1113/ep088746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022]
Abstract
NEW FINDINGS What is the central question of this study? What are the characteristics of cerebral blood flow (CBF) regulation following a single SCUBA dive to a depth of 18 m sea water with a 47 min bottom time. What is the main finding and its importance? Acute alterations in CBF regulation at rest, including extra-cranial vasodilatation, reductions in shear patterns and elevations in intra-cranial blood velocity were observed at rest following a single SCUBA dive. These subtle changes in CBF regulation did not translate into any functional changes in cerebrovascular reactivity to hypoxia or hyperoxia, or neurovascular coupling following a single SCUBA dive. ABSTRACT Reductions in vascular function during a SCUBA dive - due to hyperoxia-induced oxidative stress, arterial and venous gas emboli and altered endothelial integrity - may also extend to the cerebrovasculature following return to the surface. This study aimed to characterize cerebral blood flow (CBF) regulation following a single SCUBA dive to a depth of 18 m sea water with a 47 min bottom time. Prior to and following the dive, participants (n = 11) completed (1) resting CBF in the internal carotid (ICA) and vertebral (VA) arteries (duplex ultrasound) and intra-cranial blood velocity (v) of the middle and posterior cerebral arteries (MCAv and PCAv, respectively) (transcranial Doppler ultrasound); (2) cerebrovascular reactivity to acute poikilocapnic hypoxia (i.e. F I O 2 , 0.10) and hyperoxia (i.e. F I O 2 , 1.0); and (3) neurovascular coupling (NVC; regional CBF response to local increases in cerebral metabolism). Global CBF, cerebrovascular reactivity to hypoxia and hyperoxia, and NVC were unaltered following a SCUBA dive (all P > 0.05); however, there were subtle changes in other cerebrovascular metrics post-dive, including reductions in ICA (-13 ± 8%, P = 0.003) and VA (-11 ± 14%, P = 0.021) shear rate, lower ICAv (-10 ± 9%, P = 0.008) and VAv (-9 ± 14%, P = 0.028), increases in ICA diameter (+4 ± 5%, P = 0.017) and elevations in PCAv (+10 ± 19%, P = 0.047). Although we observed subtle alterations in CBF regulation at rest, these changes did not translate into any functional changes in cerebrovascular reactivity to hypoxia or hyperoxia, or NVC. Whether prolonged exposure to hyperoxia and hyperbaria during longer, deeper, colder and/or repetitive SCUBA dives would provoke changes to the cerebrovasculature requires further investigation.
Collapse
Affiliation(s)
- Hannah G Caldwell
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Okanagan, Kelowna, Canada
| | - Ryan L Hoiland
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Okanagan, Kelowna, Canada
| | - Otto F Barak
- Department of Physiology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia.,Faculty of Sports and Physical Education, University of Novi Sad, Novi Sad, Serbia
| | - Tanja Mijacika
- Department of Integrative Physiology, University of Split School of Medicine, Split, Croatia
| | - Joel S Burma
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - Željko Dujić
- Department of Integrative Physiology, University of Split School of Medicine, Split, Croatia
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Okanagan, Kelowna, Canada
| |
Collapse
|
10
|
Boussuges A, Rives S, Marlinge M, Chaumet G, Vallée N, Guieu R, Gavarry O. Hyperoxia During Exercise: Impact on Adenosine Plasma Levels and Hemodynamic Data. Front Physiol 2020; 11:97. [PMID: 32116800 PMCID: PMC7026462 DOI: 10.3389/fphys.2020.00097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/27/2020] [Indexed: 11/26/2022] Open
Abstract
Introduction Adenosine is an ATP derivative that is strongly implicated in the cardiovascular adaptive response to exercise. In this study, we hypothesized that during exercise the hyperemia, commonly observed during exercise in air, was counteracted by the downregulation of the adenosinergic pathway during hyperoxic exposure. Methods Ten healthy volunteers performed two randomized sessions including gas exposure (Medical air or Oxygen) at rest and during exercise performed at 40% of maximal intensity, according to the individual fitness of the volunteers. Investigations included the measurement of adenosine plasma level (APL) and the recording of hemodynamic data [i.e., cardiac output (CO) and systemic vascular resistances (SVR) using pulsed Doppler and echocardiography]. Results Hyperoxia significantly decreased APL (from 0.58 ± 0.06 to 0.21 ± 0.05 μmol L–1, p < 0.001) heart rate and CO and increased SVR in healthy volunteers at rest. During exercise, an increase in APL was recorded in the two sessions when compared with measurements at rest (+0.4 ± 0.4 vs. +0.3 ± 0.2 μmol L–1 for medical air and oxygen exposures, respectively). APL was lower during the exercise performed under hyperoxia when compared with medical air exposure (0.5 ± 0.06 vs. 1.03 ± 0.2 μmol L–1, respectively p < 0.001). This result could contribute to the hemodynamic differences between the two conditions, such as the increase in SVR and the decrease in both heart rate and CO when exercises were performed during oxygen exposure as compared to medical air. Conclusion Hyperoxia decreased APLs in healthy volunteers at rest but did not eliminate the increase in APL and the decrease in SVR during low intensity exercise.
