1
|
Circulating Microparticles Are Differentially Increased in Lowlanders and Highlanders with High Altitude Induced Pulmonary Hypertension during the Cold Season. Cells 2022; 11:cells11192932. [PMID: 36230894 PMCID: PMC9563667 DOI: 10.3390/cells11192932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
The role of microparticles (MPs) and cold in high altitude pulmonary hypertension (HAPH) remains unexplored. We investigated the impact of long-term cold exposure on the pulmonary circulation in lowlanders and high-altitude natives and the role of MPs. Pulmonary hemodynamics were evaluated using Doppler echocardiography at the end of the colder and warmer seasons. We further examined the miRNA content of MPs isolated from the study participants and studied their effects on human pulmonary artery smooth muscle (hPASMCs) and endothelial cells (hPAECs). Long-term exposure to cold environment was associated with an enhanced pulmonary artery pressure in highlanders. Plasma levels of CD62E-positive and CD68-positive MPs increased in response to cold in lowlanders and HAPH highlanders. The miRNA-210 expression contained in MPs differentially changed in response to cold in lowlanders and highlanders. MPs isolated from lowlanders and highlanders increased proliferation and reduced apoptosis of hPASMCs. Further, MPs isolated from warm-exposed HAPH highlanders and cold-exposed highlanders exerted the most pronounced effects on VEGF expression in hPAECs. We demonstrated that prolonged exposure to cold is associated with elevated pulmonary artery pressures, which are most pronounced in high-altitude residents. Further, the numbers of circulating MPs are differentially increased in lowlanders and HAPH highlanders during the colder season.
Collapse
|
2
|
Georgatzakou HT, Fortis SP, Papageorgiou EG, Antonelou MH, Kriebardis AG. Blood Cell-Derived Microvesicles in Hematological Diseases and beyond. Biomolecules 2022; 12:803. [PMID: 35740926 PMCID: PMC9220817 DOI: 10.3390/biom12060803] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022] Open
Abstract
Microvesicles or ectosomes represent a major type of extracellular vesicles that are formed by outward budding of the plasma membrane. Typically, they are bigger than exosomes but smaller than apoptotic vesicles, although they may overlap with both in size and content. Their release by cells is a means to dispose redundant, damaged, or dangerous material; to repair membrane lesions; and, primarily, to mediate intercellular communication. By participating in these vital activities, microvesicles may impact a wide array of cell processes and, consequently, changes in their concentration or components have been associated with several pathologies. Of note, microvesicles released by leukocytes, red blood cells, and platelets, which constitute the vast majority of plasma microvesicles, change under a plethora of diseases affecting not only the hematological, but also the nervous, cardiovascular, and urinary systems, among others. In fact, there is evidence that microvesicles released by blood cells are significant contributors towards pathophysiological states, having inflammatory and/or coagulation and/or immunomodulatory arms, by either promoting or inhibiting the relative disease phenotypes. Consequently, even though microvesicles are typically considered to have adverse links with disease prognosis, progression, or outcomes, not infrequently, they exert protective roles in the affected cells. Based on these functional relations, microvesicles might represent promising disease biomarkers with diagnostic, monitoring, and therapeutic applications, equally to the more thoroughly studied exosomes. In the current review, we provide a summary of the features of microvesicles released by blood cells and their potential implication in hematological and non-hematological diseases.
Collapse
Affiliation(s)
- Hara T. Georgatzakou
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (H.T.G.); (S.P.F.); (E.G.P.)
| | - Sotirios P. Fortis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (H.T.G.); (S.P.F.); (E.G.P.)
| | - Effie G. Papageorgiou
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (H.T.G.); (S.P.F.); (E.G.P.)
| | - Marianna H. Antonelou
- Department of Biology, Section of Cell Biology and Biophysics, National & Kapodistrian University of Athens (NKUA), 15784 Athens, Greece
| | - Anastasios G. Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (H.T.G.); (S.P.F.); (E.G.P.)
