1
|
Gallardo P, Giakas G, Sakkas GK, Tsaklis PV. Are Surface Electromyography Parameters Indicative of Post-Activation Potentiation/Post-Activation Performance Enhancement, in Terms of Twitch Potentiation and Voluntary Performance? A Systematic Review. J Funct Morphol Kinesiol 2024; 9:106. [PMID: 38921642 PMCID: PMC11205249 DOI: 10.3390/jfmk9020106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
The aim was to identify if surface electromyography (sEMG) parameters are indicative of post-activation potentiation (PAP)/post-activation performance enhancement (PAPE), in terms of twitch potentiation and voluntary performance. Three databases were used in April 2024, with the following inclusion criteria: (a) original research, assessed in healthy human adults, and (b) sEMG parameters were measured. The exclusion criteria were (a) studies with no PAP/PAPE protocol and (b) non-randomized control trials. The following data were extracted: study characteristics/demographics, PAP/PAPE protocols, sEMG parameters, twitch/performance outcomes, and study findings. A modified physiotherapy evidence database (PEDro) scale was used for quality assessment. Fifteen randomized controlled trials (RCTs), with a total of 199 subjects, were included. The M-wave amplitude (combined with a twitch torque outcome) was shown to generally be indicative of PAP. The sEMG amplitudes (in some muscles) were found to be indicative of PAPE during ballistic movements, while a small decrease in the MdF (in certain muscles) was shown to reflect PAPE. Changes in the Hmax/Mmax ratio were found to contribute (temporally) to PAP, while the H-reflex amplitude was shown to be neither indicative of PAP nor PAPE. This review provides preliminary findings suggesting that certain sEMG parameters could be indicative of PAP/PAPE. However, due to limited studies, future research is warranted.
Collapse
Affiliation(s)
- Philip Gallardo
- Department of Physical Education and Sport Science, ErgoMech-Lab, University of Thessaly, 421 00 Trikala, Greece; (P.G.); (G.G.); (G.K.S.)
| | - Giannis Giakas
- Department of Physical Education and Sport Science, ErgoMech-Lab, University of Thessaly, 421 00 Trikala, Greece; (P.G.); (G.G.); (G.K.S.)
| | - Giorgos K. Sakkas
- Department of Physical Education and Sport Science, ErgoMech-Lab, University of Thessaly, 421 00 Trikala, Greece; (P.G.); (G.G.); (G.K.S.)
| | - Panagiotis V. Tsaklis
- Department of Physical Education and Sport Science, ErgoMech-Lab, University of Thessaly, 421 00 Trikala, Greece; (P.G.); (G.G.); (G.K.S.)
- Department Molecular Medicine and Surgery, Growth and Metabolism, Karolinska Institute, 171 77 Solna, Sweden
- Center of Orthopaedics and Regenerative Medicine (C.O.RE.)/(C.I.R.I.), Aristotle University Thessaloniki, 541 24 Thessaloniki, Greece
| |
Collapse
|
2
|
Kim D, Nicoletti C, Soedirdjo SDH, Baghi R, Garcia MG, Läubli T, Wild P, Botter A, Martin BJ. Effect of Periodic Voluntary Interventions on Trapezius Activation and Fatigue During Light Upper Limb Activity. HUMAN FACTORS 2023; 65:1491-1505. [PMID: 34875887 DOI: 10.1177/00187208211050723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
OBJECTIVE The effects of diverse periodic interventions on trapezius muscle fatigue and activity during a full day of computer work were investigated. BACKGROUND Musculoskeletal disorders, including trapezius myalgia, may be associated with repeated exposure to prolonged low-level activity, even during light upper-extremity tasks including computer work. METHODS Thirty healthy adults participated in a study that simulated two 6-hour workdays of computer work. One workday involved imposed periodic passive and active interventions aimed at disrupting trapezius contraction monotony (Intervention day), whereas the other workday did not (Control day). Trapezius muscle activity was quantified by the 3-dimensional acceleration of the jolt movement of the acromion produced by electrically induced muscle twitches. The spatio-temporal distribution of trapezius activity was measured through high-density surface electromyography (HD-EMG). RESULTS The twitch acceleration magnitude in one direction was significantly different across measurement periods (p = 0.0156) on Control day, whereas no significant differences in any direction were observed (p > 0.05) on Intervention day. The HD-EMG from Intervention day showed that only significant voluntary muscle contractions (swing arms, Jacobson maneuver) induced a decrease in the muscle activation time and an increase in the spatial muscle activation areas (p < 0.01). CONCLUSION Disruption of trapezius monotonous activity via brief voluntary contractions effectively modified the ensuing contraction pattern (twitch acceleration along one axis, active epochs reduction, and larger spatial distribution). The observed changes support an associated reduction of muscle fatigue. APPLICATION This study suggests that disruptive intervention activity is efficient in reducing the impact of trapezius muscle fatigue.