Collapse
Affiliation(s)
- Alain Boussuges
- ERRSO, Institut de Recherche Biomédicale des Armées (IRBA), Toulon, France.,Center for Cardiovascular and Nutrition Research (C2VN), Aix-Marseille Université, INSERM, INRA, Marseille, France
| | - Sarah Rives
- ERRSO, Institut de Recherche Biomédicale des Armées (IRBA), Toulon, France.,Center for Cardiovascular and Nutrition Research (C2VN), Aix-Marseille Université, INSERM, INRA, Marseille, France
| | - Marion Marlinge
- Center for Cardiovascular and Nutrition Research (C2VN), Aix-Marseille Université, INSERM, INRA, Marseille, France
| | | | - Nicolas Vallée
- ERRSO, Institut de Recherche Biomédicale des Armées (IRBA), Toulon, France
| | - Régis Guieu
- Center for Cardiovascular and Nutrition Research (C2VN), Aix-Marseille Université, INSERM, INRA, Marseille, France
| | - Olivier Gavarry
- Laboratoire Impact de l'Activité Physique sur la Santé, UFR STAPS, Université de Toulon, La Garde, France
| |
Collapse
|
11
|
Wang Q, Guerrero F, Lambrechts K, Mazur A, Buzzacott P, Belhomme M, Theron M. Simulated air dives induce superoxide, nitric oxide, peroxynitrite, and Ca 2+ alterations in endothelial cells. J Physiol Biochem 2019; 76:61-72. [PMID: 31802431 DOI: 10.1007/s13105-019-00715-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 11/08/2019] [Indexed: 01/27/2023]
Abstract
Human diving is known to induce endothelial dysfunction. The aim of this study was to decipher the mechanism of ROS production during diving through the measure of mitochondrial calcium concentration, peroxynitrite, NO°, and superoxide towards better understanding of dive-induced endothelial dysfunction. Air diving simulation using bovine arterial endothelial cells (compression rate 101 kPa/min to 808 kPa, time at depth 45 min) was performed in a system allowing real-time fluorescent measurement. During compression, the cells showed increased mitochondrial superoxide, peroxynitrite, and mitochondrial calcium, and decreased NO° concentration. MnTBAP (peroxynitrite scavenger) suppressed superoxide, recovered NO° production and promoted stronger calcium influx. Superoxide and peroxynitrite were inhibited by L-NIO (eNOS inhibitor), but were further increased by spermine-NONOate (NO° donor). L-NIO induced stronger calcium influx than spermine-NONOate or simple diving. The superoxide and peroxynitrite were also inhibited by ruthenium red (blocker of mitochondrial Ca2+ uniporter), but were increased by CGP (an inhibitor of mitochondrial Na+-Ca2+ exchange). Reactive oxygen and nitrogen species changes are associated, together with calcium mitochondrial storage, with endothelial cell dysfunction during simulated diving. Peroxynitrite is involved in NO° loss, possibly through the attenuation of eNOS and by increasing superoxide which combines with NO° and forms more peroxynitrite. In the field of diving physiology, this study is the first to unveil a part of the cellular mechanisms of ROS production during diving and confirms that diving-induced loss of NO° is linked to superoxide and peroxynitrite.
Collapse
Affiliation(s)
- Qiong Wang
- Laboratory ORPHY, European University of Bretagne, University of Brest, 6 Avenue Le Gorgeu, 29238, Brest, France
| | - François Guerrero
- Laboratory ORPHY, European University of Bretagne, University of Brest, 6 Avenue Le Gorgeu, 29238, Brest, France
| | - Kate Lambrechts
- Laboratory ORPHY, European University of Bretagne, University of Brest, 6 Avenue Le Gorgeu, 29238, Brest, France
| | - Aleksandra Mazur
- Laboratory ORPHY, European University of Bretagne, University of Brest, 6 Avenue Le Gorgeu, 29238, Brest, France
| | - Peter Buzzacott
- Laboratory ORPHY, European University of Bretagne, University of Brest, 6 Avenue Le Gorgeu, 29238, Brest, France
| | - Marc Belhomme
- Laboratory ORPHY, European University of Bretagne, University of Brest, 6 Avenue Le Gorgeu, 29238, Brest, France
| | - Michaël Theron
- Laboratory ORPHY, European University of Bretagne, University of Brest, 6 Avenue Le Gorgeu, 29238, Brest, France.
| |
Collapse
|
12
|
Berenji Ardestani S, Matchkov VV, Eftedal I, Pedersen M. A Single Simulated Heliox Dive Modifies Endothelial Function in the Vascular Wall of ApoE Knockout Male Rats More Than Females. Front Physiol 2019; 10:1342. [PMID: 31695628 PMCID: PMC6817487 DOI: 10.3389/fphys.2019.01342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/09/2019] [Indexed: 12/19/2022] Open
Abstract
Introduction The number of divers is rising every year, including an increasing number of aging persons with impaired endothelial function and concomitant atherosclerosis. While diving is an independent modulator of endothelial function, little is known about how diving affects already impaired endothelium. In this study, we questioned whether diving exposure leads to further damage of an already impaired endothelium. Methods A total of 5 male and 5 female ApoE knockout (KO) rats were exposed to simulated diving to an absolute pressure of 600 kPa in heliox gas (80% helium, 20% oxygen) for 1 h in a dry pressure chamber. 10 ApoE KO rats (5 males, 5 females) and 8 male Sprague-Dawley rats served as controls. Endothelial function was examined in vitro by isometric myography of pulmonary and mesenteric arteries. Lipid peroxidation in blood plasma, heart and lung tissue was used as measures of oxidative stress. Expression and phosphorylation of endothelial NO synthase were quantified by Western blot. Results and Conclusion A single simulated dive was found to induce endothelial dysfunction in the pulmonary arteries of ApoE KO rats, and this was more profound in male than female rats. Endothelial dysfunction in males was associated with changing in production or bioavailability of NO; while in female pulmonary arteries an imbalance in prostanoid signaling was observed. No effect of diving was found on mesenteric arteries from rats of either sex. Our findings suggest that changes in endothelial dysfunction were specific for pulmonary circulation. In future, human translation of these findings may suggest caution for divers who are elderly or have prior reduced endothelial function.
Collapse
Affiliation(s)
- Simin Berenji Ardestani
- Department of Clinical Medicine, Comparative Medicine Lab, Aarhus University, Aarhus, Denmark.,Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU: Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Ingrid Eftedal
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU: Norwegian University of Science and Technology, Trondheim, Norway.,Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
| | - Michael Pedersen
- Department of Clinical Medicine, Comparative Medicine Lab, Aarhus University, Aarhus, Denmark
| |
Collapse
|
13
|
Barak OF, Caljkusic K, Hoiland RL, Ainslie PN, Thom SR, Yang M, Jovanov P, Dujic Z. Differential influence of vitamin C on the peripheral and cerebral circulation after diving and exposure to hyperoxia. Am J Physiol Regul Integr Comp Physiol 2018; 315:R759-R767. [PMID: 29995458 DOI: 10.1152/ajpregu.00412.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We examined if the diving-induced vascular changes in the peripheral and cerebral circulation could be prevented by oral antioxidant supplementation. Fourteen divers performed a single scuba dive to eighteen meter sea water for 47 min. Twelve of the divers participated in a follow-up study involving breathing 60% of oxygen at ambient pressure for 47 min. Before both studies, participants ingested vitamin C (2 g/day) or a placebo capsule for 6 days. After a 2-wk washout, the study was repeated with the different condition. Endothelium-dependent vasodilator function of the brachial artery was assessed pre- and postintervention using the flow-mediated dilation (FMD) technique. Transcranial Doppler ultrasound was used to measure intracranial blood velocities pre- and 90 min postintervention. FMD was reduced by ∼32.8% and ∼21.2% postdive in the placebo and vitamin C trial and posthyperoxic condition in the placebo trial by ∼28.2% ( P < 0.05). This reduction in FMD was attenuated by ∼10% following vitamin C supplementation in the hyperoxic study ( P > 0.05). Elevations in intracranial blood velocities 30 min after surfacing from diving were reduced in the vitamin C study compared with the placebo trial ( P < 0.05). O2 breathing had no postintervention effects on intracranial velocities ( P > 0.05). Prophylactic ingestion of vitamin C effectively abrogated peripheral vascular dysfunction following exposure to 60% O2 but did not abolish the postdive decrease in FMD. Transient elevations of intracranial velocities postdive were reduced by vitamin C. These findings highlight the differential influence of vitamin C on peripheral and cerebral circulations following scuba diving, which are only partly mediated via hyperoxia.