| |
Collapse
|
3
|
Deng F, Wang S, Xu R, Yu W, Wang X, Zhang L. Endothelial microvesicles in hypoxic hypoxia diseases. J Cell Mol Med 2018; 22:3708-3718. [PMID: 29808945 PMCID: PMC6050493 DOI: 10.1111/jcmm.13671] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/26/2018] [Indexed: 01/06/2023] Open
Abstract
Hypoxic hypoxia, including abnormally low partial pressure of inhaled oxygen, external respiratory dysfunction-induced respiratory hypoxia and venous blood flow into the arterial blood, is characterized by decreased arterial oxygen partial pressure, resulting in tissue oxygen deficiency. The specific characteristics include reduced arterial oxygen partial pressure and oxygen content. Hypoxic hypoxia diseases (HHDs) have attracted increased attention due to their high morbidity and mortality and mounting evidence showing that hypoxia-induced oxidative stress, coagulation, inflammation and angiogenesis play extremely important roles in the physiological and pathological processes of HHDs-related vascular endothelial injury. Interestingly, endothelial microvesicles (EMVs), which can be induced by hypoxia, hypoxia-induced oxidative stress, coagulation and inflammation in HHDs, have emerged as key mediators of intercellular communication and cellular functions. EMVs shed from activated or apoptotic endothelial cells (ECs) reflect the degree of ECs damage, and elevated EMVs levels are present in several HHDs, including obstructive sleep apnoea syndrome and chronic obstructive pulmonary disease. Furthermore, EMVs have procoagulant, proinflammatory and angiogenic functions that affect the pathological processes of HHDs. This review summarizes the emerging roles of EMVs in the diagnosis, staging, treatment and clinical prognosis of HHDs.
Collapse
Affiliation(s)
- Fan Deng
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shuang Wang
- Dongfeng General Hospital, Hubei University of Medicine, Shiyan, China
| | - Riping Xu
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wenqian Yu
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Institute of Anesthesiology, Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xianyu Wang
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Institute of Anesthesiology, Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Liangqing Zhang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
4
|
Schwarz EI, Stradling JR, Kohler M. Physiological consequences of CPAP therapy withdrawal in patients with obstructive sleep apnoea-an opportunity for an efficient experimental model. J Thorac Dis 2018; 10:S24-S32. [PMID: 29445525 PMCID: PMC5803046 DOI: 10.21037/jtd.2017.12.142] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/11/2017] [Indexed: 12/20/2022]
Abstract
Randomised controlled trials (RCTs) of continuous positive airway pressure (CPAP) in obstructive sleep apnoea (OSA) are time consuming, and their findings often inconclusive or limited due to suboptimal CPAP adherence in CPAP-naïve patients with OSA. Short-term CPAP withdrawal in patients with prior optimal CPAP adherence results in recurrence of OSA and its consequences. Thus, this experimental model serves as an efficient tool to investigate both the consequences of untreated OSA, and potential treatment alternatives to CPAP. The CPAP withdrawal protocol has been thoroughly validated, and applied in several RCTs focusing on cardiovascular and metabolic consequences of untreated OSA, as well as the assessment of treatment alternatives to CPAP.
Collapse
Affiliation(s)
- Esther I. Schwarz
- Sleep Disorders Center and Department of Pulmonology, University Hospital of Zurich, Zurich, Switzerland
| | - John R. Stradling
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust and University of Oxford, Oxford, UK
| | - Malcolm Kohler
- Sleep Disorders Center and Department of Pulmonology, University Hospital of Zurich, Zurich, Switzerland
- Interdisciplinary Center for Sleep Research, University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Lichtenauer M, Goebel B, Paar V, Wernly B, Gecks T, Rohm I, Förster M, Betge S, Figulla HR, Hoppe UC, Kelm M, Franz M, Jung C. Acute effects of moderate altitude on biomarkers of cardiovascular inflammation and endothelial function and their differential modulation by dual endothelin receptor blockade. Clin Hemorheol Microcirc 2017; 67:101-113. [DOI: 10.3233/ch-170273] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Michael Lichtenauer
- Department of Cardiology, Clinic of Internal Medicine II, Paracelsus Medical University of Salzburg, Austria
| | - Bjoern Goebel
- Department of Internal Medicine I, Jena University Hospital, Friedrich Schiller University Jena, Germany
| | - Vera Paar
- Department of Cardiology, Clinic of Internal Medicine II, Paracelsus Medical University of Salzburg, Austria
| | - Bernhard Wernly
- Department of Cardiology, Clinic of Internal Medicine II, Paracelsus Medical University of Salzburg, Austria
| | - Thomas Gecks
- Department of Internal Medicine I, Jena University Hospital, Friedrich Schiller University Jena, Germany
| | - Ilonka Rohm
- Department of Internal Medicine I, Jena University Hospital, Friedrich Schiller University Jena, Germany
| | - Martin Förster
- Department of Internal Medicine I, Jena University Hospital, Friedrich Schiller University Jena, Germany
| | - Stefan Betge
- Department of Internal Medicine I, Jena University Hospital, Friedrich Schiller University Jena, Germany
| | - Hans R. Figulla