Collapse
Affiliation(s)
| | - Corine Nicoletti
- Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
- Institute of Health Sciences, Zurich University of Applied Sciences, Winterthur, Switzerland
| | - Subaryani D H Soedirdjo
- Laboratory for Engineering of the Neuromuscular System (LISiN), Department of Electronics and Telecommunications, Politecnico di, Torino, Turin, Italy
- Department of Physical Medicine and Rehabilitation, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Raziyeh Baghi
- Department of Physical Therapy and Rehabilitation Science, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Maria-Gabriela Garcia
- Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
- Department of Industrial Engineering, School of Engineering, Universidad San Francisco de Quito, Quito, Ecuador
| | - Thomas Läubli
- Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
- Institute of Occupational and Social Medicine and Health Services Research, University of Tübingen, Tübingen, Germany
| | - Pascal Wild
- French National Research and Safety Institute (INRS), Vandœuvre lès Nancy, France
| | - Alberto Botter
- Laboratory for Engineering of the Neuromuscular System (LISiN), Department of Electronics and Telecommunications, Politecnico di, Torino, Turin, Italy
| | - Bernard J Martin
- Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
- Department of Industrial and Operations Engineering, School of Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Garcia G, Arauz PG, Alvarez I, Encalada N, Vega S, Martin BJ. Impact of a passive upper-body exoskeleton on muscle activity, heart rate and discomfort during a carrying task. PLoS One 2023; 18:e0287588. [PMID: 37352272 PMCID: PMC10289366 DOI: 10.1371/journal.pone.0287588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 06/08/2023] [Indexed: 06/25/2023] Open
Abstract
OBJECTIVE The goal of this study was to compare erector spinae muscle fatigue, upper limb muscle activity, body areas discomfort, and heart rate during a 10-min carrying task with and without a passive upper-body exoskeleton (CarrySuitⓇ) while considering sex influences. BACKGROUND Passive exoskeletons are commercially available to assist lifting or carrying task. However, evidence of their impact on muscle activity, fatigue, heart rate and discomfort are scarce and/or do not concur during carrying tasks. METHOD Thirty participants (16 females and 14 male) performed a 10-min, 15kg load-carrying task with and without the exoskeleton in two non-consecutive days. Heart rate, and erector spinae, deltoid, biceps and brachioradialis muscle activity were recorded during the carrying tasks. In addition, erector spinae electromyography during an isometric hold test and discomfort ratings were measured before and after the task. RESULTS While without the exoskeleton upper limb muscle activity increased or remained constant during the carrying task and showing high peak activation for both males and females, a significant activity reduction was observed with the exoskeleton. Low back peak activation, heart rate and discomfort were lower with than without the exoskeleton. In males muscle activation was significantly asymmetric without the exoskeleton and more symmetric with the exoskeleton. CONCLUSION The tested passive exoskeleton appears to alleviate the physical workload and impact of carrying heavy loads on the upper limbs and lower back for both males and females.