Collapse
Affiliation(s)
- Otto F Barak
- Department of Physiology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia.,Faculty of Sports and Physical Education, University of Novi Sad, Novi Sad, Serbia
| | - Kresimir Caljkusic
- Department of Neurology, University Hospital Centre Split , Split , Croatia
| | - Ryan L Hoiland
- Centre for Heart, Lung, and Vascular Health, University of British Columbia, Okanagan Campus, Kelowna, BC , Canada
| | - Philip N Ainslie
- Centre for Heart, Lung, and Vascular Health, University of British Columbia, Okanagan Campus, Kelowna, BC , Canada
| | - Stephen R Thom
- Department of Emergency Medicine, University of Maryland School of Medicine , Baltimore, Maryland
| | - Ming Yang
- Department of Emergency Medicine, University of Maryland School of Medicine , Baltimore, Maryland
| | - Pavle Jovanov
- Institute of Food Technology in Novi Sad, University of Novi Sad, Novi Sad, Serbia
| | - Zeljko Dujic
- Department of Integrative Physiology, University of Split School of Medicine , Split , Croatia
| |
Collapse
|
14
|
Variability in circulating gas emboli after a same scuba diving exposure. Eur J Appl Physiol 2018; 118:1255-1264. [DOI: 10.1007/s00421-018-3854-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 03/22/2018] [Indexed: 10/17/2022]
|
15
|
Mazur A, Guernec A, Lautridou J, Dupas J, Dugrenot E, Belhomme M, Theron M, Guerrero F. Angiotensin Converting Enzyme Inhibitor Has a Protective Effect on Decompression Sickness in Rats. Front Physiol 2018; 9:64. [PMID: 29545754 PMCID: PMC5838564 DOI: 10.3389/fphys.2018.00064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 01/18/2018] [Indexed: 01/31/2023] Open
Abstract
Introduction: Commercial divers, high altitude pilots, and astronauts are exposed to some inherent risk of decompression sickness (DCS), though the mechanisms that trigger are still unclear. It has been previously showed that diving may induce increased levels of serum angiotensin converting enzyme. The renin angiotensin aldosterone system (RAAS) is one of the most important regulators of blood pressure and fluid volume. The purpose of the present study was to control the influence of angiotensin II on the appearance of DCS. Methods: Sprague Dawley rats have been pre-treated with inhibitor of angiotensin II receptor type 1 (losartan; 10 mg/kg), angiotensin-converting enzyme (ACE) inhibitor (enalapril; 10 mg/kg), and calcium-entry blocker (nifedipine; 20 mg/kg). The experimental groups were treated for 4 weeks before exposure to hyperbaric pressure while controls were not treated. Seventy-five rats were subjected to a simulated dive at 1000 kPa absolute pressure for 45 min before starting decompression. Clinical assessment took place over a period of 60 min after surfacing. Blood samples were collected for measurements of TBARS, interleukin 6 (IL-6), angiotensin II (ANG II) and ACE. Results: The diving protocol induced 60% DCS in non-treated animals. This ratio was significantly decreased after treatment with enalapril, but not other vasoactive drugs. Enalapril did not change ANG II or ACE concentration, while losartant decreased post dive level of ACE but not ANG II. None of the treatment modified the effect of diving on TBARS and IL-6 values. Conclusion: Results suggests that the rennin angiotensin system is involved in a process of triggering DCS but this has to be further investigated. However, a vasorelaxation mediated process, which potentially could increase the load of inert gas during hyperbaric exposure, and antioxidant properties were excluded by our results.
Collapse
Affiliation(s)
- Aleksandra Mazur
- EA4324 ORPHY, Institut Brestois Santé Agro Matière, Université de Bretagne Occidentale, Brest, France
| | - Anthony Guernec
- EA4324 ORPHY, Institut Brestois Santé Agro Matière, Université de Bretagne Occidentale, Brest, France
| | - Jacky Lautridou
- EA4324 ORPHY, Institut Brestois Santé Agro Matière, Université de Bretagne Occidentale, Brest, France
| | - Julie Dupas
- EA4324 ORPHY, Institut Brestois Santé Agro Matière, Université de Bretagne Occidentale, Brest, France
| | - Emmanuel Dugrenot
- EA4324 ORPHY, Institut Brestois Santé Agro Matière, Université de Bretagne Occidentale, Brest, France
| | - Marc Belhomme
- EA4324 ORPHY, Institut Brestois Santé Agro Matière, Université de Bretagne Occidentale, Brest, France
| | - Michael Theron
- EA4324 ORPHY, Institut Brestois Santé Agro Matière, Université de Bretagne Occidentale, Brest, France
| | - François Guerrero
- EA4324 ORPHY, Institut Brestois Santé Agro Matière, Université de Bretagne Occidentale, Brest, France
| |
Collapse
|
16
|
Perovic A, Nikolac N, Braticevic MN, Milcic A, Sobocanec S, Balog T, Dabelic S, Dumic J. Does recreational scuba diving have clinically significant effect on routine haematological parameters? Biochem Med (Zagreb) 2017; 27:325-331. [PMID: 28694723 PMCID: PMC5493166 DOI: 10.11613/bm.2017.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 03/20/2017] [Indexed: 01/16/2023] Open
Abstract
Introduction Scuba diving represents a combination of exercise and changes in environmental conditions. This study aimed to evaluate changes in haematological parameters after recreational scuba diving in order to identify clinically significant changes. Materials and methods The study included males, 17 recreational divers, median age (range) 41 (30-52) years. Blood samples were taken before diving, immediately after diving to 30 meters for 30 minutes, 3 hours and 6 hours after diving. Complete blood counts were analyzed on the Cell Dyn Ruby haematology analyzer. Statistical significance between successive measurements was tested using Friedman test. The difference between the two measurements was judged against desirable bias (DSB) derived from biological variation and calculated reference change values (RCV). The difference higher than RCV was considered clinically significant. Results A statistically significant increase and difference judging against DSB was observed: for neutrophils immediately, 3 and 6 hours after diving (18%, 34% and 36%, respectively), for white blood cells (WBCs) 3 and 6 hours after diving (20% and 25%, respectively), for lymphocytes (20%) and monocytes (23%) 6 hours after diving. A statistically significant decrease and difference judging against DSB was found: immediately after diving for monocytes (- 15%), 3 and 6 hours after diving for red blood cells (RBCs) (- 2.6% and -2.9%, respectively), haemoglobin (- 2.1% and - 2.8%, respectively) and haematocrit (- 2.4% and - 3.2%, respectively). A clinically significant change was not found for any of the test parameters when compared to RCV. Conclusions Observed statistically significant changes after recreational scuba diving; WBCs, neutrophils, lymphocytes, monocytes increase and RBCs, haemoglobin, haematocrit decrease, probably will not affect clinical decision.