- Department of Internal Medicine I, Jena University Hospital, Friedrich Schiller University Jena, Germany
| | - Uta C. Hoppe
- Department of Cardiology, Clinic of Internal Medicine II, Paracelsus Medical University of Salzburg, Austria
| | - Malte Kelm
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Duesseldorf, Germany
| | - Marcus Franz
- Department of Internal Medicine I, Jena University Hospital, Friedrich Schiller University Jena, Germany
| | - Christian Jung
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Duesseldorf, Germany
| |
Collapse
|
6
|
Hromada C, Mühleder S, Grillari J, Redl H, Holnthoner W. Endothelial Extracellular Vesicles-Promises and Challenges. Front Physiol 2017; 8:275. [PMID: 28529488 PMCID: PMC5418228 DOI: 10.3389/fphys.2017.00275] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/18/2017] [Indexed: 12/22/2022] Open
Abstract
Extracellular vesicles, including exosomes, microparticles, and apoptotic bodies, are phospholipid bilayer-enclosed vesicles that have once been considered as cell debris lacking biological functions. However, they have recently gained immense interest in the scientific community due to their role in intercellular communication, immunity, tissue regeneration as well as in the onset, and progression of various pathologic conditions. Extracellular vesicles of endothelial origin have been found to play a versatile role in the human body, since they are on the one hand known to contribute to cardiovascular diseases, but on the other hand have also been reported to promote endothelial cell survival. Hence, endothelial extracellular vesicles hold promising therapeutic potential to be used as a new tool to detect as well as treat a great number of diseases. This calls for clinically approved, standardized, and efficient isolation and characterization protocols to harvest and purify endothelial extracellular vesicles. However, such methods and techniques to fulfill stringent requirements for clinical trials have yet to be developed or are not harmonized internationally. In this review, recent advances and challenges in the field of endothelial extracellular vesicle research are discussed and current problems and limitations regarding isolation and characterization are pointed out.
Collapse
Affiliation(s)
- Carina Hromada
- AUVA Research Centre, Ludwig Boltzmann Institute for Experimental and Clinical TraumatologyVienna, Austria.,Austrian Cluster for Tissue RegenerationVienna, Austria
| | - Severin Mühleder
- AUVA Research Centre, Ludwig Boltzmann Institute for Experimental and Clinical TraumatologyVienna, Austria.,Austrian Cluster for Tissue RegenerationVienna, Austria
| | - Johannes Grillari
- Austrian Cluster for Tissue RegenerationVienna, Austria.,Christian Doppler Laboratory on Biotechnology of Skin Aging, Department of Biotechnology, University of Natural Resources and Life SciencesVienna, Austria.,Evercyte GmbHVienna, Austria
| | - Heinz Redl
- AUVA Research Centre, Ludwig Boltzmann Institute for Experimental and Clinical TraumatologyVienna, Austria.,Austrian Cluster for Tissue RegenerationVienna, Austria
| | - Wolfgang Holnthoner
- AUVA Research Centre, Ludwig Boltzmann Institute for Experimental and Clinical TraumatologyVienna, Austria.,Austrian Cluster for Tissue RegenerationVienna, Austria
| |
Collapse
|
7
|
Tremblay JC, Thom SR, Yang M, Ainslie PN. Oscillatory shear stress, flow-mediated dilatation, and circulating microparticles at sea level and high altitude. Atherosclerosis 2016; 256:115-122. [PMID: 28010936 DOI: 10.1016/j.atherosclerosis.2016.12.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/25/2016] [Accepted: 12/01/2016] [Indexed: 12/01/2022]
Abstract
BACKGROUND AND AIMS Exposing the endothelium to acute periods of imposed oscillatory shear stress reduces endothelial function and elevates circulating microparticles (MPs). Oscillatory shear stress may be especially pathogenic when superimposed on hypoxia, an environmental stimulus that disrupts the endothelial milieu. We examined the effects of acute manipulation of oscillatory shear stress on endothelial function and circulating MPs at sea level (SL) and high altitude (HA). METHODS Healthy adults (n = 12) participated, once at SL and once on the second or third day at HA (3800 m). Oscillatory shear stress was provoked using a 30-min distal cuff occlusion intervention (75 mmHg). Endothelial function was assessed before and immediately after the intervention in the brachial artery by reactive hyperaemia flow-mediated dilatation (FMD). Venous blood samples of MPs (flow cytometry) were obtained before and during the last five minutes of the shear intervention. RESULTS At baseline, circulating MPs were two-fold higher at HA (p = 0.011) and brachial artery diameter was constricted (p = 0.015). Although the intervention at SL increased endothelial-derived MPs by 83 ± 39% (mean ± SEM; p = 0.021), FMD was unaltered. Conversely, at HA, the intervention elicited a 26 ± 11% reduction in FMD (p = 0.020); this reduction was inversely correlated with the change in total circulating MPs (r = -0.737, p = 0.006) and the change in endothelial-derived MPs (r = -0.614, p = 0.034). CONCLUSIONS The vascular endothelium appears to be susceptible to periods of oscillatory shear stress at HA, where impairments in endothelium-dependent vasodilatation may be amplified by endothelial injury. These findings have important implications for understanding the early impact of clinical situations of hypoxaemia on the vascular endothelium.