Collapse
Affiliation(s)
- Gabriela Garcia
- Departamento de Ingeniería Industrial, Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Paul Gonzalo Arauz
- Departamento de Ingeniería Mecánica, Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Isabel Alvarez
- Departamento de Ingeniería Industrial, Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Nicolas Encalada
- Departamento de Ingeniería Industrial, Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Shirley Vega
- Departamento de Ingeniería Industrial, Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Bernard J. Martin
- Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
4
|
Garcia MG, Roman MG, Davila A, Martin BJ. Comparison of Physiological Effects Induced by Two Compression Stockings and Regular Socks During Prolonged Standing Work. HUMAN FACTORS 2023; 65:562-574. [PMID: 34078143 PMCID: PMC10210207 DOI: 10.1177/00187208211022126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 05/12/2021] [Indexed: 05/24/2023]
Abstract
OBJECTIVE The goal of this study was to evaluate and compare lower-leg muscle fatigue, edema, and discomfort induced by the prolonged standing of security guards wearing regular socks and those wearing 15-20 or 20-30 mmHg compression stockings as intervention. BACKGROUND Compression stockings are sometimes used by individuals standing all day at work. However, quantitative evidence showing their potential benefits for lower-leg health issues in healthy individuals during real working conditions is lacking. METHOD Forty male security employees participated in the study. All were randomly assigned to the control or one of the two intervention groups (I15-20 or I20-30). Lower-leg muscle twitch force, volume, and discomfort ratings were measured before and after their regular 12-hr standing work shift. RESULTS Significant evidence of lower-leg long-lasting muscle fatigue, edema, and discomfort was observed after standing work for guards wearing regular socks. However, no significant changes were found for guards wearing either compression stockings. CONCLUSION In healthy individuals, compression stockings seem to attenuate efficiently the tested outcomes in the lower leg resulting from prolonged standing. APPLICATION Occupational activities requiring prolonged standing may benefit from 15-20 or 20-30 mmHg compression stockings. As similar benefits were observed for both levels of compression, the lower level may be sufficient.
Collapse
|
5
|
Wall R, Garcia G, Läubli T, Seibt R, Rieger MA, Martin B, Steinhilber B. Physiological changes during prolonged standing and walking considering age, gender and standing work experience. ERGONOMICS 2020; 63:579-592. [PMID: 32009579 DOI: 10.1080/00140139.2020.1725145] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Occupational standing is associated with musculoskeletal and venous disorders. The aim was to investigate whether lower leg oedema and muscle fatigue development differ between standing and walking and whether age, gender and standing work habituation are factors to consider. Sixty participants (15 young females, 15 young males, 15 older males, and 15 young males habituated to standing work) were included and required to stand/walk for 4.5 hours in three periods with two seated breaks. Waterplethysmography/bioelectrical impedance, muscle twitch force and surface electromyography were used to assess lower leg swelling (LLS) and muscle fatigue as well as gastrocnemius muscle activity, respectively. While standing led to LLS and muscle fatigue, walking did not. Low-level medial gastrocnemius activity was not continuous during standing. No significant influence of age, gender and standing habituation was observed. Walking can be an effective prevention measure to counteract the detrimental effects of quasi-static standing.Practitioner summary: Prolonged standing leads to lower leg oedema and muscle fatigue while walking does not. The primary cause of fatigue may be in other muscles than the medial gastrocnemius. Walking may be an effective prevention measure for health risks of occupational standing when included intermittently.Abbreviation: BI: bioelectrical impedance; LLS: lower leg swelling; SEMG: surface electromyography; MTF: muscle twitch force; WP: waterplethysmography; Bsl: Baseline; L: Lunch; E: Evening; MTM: method times measurement; EA: electrical activity; IQR: interquartile range; p: percentile; M: mean; SE: standard error; Adj: adjusted.