Collapse
Affiliation(s)
- Antonija Perovic
- Department of Laboratory Diagnostics, Dubrovnik General Hospital, Dubrovnik, Croatia
| | - Nora Nikolac
- University Department of Chemistry, Medical School University Hospital Sestre milosrdnice, Zagreb, Croatia
| | | | - Ana Milcic
- Department of Laboratory Diagnostics, Dubrovnik General Hospital, Dubrovnik, Croatia
| | - Sandra Sobocanec
- Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Tihomir Balog
- Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Sanja Dabelic
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Department of Biochemistry and Molecular Biology, Zagreb, Croatia
| | - Jerka Dumic
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Department of Biochemistry and Molecular Biology, Zagreb, Croatia
| |
Collapse
|
17
|
Simmons EE, Bergeron ER, Florian JP. The impact of repetitive long-duration water immersion on vascular function. PLoS One 2017; 12:e0181673. [PMID: 28750006 PMCID: PMC5531465 DOI: 10.1371/journal.pone.0181673] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 07/04/2017] [Indexed: 01/11/2023] Open
Abstract
While physiological responses to water immersion (WI) are well-studied, the vascular responses after WI are less understood. Fifteen male subjects performed six-hour resting thermoneutral water immersions (WI) at 1.35 atmospheres absolute for four consecutive days, with follow-up on the fifth day. Measurements included peripheral endothelial function and augmentation index (PAT, peripheral arterial tonometry), beat-to-beat blood pressure (BP, photoplethysmography), heart rate (HR), and plasma volume (PV) calculated from changes in hemoglobin and hematocrit. The reactive hyperemia index (RHI), a marker of peripheral endothelial function, increased with repeated immersions (p = 0.008). By WI2 and WI3, RHI increased 12% and 16%, respectively, compared to WI1 values, but no significant differences were detected between WI4 and WI1 for either measure. Absolute augmentation index (AI) increased by an average of 33% (p<0.001) and AI normalized for HR (AI@75) by 11% (p = 0.12) following each WI. PV decreased significantly by 13.2% following WI and remained 6.8% lower at follow-up compared to pre-WI. Systolic blood pressure significantly decreased by an average of 2.5% following each WI (p = 0.012). Compared to pre-WI HR, average post-WI HR decreased 4.3% lower (p<0.001), but increased overall by 8.2% over the course of repeated WI (p<0.001). Total peripheral resistance increased by an average of 13.1% following WI (p = 0.003). Thus, peripheral endothelial function increases after two days of WI, and PAT-derived measures of arterial stiffness increase transiently post-WI. Additionally, BP and PAT-derived endothelial function diverge from their usual associations with arterial stiffness (i.e. augmentation index) in the context of WI.
Collapse
Affiliation(s)
- Erin E. Simmons
- Navy Experimental Diving Unit, Panama City, Florida, United States of America
| | | | - John P. Florian
- Navy Experimental Diving Unit, Panama City, Florida, United States of America
- * E-mail:
| |
Collapse
|
18
|
Venous gas emboli are involved in post-dive macro, but not microvascular dysfunction. Eur J Appl Physiol 2017; 117:335-344. [DOI: 10.1007/s00421-017-3537-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 01/03/2017] [Indexed: 10/20/2022]
|
19
|
Endothelial dysfunction correlates with decompression bubbles in rats. Sci Rep 2016; 6:33390. [PMID: 27615160 PMCID: PMC5018851 DOI: 10.1038/srep33390] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/26/2016] [Indexed: 11/25/2022] Open
Abstract
Previous studies have documented that decompression led to endothelial dysfunction with controversial results. This study aimed to clarify the relationship between endothelial dysfunction, bubble formation and decompression rate. Rats were subjected to simulated air dives with one of four decompression rates: one slow and three rapid. Bubble formation was detected ultrasonically following decompression for two hours, before measurement of endothelial related indices. Bubbles were found in only rapid-decompressed rats and the amount correlated with decompression rate with significant variability. Serum levels of ET-1, 6-keto-PGF1α, ICAM-1, VCAM-1 and MDA, lung Wet/Dry weight ratio and histological score increased, serum NO decreased following rapid decompression. Endothelial-dependent vasodilatation to Ach was reduced in pulmonary artery rings among rapid-decompressed rats. Near all the above changes correlated significantly with bubble amounts. The results suggest that bubbles may be the causative agent of decompression–induced endothelial damage and bubble amount is of clinical significance in assessing decompression stress. Furthermore, serum levels of ET-1 and MDA may serve as sensitive biomarkers with the capacity to indicate endothelial dysfunction and decompression stress following dives.
Collapse
|
20
|
Could some aviation deep vein thrombosis be a form of decompression sickness? J Thromb Thrombolysis 2016; 42:346-51. [PMID: 27106903 DOI: 10.1007/s11239-016-1368-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Aviation deep vein thrombosis is a challenge poorly understood in modern aviation. The aim of the present project was to determine if cabin decompression might favor formation of vascular bubbles in commercial air travelers. Thirty commercial flights were taken. Cabin pressure was noted at take-off and at every minute following, until the pressure stabilized. These time-pressure profiles were imported into the statistics program R and analyzed using the package SCUBA. Greatest pressure differentials between tissues and cabin pressures were estimated for 20, 40, 60, 80 and 120 min half-time compartments. Time to decompress ranged from 11 to 47 min. The greatest drop in cabin pressure was from 1022 to 776 mBar, equivalent to a saturated diver ascending from 2.46 msw depth. Mean pressure drop in flights >2 h duration was 193 mBar, while mean pressure drop in flights <2 h was 165 mBar. The greatest drop in pressure over 1 min was 28 mBar. Over 30 commercial flights it was found that the drop in cabin pressure was commensurate with that found to cause bubbles in man. Both the US Navy and the Royal Navy mandate far slower decompression from states of saturation, being 1.7 and 1.9 mBar/min respectively. The median overall rate of decompression found in this study was 8.5 mBar/min, five times the rate prescribed for USN saturation divers. The tissues associated with hypobaric bubble formation are likely slower than those associated with bounce diving, with 60 min a potentially useful index.