Collapse
Affiliation(s)
- Joshua C Tremblay
- Centre for Heart, Lung, and Vascular Health School of Health and Exercise Science, University of British Columbia, Kelowna, Canada.
| | - Stephen R Thom
- Department of Emergency Medicine, University of Maryland, Baltimore, USA
| | - Ming Yang
- Department of Emergency Medicine, University of Maryland, Baltimore, USA
| | - Philip N Ainslie
- Centre for Heart, Lung, and Vascular Health School of Health and Exercise Science, University of British Columbia, Kelowna, Canada
| |
Collapse
|
8
|
Fahlman A, Moore MJ, Trites AW, Rosen DAS, Haulena M, Waller N, Neale T, Yang M, Thom SR. Dive, food, and exercise effects on blood microparticles in Steller sea lions (Eumetopias jubatus): exploring a biomarker for decompression sickness. Am J Physiol Regul Integr Comp Physiol 2016; 310:R596-601. [PMID: 26843583 DOI: 10.1152/ajpregu.00512.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/01/2016] [Indexed: 11/22/2022]
Abstract
Recent studies of stranded marine mammals indicate that exposure to underwater military sonar may induce pathophysiological responses consistent with decompression sickness (DCS). However, DCS has been difficult to diagnose in marine mammals. We investigated whether blood microparticles (MPs, measured as number/μl plasma), which increase in response to decompression stress in terrestrial mammals, are a suitable biomarker for DCS in marine mammals. We obtained blood samples from trained Steller sea lions (Eumetopias jubatus, 4 adult females) wearing time-depth recorders that dove to predetermined depths (either 5 or 50 meters). We hypothesized that MPs would be positively related to decompression stress (depth and duration underwater). We also tested the effect of feeding and exercise in isolation on MPs using the same blood sampling protocol. We found that feeding and exercise had no effect on blood MP levels, but that diving caused MPs to increase. However, blood MP levels did not correlate with diving depth, relative time underwater, and presumed decompression stress, possibly indicating acclimation following repeated exposure to depth.
Collapse
Affiliation(s)
- Andreas Fahlman
- Texas A&M University, Corpus Christi, Texas; Oceanografíc Research Department, C/ Eduardo Primo Yúfera 1B, Valencia, Spain
| | - Michael J Moore
- Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
| | - Andrew W Trites
- Marine Mammal Research Unit, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia, Canada
| | - David A S Rosen
- Marine Mammal Research Unit, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Martin Haulena
- Vancouver Aquarium, Vancouver, British Columbia, Canada; and
| | - Nigel Waller
- Vancouver Aquarium, Vancouver, British Columbia, Canada; and
| | - Troy Neale
- Vancouver Aquarium, Vancouver, British Columbia, Canada; and
| | - Ming Yang
- Department of Emergency Medicine, University of Maryland, Baltimore, Maryland; and
| | - Stephen R Thom
- Department of Emergency Medicine, University of Maryland, Baltimore, Maryland; and
| |
Collapse
|
9
|
Pichler Hefti J, Leichtle A, Stutz M, Hefti U, Geiser T, Huber AR, Merz TM. Increased endothelial microparticles and oxidative stress at extreme altitude. Eur J Appl Physiol 2016; 116:739-48. [DOI: 10.1007/s00421-015-3309-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 12/08/2015] [Indexed: 02/04/2023]
|
10
|
Dynamic microvesicle release and clearance within the cardiovascular system: triggers and mechanisms. Clin Sci (Lond) 2015; 129:915-31. [PMID: 26359252 DOI: 10.1042/cs20140623] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Interest in cell-derived microvesicles (or microparticles) within cardiovascular diagnostics and therapeutics is rapidly growing. Microvesicles are often measured in the circulation at a single time point. However, it is becoming clear that microvesicle levels both increase and decrease rapidly in response to certain stimuli such as hypoxia, acute cardiac stress, shear stress, hypertriglyceridaemia and inflammation. Consequently, the levels of circulating microvesicles will reflect the balance between dynamic mechanisms for release and clearance. The present review describes the range of triggers currently known to lead to microvesicle release from different cellular origins into the circulation. Specifically, the published data are used to summarize the dynamic impact of these triggers on the degree and rate of microvesicle release. Secondly, a summary of the current understanding of microvesicle clearance via different cellular systems, including the endothelial cell and macrophage, is presented, based on reported studies of clearance in experimental models and clinical scenarios, such as transfusion or cardiac stress. Together, this information can be used to provide insights into potential underlying biological mechanisms that might explain the increases or decreases in circulating microvesicle levels that have been reported and help to design future clinical studies.
Collapse
|