Collapse
Affiliation(s)
- Rudolf Wall
- Institute of Occupational and Social Medicine and Health Services Research, University Hospital, Tuebingen, Germany
| | - Gabriela Garcia
- Department of Health Sciences and Technology, Sensory-Motor Systems Lab, ETH Zürich, Zurich, Switzerland
- Industrial Engineering Department, Universidad San Francisco de Quito, Quito, Ecuador
| | - Thomas Läubli
- Institute of Occupational and Social Medicine and Health Services Research, University Hospital, Tuebingen, Germany
- Department of Health Sciences and Technology, Sensory-Motor Systems Lab, ETH Zürich, Zurich, Switzerland
| | - Robert Seibt
- Institute of Occupational and Social Medicine and Health Services Research, University Hospital, Tuebingen, Germany
| | - Monika A Rieger
- Institute of Occupational and Social Medicine and Health Services Research, University Hospital, Tuebingen, Germany
| | - Bernard Martin
- Industrial and Operations Engineering Center for Ergonomics, University of Michigan, Ann Arbor, MI, USA
| | - Benjamin Steinhilber
- Institute of Occupational and Social Medicine and Health Services Research, University Hospital, Tuebingen, Germany
| |
Collapse
|
6
|
Garcia MG, Tapia P, Läubli T, Martin BJ. Physiological and neuromotor changes induced by two different stand-walk-sit work rotations. ERGONOMICS 2020; 63:163-174. [PMID: 31594482 DOI: 10.1080/00140139.2019.1677949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/31/2019] [Indexed: 05/23/2023]
Abstract
The potential of rotating postures to alleviate the effects of prolonged standing and sitting postures has been advocated to attenuate the accumulation of muscle fatigue, considered a precursor to musculoskeletal disorders. We aimed to evaluate the effects of two posture rotations, both including standing, walking, sitting, on physiological and neuromotor measures. Twenty-two participants followed two posture rotations, with different rest-break distributions, for 5.25 h. Lower-leg muscle twitch force, volume, force control and discomfort perception were evaluated during and after work exposure on two non-consecutive days. Significant changes in all measures indicate a detrimental effect in lower-leg long-lasting muscle fatigue, oedema, performance and discomfort after 5 h for both exposures. However, for both exposures recovery was significant 1 h and 15 h post-workday. Differences between the two rotation schedules were not significant. Hence, stand-walk-sit posture rotation promotes recovery of the tested measures and is likely to better prevent muscle fatigue accumulation. Practitioner summary: Lower-leg muscle twitch force, volume, force control, and discomfort were quantified during and after 5 h of stand-walk-sit work rotations with two different rest-break distributions. Measures revealed similar significant effects of work exposures regardless of rotation; which did not persist post-work. This beneficial recovery contrasts with the standing only situations. Abbreviations: MSDs: musculoskeletal disorders; MTF: muscle twitch force; RMSE: root mean square error; MVC: maximum voluntary contraction; M: mean; SE: standard error.