Collapse
|
21
|
Wang Q, Guerrero F, Mazur A, Lambrechts K, Buzzacott P, Belhomme M, Theron M. Reactive Oxygen Species, Mitochondria, and Endothelial Cell Death during In Vitro Simulated Dives. Med Sci Sports Exerc 2016; 47:1362-71. [PMID: 25380471 DOI: 10.1249/mss.0000000000000563] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
PURPOSE Excessive reactive oxygen species (ROS) is considered a consequence of hyperoxia and a major contributor to diving-derived vascular endothelial damage and decompression sickness. The aims of this work were: 1) to directly observe endothelial ROS production during simulated air dives as well as its relation with both mitochondrial activity and cell survival; and 2) to determine which ambient factor during air diving (hydrostatic pressure or oxygen and/or nitrogen partial pressure) is responsible for the observed modifications. METHODS In vitro diving simulation was performed with bovine arterial endothelial cells under real-time observation. The effects of air diving, hydrostatic, oxygen and nitrogen pressures, and N-acetylcysteine (NAC) treatment on mitochondrial ROS generation, mitochondrial membrane potential and cellular survival during simulation were investigated. RESULTS Vascular endothelial cells performing air diving simulation suffered excessive mitochondrial ROS, mitochondrial depolarization, and cell death. These effects were prevented by NAC: after NAC treatment, the cells presented no difference in damage from nondiving cells. Oxygen diving showed a higher effect on ROS generation but lower impacts on mitochondrial depolarization and cell death than hydrostatic or nitrogen diving. Nitrogen diving had no effect on the inductions of ROS, mito-depolarization, or cell death. CONCLUSION This study is the first direct observation of mitochondrial ROS production, mitochondrial membrane potential and cell survival during diving. Simulated air SCUBA diving induces excessive ROS production, which leads to mitochondrial depolarization and endothelial cell death. Oxygen partial pressure plays a crucial role in the production of ROS. Deleterious effects of hyperoxia-induced ROS are potentiated by hydrostatic pressure. These findings hold new implications for the pathogenesis of diving-derived endothelial dysfunction.
Collapse
Affiliation(s)
- Qiong Wang
- Laboratory ORPHY, Department of UFR Sciences and Technologies, European University of Bretagne, University of Brest, Brest, FRANCE
| | | | | | | | | | | | | |
Collapse
|
22
|
Mazur A, Lambrechts K, Wang Q, Belhomme M, Theron M, Buzzacott P, Guerrero F. Influence of decompression sickness on vasocontraction of isolated rat vessels. J Appl Physiol (1985) 2016; 120:784-91. [PMID: 26769950 DOI: 10.1152/japplphysiol.00139.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 01/12/2016] [Indexed: 01/03/2023] Open
Abstract
Studies conducted in divers indicate that endothelium function is impaired following a dive even without decompression sickness (DCS). Our previous experiment conducted on rat isolated vessels showed no differences in endothelium-dependent vasodilation after a simulated dive even in the presence of DCS, while contractile response to phenylephrine was progressively impaired with increased decompression stress. This study aimed to further investigate the effect of DCS on vascular smooth muscle. Thirty-two male Sprague-Dawley rats were submitted to the same hyperbaric protocol and classified according to the severity of DCS: no-DCS (without clinical symptoms), mild-DCS, or severe-DCS (dead within 1 h). A control group remained at atmospheric pressure. Isometric tension was measured in rings of abdominal aorta and mesenteric arteries. Single dose contraction was assessed with KCl solution. Dose-response curves were obtained with phenylephrine and endothelin-1. Phenylephrine-induced contraction was observed in the presence of antioxidant tempol. Additionally, plasma concentrations of angiotensin II, angiotensin-converting enzyme, and thiobarbituric acid reactive substances (TBARS) were assessed. Response to phenylephrine was impaired only among mild-DCS in both vessels. Dose-response curves to endothelin-1 were impaired after mild-DCS in mesenteric and severe-DCS in aorta. KCl-induced contraction was affected after hyperbaric exposure regardless of DCS status in aorta only. These results confirm postdive vascular dysfunction is dependent on the type of vessel. It further evidenced that vascular dysfunction is triggered by DCS rather than by diving itself and suggest the influence of circulating factor/s. Diving-induced impairment of the L-type voltage-dependent Ca(2+) channels and/or influence of renin-angiotensin system is proposed.
Collapse
Affiliation(s)
- Aleksandra Mazur
- EA4324-ORPHY Laboratory, Université de Bretagne Occidentale, Brest, France
| | - Kate Lambrechts
- EA4324-ORPHY Laboratory, Université de Bretagne Occidentale, Brest, France
| | - Qiong Wang
- EA4324-ORPHY Laboratory, Université de Bretagne Occidentale, Brest, France
| | - Marc Belhomme
- EA4324-ORPHY Laboratory, Université de Bretagne Occidentale, Brest, France
| | - Michael Theron
- EA4324-ORPHY Laboratory, Université de Bretagne Occidentale, Brest, France
| | - Peter Buzzacott
- EA4324-ORPHY Laboratory, Université de Bretagne Occidentale, Brest, France
| | - François Guerrero
- EA4324-ORPHY Laboratory, Université de Bretagne Occidentale, Brest, France
| |
Collapse
|
23
|
Buzzacott P, Theron M, Mazur A, Wang Q, Lambrechts K, Eftedal I, Ardestani SB, Guerrero F. Age, weight and decompression sickness in rats. Arch Physiol Biochem 2016; 122:67-9. [PMID: 26766166 DOI: 10.3109/13813455.2016.1140787] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The aim of this study was to determine if, after controlling for weight, age is associated with decompression sickness (DCS) in rats. METHODS Following compression-decompression, male rats aged 11 weeks were observed for DCS. After two weeks recovery, surviving rats were re-dived using the same compression-decompression profile. RESULTS In this experiment, there was a clear difference between DCS outcome at ages 11 or 13 weeks in matched rats (p = 0.002). DISCUSSION Even with weight included in the model, age was significantly associated with DCS (p = 0.01), yet after removal of weight the association was much stronger (p = 0.002). CONCLUSION We believe that age is likely to be found associated with the probability of DCS in a larger dataset with a wider range of parameters, after accounting for the effect of weight.
Collapse
Affiliation(s)
- Peter Buzzacott
- a Laboratoire Optimisation des Régulations Physiologiques (ORPhy) , UFR Sciences et Techniques, Université de Bretagne Occidentale , Brest Cedex , France
- b The School of Sports Science, Exercise and Health, The University of Western Australia , Crawley , WA , Australia , and
| | - Michael Theron
- a Laboratoire Optimisation des Régulations Physiologiques (ORPhy) , UFR Sciences et Techniques, Université de Bretagne Occidentale , Brest Cedex , France
| | - Aleksandra Mazur
- a Laboratoire Optimisation des Régulations Physiologiques (ORPhy) , UFR Sciences et Techniques, Université de Bretagne Occidentale , Brest Cedex , France
| | - Qiong Wang
- a Laboratoire Optimisation des Régulations Physiologiques (ORPhy) , UFR Sciences et Techniques, Université de Bretagne Occidentale , Brest Cedex , France
| | - Kate Lambrechts
- a Laboratoire Optimisation des Régulations Physiologiques (ORPhy) , UFR Sciences et Techniques, Université de Bretagne Occidentale , Brest Cedex , France
| | - Ingrid Eftedal
- c Department of Circulation and Medical Imaging , Norwegian University of Science and Technology , Trondheim , Norway
| | - Simin Berenji Ardestani
- c Department of Circulation and Medical Imaging , Norwegian University of Science and Technology , Trondheim , Norway
| | - François Guerrero
- a Laboratoire Optimisation des Régulations Physiologiques (ORPhy) , UFR Sciences et Techniques, Université de Bretagne Occidentale , Brest Cedex , France
| |
Collapse
|
24
|
Wang Q, Mazur A, Guerrero F, Lambrechts K, Buzzacott P, Belhomme M, Theron M. Antioxidants, endothelial dysfunction, and DCS: in vitro and in vivo study. J Appl Physiol (1985) 2015; 119:1355-62. [PMID: 26472863 DOI: 10.1152/japplphysiol.00167.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 10/08/2015] [Indexed: 11/22/2022] Open
Abstract
Reactive oxygen species (ROS) production is a well-known effect in individuals after an undersea dive. This study aimed to delineate the links between ROS, endothelial dysfunction, and decompression sickness (DCS) through the use of antioxidants in vitro and in vivo. The effect of N-acetylcysteine (NAC) on superoxide and peroxynitrite, nitric oxide (NO) generation, and cell viability during in vitro diving simulation were analyzed. Also analyzed was the effect of vitamin C and NAC on plasma glutathione thiol and thiobarbituric acid reactive substances (TBARS), plasma angiotensin-converting enzyme (ACE) activity, and angiotensin-II and DCS morbidity during in vivo diving simulation. During an in vitro diving simulation, vascular endothelial cells showed overproduction of superoxide and peroxynitrite, obvious attenuation of NO generation, and promotion of cell death, all of which were reversed by NAC treatment. After in vivo diving simulation, plasma ACE activity and angiotensin-II level were not affected. The plasma level of glutathione thiol was downregulated after the dive, which was attenuated partially by NAC treatment. Plasma TBARS level was upregulated; however, either NAC or vitamin C treatment failed to prevent DCS morbidity. During in vitro simulation, endothelial superoxide and peroxynitrite-mediated oxidative stress were involved in the attenuation of NO availability and cell death. This study is the first attempt to link oxidative stress and DCS occurrence, and the link could not be confirmed in vivo. Even in the presence of antioxidants, ROS and bubbles generated during diving and/or decompression might lead to embolic or biochemical stress and DCS. Diving-induced oxidative stress might not be the only trigger of DCS morbidity.
Collapse
Affiliation(s)
- Qiong Wang
- Laboratory ORPHY, Department of UFR Sciences and Technologies, European University of Bretagne, University of Brest, Brest, France
| | - Aleksandra Mazur
- Laboratory ORPHY, Department of UFR Sciences and Technologies, European University of Bretagne, University of Brest, Brest, France
| | - François Guerrero
- Laboratory ORPHY, Department of UFR Sciences and Technologies, European University of Bretagne, University of Brest, Brest, France
| | - Kate Lambrechts
- Laboratory ORPHY, Department of UFR Sciences and Technologies, European University of Bretagne, University of Brest, Brest, France
| | - Peter Buzzacott
- Laboratory ORPHY, Department of UFR Sciences and Technologies, European University of Bretagne, University of Brest, Brest, France
| | - Marc Belhomme
- Laboratory ORPHY, Department of UFR Sciences and Technologies, European University of Bretagne, University of Brest, Brest, France
| | - Michaël Theron
- Laboratory ORPHY, Department of UFR Sciences and Technologies, European University of Bretagne, University of Brest, Brest, France
| |
Collapse
|
25
|
Havnes MB, Kerlefsen Y, Møllerløkken A. S100B and NSE serum concentrations after simulated diving in rats. Physiol Rep 2015; 3:3/10/e12546. [PMID: 26462746 PMCID: PMC4632946 DOI: 10.14814/phy2.12546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The purpose of this study was to assess whether one could detect S100 calcium-binding protein B (S100B) and neuron-specific enolase (NSE) in serum of rats after a simulated dive breathing air, with the main hypothesis that the serum concentrations of S100B and NSE in rats will increase above pre-exposure levels following severe decompression stress measured as venous gas emboli (VGE). The dive group was exposed to a simulated air dive to 700 kPa for 45 min. Pulmonary artery was monitored for vascular gas bubbles by ultrasound. Pre- and postdive blood samples were analyzed for S100B and NSE using commercially available Elisa kits. There was no increase in serum S100B or NSE after simulated diving and few of the animals were showing high bubble grades after the dives. The present study examined whether the protein biomarkers S100B and NSE could be found in serum from rats after exposure to a simulated dive to 700 kPa for 45 min breathing air. There were no differences in serum concentrations before versus after the dive exposure. This may be explained by the lack of vascular gas bubbles after the dives.