Collapse
Affiliation(s)
- Maria-Gabriela Garcia
- Department of Industrial Engineering, Universidad San Francisco de Quito, Quito, Ecuador
| | - Paola Tapia
- Department of Industrial Engineering, Universidad San Francisco de Quito, Quito, Ecuador
| | - Thomas Läubli
- Institute of Occupational and Social Medicine and Health Services Research, University of Tübingen, Tubingen, Germany
| | - Bernard J Martin
- Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
7
|
Callegari B, de Resende MM, da Silva Filho M. Hand rest and wrist support are effective in preventing fatigue during prolonged typing. J Hand Ther 2019; 31:42-51. [PMID: 28236562 DOI: 10.1016/j.jht.2016.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 11/08/2016] [Accepted: 11/20/2016] [Indexed: 02/03/2023]
Abstract
STUDY DESIGN Case series (longitudinal). INTRODUCTION Only few reports concerning the efficacy of commonly used strategies for preventing upper limb occupational disorders associated with prolonged typing exist. PURPOSE OF THE STUDY We aimed to investigate whether the duration of typing and the use of 2 strategies (hand rest and wrist support) changes muscle physiological response and therefore the electromyography records. METHODS We enrolled 25 volunteers, who were unfamiliar with the task and did not have musculoskeletal disorders. The subjects underwent 3 prolonged typing protocols to investigate the efficacy of the 2 adopted strategies in reducing the trapezius, biceps brachii, and extensor digitorum communis fatigue. RESULTS Typing for 1 hour induced muscular fatigue (60%-67% of the subjects). The extensor digitorum communis muscle exhibited the highest percentage of fatigue (72%-84%) after 1 and 4 hours of typing (1 hour, P = .04; 4 hours, P = .02). Fatigue levels in this muscle were significantly reduced (24%) with the use of pause typing (4 hours, P = .045), whereas biceps brachii muscle fatigue was reduced (32%) only with the use of wrist supports (P = .02, after 4 hours). Trapezius muscle fatigue was unaffected by the tested occupational strategies (1 hour, P = .62; 4 hours, P = .85). DISCUSSION Despite presenting an overall tendency for fatigue detected during the application of the protocols, the assessed muscles exhibited different behavior patterns, depending on both the preventive strategy applied and the muscle mechanical role during the task. CONCLUSION Hand rest and wrist support can successfully reduce muscle fatigue in specific upper limb muscles during prolonged typing, leading to a muscle-selective reduction in the occurrence of fatigue and thus provide direct evidence that they may prevent work-related musculoskeletal disorders. LEVEL OF EVIDENCE N/A.
Collapse
Affiliation(s)
- Bianca Callegari
- Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil; Laboratory of Human Movement Studies, Institute of Health Sciences, Federal University of Pará, Belém, Pará, Brazil.
| | | | | |
Collapse
|
8
|
Yang X, Fang Z, Liu M, Zhang Y, Chen Q, Tao K, Han J, Hu D. Free Vascularized Anterolateral Thigh Fascia Lata Flap for Reconstruction in Electrical Burns of the Severely Damaged Finger. J Burn Care Res 2019; 40:242-245. [PMID: 30786284 DOI: 10.1093/jbcr/irz010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This study aimed to introduce a novel technique for reconstructing electricity-damaged fingers using a method combining the free vascularized anterolateral thigh fascia lata flap with skin grafting. From February 2015 to March 2017, 11 patients were enrolled in this retrospective case series. All patients suffered from electrical injury of the fingers and had severe soft tissue defects, with the exposure of tendon, vessels, or nerves. All finger wounds were covered using free vascularized anterolateral thigh fascia lata flaps combined with skin grafting. Eleven fascia flaps completely survived. Two patients suffered from partial grafting skin necrosis due to wound infection and subcutaneous hematoma, separately, which eventually healed after re-graft and dressing changes. All patients achieved satisfactory function and appearance without a need for repeated grafting. Except for the scar, no donor-site morbidity was reported. The present study provided an attractive option for treating electricity-damaged fingers with good outcomes and minimal donor-site morbidity.