Collapse
Affiliation(s)
- Marianne B Havnes
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, N-7489, Norway
| | - Yvonne Kerlefsen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, N-7489, Norway
| | - Andreas Møllerløkken
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, N-7489, Norway
| |
Collapse
|
26
|
Lambrechts K, Pontier JM, Mazur A, Theron M, Buzzacott P, Wang Q, Belhomme M, Guerrero F. Mechanism of action of antiplatelet drugs on decompression sickness in rats: a protective effect of anti-GPIIbIIIa therapy. J Appl Physiol (1985) 2015; 118:1234-9. [PMID: 25792711 DOI: 10.1152/japplphysiol.00125.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 03/13/2015] [Indexed: 11/22/2022] Open
Abstract
Literature highlights the involvement of disseminated thrombosis in the pathophysiology of decompression sickness (DCS). We examined the effect of several antithrombotic treatments targeting various pathways on DCS outcome: acetyl salicylate, prasugrel, abciximab, and enoxaparin. Rats were randomly assigned to six groups. Groups 1 and 2 were a control nondiving group (C; n = 10) and a control diving group (CD; n = 30). Animals in Groups 3 to 6 were treated before hyperbaric exposure (HBE) with either prasugrel (n = 10), acetyl salicylate (n = 10), enoxaparin (n = 10), or abciximab (n = 10). Blood samples were taken for platelet factor 4 (PF4), thiobarbituric acid reactive substances (TBARS), and von Willebrand factor analysis. Onset of DCS symptoms and death were recorded during a 60-min observation period after HBE. Although we observed fewer outcomes of DCS in all treated groups compared with the CD, statistical significance was reached in abciximab only (20% vs. 73%, respectively, P = 0.007). We also observed significantly higher levels of plasmatic PF4 in abciximab (8.14 ± 1.40 ng/ml; P = 0.004) and enoxaparin groups (8.01 ± 0.80 ng/ml; P = 0.021) compared with the C group (6.45 ± 1.90 ng/ml) but not CD group (8.14 ± 1.40 ng/ml). Plasmatic levels of TBARS were significantly higher in the CD group than the C group (49.04 ± 11.20 μM vs. 34.44 ± 5.70 μM, P = 0.002). This effect was prevented by all treatments. Our results suggest that abciximab pretreatment, a powerful glycoprotein IIb/IIIa receptor antagonist, has a strong protective effect on decompression risk by significantly improving DCS outcome. Besides its powerful inhibitory action on platelet aggregation, we suggest that abciximab could also act through its effects on vascular function, oxidative stress, and/or inflammation.
Collapse
Affiliation(s)
- Kate Lambrechts
- Orphy Laboratory, Université de Bretagne Occidentale, Brest, France; Université de Toulon, LAMHESS, La Garde, France; and Université Nice Sophia Antipolis, LAMHESS, Nice, France
| | | | - Aleksandra Mazur
- Orphy Laboratory, Université de Bretagne Occidentale, Brest, France
| | - Michaël Theron
- Orphy Laboratory, Université de Bretagne Occidentale, Brest, France
| | - Peter Buzzacott
- Orphy Laboratory, Université de Bretagne Occidentale, Brest, France
| | - Qiong Wang
- Orphy Laboratory, Université de Bretagne Occidentale, Brest, France
| | - Marc Belhomme
- Orphy Laboratory, Université de Bretagne Occidentale, Brest, France
| | | |
Collapse
|
27
|
Madden D, Barak O, Thom SR, Yang M, Bhopale VM, Ljubkovic M, Dujic Z. The impact of predive exercise on repetitive SCUBA diving. Clin Physiol Funct Imaging 2014; 36:197-205. [DOI: 10.1111/cpf.12213] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 10/13/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Dennis Madden
- Department of Physiology; University of Split School of Medicine; Split Croatia
| | - Otto Barak
- Department of Physiology; Faculty of Medicine; University of Novi Sad; Novi Sad Serbia
| | - Stephen R. Thom
- Department of Emergency Medicine; University of Maryland; Baltimore MD USA
| | - Ming Yang
- Department of Emergency Medicine; University of Maryland; Baltimore MD USA
| | - Veena M. Bhopale
- Department of Emergency Medicine; University of Maryland; Baltimore MD USA
| | - Marko Ljubkovic
- Department of Physiology; University of Split School of Medicine; Split Croatia
| | - Zeljko Dujic
- Department of Physiology; University of Split School of Medicine; Split Croatia
| |
Collapse
|
28
|
Theunissen S, Schumacker J, Guerrero F, Tillmans F, Boutros A, Lambrechts K, Mazur A, Pieri M, Germonpré P, Balestra C. Dark chocolate reduces endothelial dysfunction after successive breath-hold dives in cool water. Eur J Appl Physiol 2014; 113:2967-75. [PMID: 24078211 DOI: 10.1007/s00421-013-2732-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 09/16/2013] [Indexed: 01/22/2023]
Abstract
OBJECTIVE The aim of this study is to observe the effects of dark chocolate on endothelial function after a series of successive apnea dives in non-thermoneutral water. METHODS Twenty breath-hold divers were divided into two groups: a control group (8 males and 2 females) and a chocolate group (9 males and 1 female). The control group was asked to perform a series of dives to 20 m adding up to 20 min in the quiet diving pool of Conflans-Ste-Honorine (Paris, France), water temperature was 27 °C. The chocolate group performed the dives 1 h after ingestion of 30 g of dark chocolate. Flow-mediated dilatation (FMD), digital photoplethysmography, nitric oxide (NO), and peroxynitrite ONOO−) levels were measured before and after each series of breath-hold dives. RESULTS A significant decrease in FMD was observed in the control group after the dives (95.28 ± 2.9 % of pre-dive values, p < 0.001) while it was increased in the chocolate group (104.1 ± 2.9 % of pre-dive values, p < 0.01). A decrease in the NO level was observed in the control group (86.76 ± 15.57 %, p < 0.05) whereas no difference was shown in the chocolate group (98.44 ± 31.86 %, p > 0.05). No differences in digital photoplethysmography and peroxynitrites were observed between before and after the dives. CONCLUSION Antioxidants contained in dark chocolate scavenge free radicals produced during breath-hold diving. Ingestion of 30 g of dark chocolate 1 h before the dive can thus prevent endothelial dysfunction which can be observed after a series of breath-hold dives.