Collapse
Affiliation(s)
- Xuekang Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, P. R. China
| | - Zhuoqun Fang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, P. R. China
| | - Mengdong Liu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, P. R. China
| | - Yue Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, P. R. China
| | - Qiaohua Chen
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, P. R. China
| | - Ke Tao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, P. R. China
| | - Juntao Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, P. R. China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, P. R. China
| |
Collapse
|
9
|
Garcia MG, Läubli T, Martin BJ. Muscular and Vascular Issues Induced by Prolonged Standing With Different Work-Rest Cycles With Active or Passive Breaks. HUMAN FACTORS 2018; 60:806-821. [PMID: 29648891 DOI: 10.1177/0018720818769261] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
OBJECTIVE The aim of this study was to evaluate the long-lasting motor, behavioral, physiological, and perceptual effects of prolonged standing work in three work-rest cycle conditions including passive or active rest breaks. BACKGROUND Muscle fatigue has been evidenced after prolonged standing work through physiological and neuromotor measures. It has been postulated that muscle fatigue induced by prolonged work could be attenuated by appropriate scheduling of work and rest periods. However, investigations in this domain remain limited. METHOD Thirty participants simulated standing work for 5 hr with work-rest cycles of short, medium, or long standing periods including passive or active breaks. Lower-leg muscle twitch force (MTF), muscle oxygenation, lower-leg volume, postural stability, force control, and discomfort perception were quantified on 2 days. RESULTS Prolonged standing induced significant changes in all measures immediately after 5 hr of work, indicating a detrimental effect in long-lasting muscle fatigue, performance, discomfort, and vascular aspects. Differences in the measures were not significant between work cycles and/or break type. CONCLUSION Similar physiological and motor alterations were induced by prolonged standing. The absence of difference in the effects induced by the tested work-rest cycles suggests that simply altering the work-rest cycle may not be sufficient to counteract the effects of mainly static standing work. Finally, standing for 3 hr or more shows clear detrimental effects. APPLICATION Prolonged standing is likely to contribute to musculoskeletal and vascular symptoms. A limitation to less than 3 hr of mostly static standing in occupational activities could avoid alterations leading to these symptoms.
Collapse
|
10
|
Wall R, Lips O, Seibt R, Rieger MA, Steinhilber B. Intra- and inter-rater reliability of lower leg waterplethysmography, bioelectrical impedance and muscle twitch force for the use in standing work evaluation. Physiol Meas 2017; 38:701-714. [DOI: 10.1088/1361-6579/aa6711] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
11
|
Garcia MG, Wall R, Steinhilber B, Läubli T, Martin BJ. Long-Lasting Changes in Muscle Twitch Force During Simulated Work While Standing or Walking. HUMAN FACTORS 2016; 58:1117-1127. [PMID: 27613826 DOI: 10.1177/0018720816669444] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 08/10/2016] [Indexed: 05/23/2023]
Abstract
OBJECTIVE The aim of this study was to evaluate the long-lasting effects of prolonged standing work on a hard floor or floor mat and slow-pace walking on muscle twitch force (MTF) elicited by electrical stimulation. BACKGROUND Prolonged standing work may alter lower-leg muscle function, which can be quantified by changes in the MTF amplitude and duration related to muscle fatigue. Ergonomic interventions have been proposed to mitigate fatigue and discomfort; however, their influences remain controversial. METHOD Ten men and eight women simulated standing work in 320-min experiments with three conditions: standing on a hard floor or an antifatigue mat and walking on a treadmill, each including three seated rest breaks. MTF in the gastrocnemius-soleus muscles was evaluated through changes in signal amplitude and duration. RESULTS The significant decrease of MTF amplitude and an increase of duration after standing work on a hard floor and on a mat persisted beyond 1 hr postwork. During walking, significant MTF metrics changes appeared 30 min postwork. MTF amplitude decrease was not significant after the first 110 min in any of the conditions; however, MTF duration was significantly higher than baseline in the standing conditions. CONCLUSION Similar long-lasting weakening of MTF was induced by standing on a hard floor and on an antifatigue mat. However, walking partially attenuated this phenomenon. APPLICATION Mostly static standing is likely to contribute to alterations of MTF in lower-leg muscles and potentially to musculoskeletal disorders regardless of the flooring characteristics. Occupational activities including slow-pace walking may reduce such deterioration in muscle function.
Collapse
Affiliation(s)
| | - Rudolf Wall
- ETH Zürich, Zurich, Switzerland
- University of Tübingen, Tubingen, Germany
- ETH Zürich, Zurich, Switzerland
- University of Michigan, Ann Arbor
| | | | | | | |
Collapse
|