Collapse
|
29
|
Perovic A, Unic A, Dumic J. Recreational scuba diving: negative or positive effects of oxidative and cardiovascular stress? Biochem Med (Zagreb) 2014; 24:235-47. [PMID: 24969917 PMCID: PMC4083575 DOI: 10.11613/bm.2014.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 02/16/2014] [Indexed: 12/22/2022] Open
Abstract
Environmental conditions and increased physical activity during scuba diving are followed by increased production of free radicals and disturbed redox balance. Redox balance disorder is associated with damage of cellular components, changes of cellular signaling pathways and alterations of gene expression. Oxidative stress leads to increased expression of sirtuins (SIRTs), molecules which play an important role in the antioxidant defense, due to their sensitivity to the changes in the redox status and their ability to regulate redox homeostasis. These facts make SIRTs interesting to be considered as molecules affected by scuba diving and in that sense, as potential biomarkers of oxidative status or possible drug targets in reduction of reactive oxygen species (ROS) accumulation. In addition, SIRTs effects through currently known targets make them intriguing molecules which can act positively on health in general and whose expression can be induced by scuba diving.A demanding physical activity, as well as other circumstances present in scuba diving, has the greatest load on the cardiovascular function (CV). The mechanisms of CV response during scuba diving are still unclear, but diving-induced oxidative stress and the increase in SIRTs expression could be an important factor in CV adaptation. This review summarizes current knowledge on scuba diving-induced oxidative and CV stress and describes the important roles of SIRTs in the (patho)physiological processes caused by the redox balance disorder.
Collapse
Affiliation(s)
- Antonija Perovic
- Department of Biochemical and Hematological Laboratory Diagnostics, Dubrovnik General Hospital, Dubrovnik, Croatia
| | | | | |
Collapse
|
30
|
A new measure of decompression sickness in the rat. BIOMED RESEARCH INTERNATIONAL 2014; 2014:123581. [PMID: 24963469 PMCID: PMC4055588 DOI: 10.1155/2014/123581] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/01/2014] [Accepted: 05/02/2014] [Indexed: 11/18/2022]
Abstract
In this study we assessed the reliability of a tilting-board grip score as a measure of decompression sickness in rats. In experiments using a hyperbaric compression/decompression protocol, rats were observed for signs of decompression sickness and their grip strength measured on a tilting particle board hinged to a metal frame. Angles at which rats lost grip were converted to gravitational vectors. Decreased mean grip scores following decompression were fitted to a logistic regression model with strain, age, and weight. Decrease in grip score was significantly associated with observed decompression sickness (P = 0.0036). The log odds ratio for decompression sickness = 1.40 (decrease in grip score). In rats with no decrease in mean grip score there was a 50% probability of decompression sickness (pDCS). This increased steadily with decreases in mean grip score. A decrease of 0.3 had a 60% pDCS, a decrease of 0.6 had a 70% pDCS, and a decrease of 2.1 had a 95% pDCS. The tilting board grip score is a reliable measure of the probability of decompression sickness.
Collapse
|
31
|
Pontier JM, Buzzacott P, Nastorg J, Dinh-Xuan A, Lambrechts K. Exhaled nitric oxide concentration and decompression-induced bubble formation: An index of decompression severity in humans? Nitric Oxide 2014; 39:29-34. [DOI: 10.1016/j.niox.2014.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/02/2014] [Accepted: 04/09/2014] [Indexed: 12/21/2022]
|
32
|
Lambrechts K, Pontier JM, Mazur A, Buzzacott P, Morin J, Wang Q, Theron M, Guerrero F. Effect of decompression-induced bubble formation on highly trained divers microvascular function. Physiol Rep 2013; 1:e00142. [PMID: 24400144 PMCID: PMC3871457 DOI: 10.1002/phy2.142] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 10/07/2013] [Accepted: 10/08/2013] [Indexed: 11/14/2022] Open
Abstract
We previously showed microvascular alteration of both endothelium-dependent and -independent reactivity after a single SCUBA dive. We aimed to study mechanisms involved in this postdive vascular dysfunction. Ten divers each completed three protocols: (1) a SCUBA dive at 400 kPa for 30 min; (2) a 41-min duration of seawater surface head immersed finning exercise to determine the effect of immersion and moderate physical activity; and (3) a simulated 41-min dive breathing 100% oxygen (hyperbaric oxygen [HBO]) at 170 kPa in order to analyze the effect of diving-induced hyperoxia. Bubble grades were monitored with Doppler. Cutaneous microvascular function was assessed by laser Doppler. Endothelium-dependent (acetylcholine, ACh) and -independent (sodium nitroprusside, SNP) reactivity was tested by iontophoresis. Endothelial cell activation was quantified by plasma Von Willebrand factor and nitric oxide (NO). Inactivation of NO by oxidative stress was assessed by plasma nitrotyrosine. Platelet factor 4 (PF4) was assessed in order to determine platelet aggregation. Blood was also analyzed for measurement of platelet count. Cutaneous vascular conductance (CVC) response to ACh delivery was not significantly decreased by the SCUBA protocol (23 ± 9% before vs. 17 ± 7% after; P = 0.122), whereas CVC response to SNP stimulation decreased significantly (23 ± 6% before vs. 10 ± 1% after; P = 0.039). The HBO and immersion protocols did not affect either endothelial-dependent or -independent function. The immersion protocol induced a significant increase in NO (0.07 ± 0.01 vs. 0.12 ± 0.02 μg/mL; P = 0.035). This study highlighted change in microvascular endothelial-independent but not -dependent function in highly trained divers after a single air dive. The results suggest that the effects of decompression on microvascular function may be modified by diving acclimatization.
Collapse
Affiliation(s)
- Kate Lambrechts
- Orphy Laboratory, Université de Bretagne Occidentale 29200, Brest, France
| | - Jean-Michel Pontier
- Diving and Hyperbaric Department, French Navy Diving School BP 311, 83800, Toulon, France
| | - Aleksandra Mazur
- Orphy Laboratory, Université de Bretagne Occidentale 29200, Brest, France
| | - Peter Buzzacott
- Orphy Laboratory, Université de Bretagne Occidentale 29200, Brest, France
| | - Jean Morin
- Diving and Hyperbaric Department, French Navy Diving School BP 311, 83800, Toulon, France
| | - Qiong Wang
- Orphy Laboratory, Université de Bretagne Occidentale 29200, Brest, France
| | - Michael Theron
- Orphy Laboratory, Université de Bretagne Occidentale 29200, Brest, France
| | - Francois Guerrero
- Orphy Laboratory, Université de Bretagne Occidentale 29200, Brest, France
| |
Collapse
|