1
|
Balestra C, Lévêque C, Mrakic-Sposta S, Vezzoli A, Wauthy P, Germonpré P, Tillmans F, Guerrero F, Lafère P. Physiology of deep closed circuit rebreather mixed gas diving: vascular gas emboli and biological changes during a week-long liveaboard safari. Front Physiol 2024; 15:1395846. [PMID: 38660539 PMCID: PMC11040087 DOI: 10.3389/fphys.2024.1395846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction: Diving decompression theory hypothesizes inflammatory processes as a source of micronuclei which could increase related risks. Therefore, we tested 10 healthy, male divers. They performed 6-8 dives with a maximum of two dives per day at depths ranging from 21 to 122 msw with CCR mixed gas diving. Methods: Post-dive VGE were counted by echocardiography. Saliva and urine samples were taken before and after each dive to evaluate inflammation: ROS production, lipid peroxidation (8-iso-PGF2), DNA damage (8-OH-dG), cytokines (TNF-α, IL-6, and neopterin). Results: VGE exhibits a progressive reduction followed by an increase (p < 0.0001) which parallels inflammation responses. Indeed, ROS, 8-iso-PGF2, IL-6 and neopterin increases from 0.19 ± 0.02 to 1.13 ± 0.09 μmol.min-1 (p < 0.001); 199.8 ± 55.9 to 632.7 ± 73.3 ng.mg-1 creatinine (p < 0.0001); 2.35 ± 0.54 to 19.5 ± 2.96 pg.mL-1 (p < 0.001); and 93.7 ± 11.2 to 299 ± 25.9 μmol·mol-1 creatinine (p = 0.005), respectively. The variation after each dive was held constant around 158.3% ± 6.9% (p = 0.021); 151.4% ± 5.7% (p < 0.0001); 176.3% ± 11.9% (p < 0.0001); and 160.1% ± 5.6% (p < 0.001), respectively. Discussion: When oxy-inflammation reaches a certain level, it exceeds hormetic coping mechanisms allowing second-generation micronuclei substantiated by an increase of VGE after an initial continuous decrease consistent with a depletion of "first generation" pre-existing micronuclei.
Collapse
Affiliation(s)
- Costantino Balestra
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), Brussels, Belgium
- Physical Activity Teaching Unit, Motor Sciences Department, Université Libre de Bruxelles (ULB), Brussels, Belgium
- DAN Europe Research Division (Roseto-Brussels), Brussels, Belgium
| | - Clément Lévêque
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), Brussels, Belgium
| | | | - Alessandra Vezzoli
- Institute of Clinical Physiology, National Research Council (CNR), Milan, Italy
| | - Pierre Wauthy
- Department of Cardiac Surgery, CHU Brugmann, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Peter Germonpré
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), Brussels, Belgium
- DAN Europe Research Division (Roseto-Brussels), Brussels, Belgium
- Centre for Hyperbaric Oxygen Therapy, Queen Astrid Military Hospital, Brussels, Belgium
| | | | | | - Pierre Lafère
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), Brussels, Belgium
- DAN Europe Research Division (Roseto-Brussels), Brussels, Belgium
- Laboratoire ORPHY EA 4324, University Brest, Brest, France
| |
Collapse
|
2
|
Loddé B, Giroux-Metges MA, Galinat H, Kerspern H, Pougnet R, Saliou P, Guerrero F, Lafère P. Does Decreased Diffusing Capacity of the Lungs for Carbon Monoxide Constitute a Risk of Decompression Sickness in Occupational Divers? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6516. [PMID: 37569056 PMCID: PMC10418885 DOI: 10.3390/ijerph20156516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023]
Abstract
Long-term alterations of pulmonary function (mainly decreased airway conductance and capacity of the lungs to diffuse carbon monoxide (DLCO)) have been described after hyperbaric exposures. However, whether these alterations convey a higher risk for divers' safety has never been investigated before. The purpose of the present pilot study was to assess whether decreased DLCO is associated with modifications of the physiological response to diving. In this case-control observational study, 15 "fit-to-dive" occupational divers were split into two groups according to their DLCO measurements compared to references values, either normal (control) or reduced (DLCO group). After a standardized 20 m/40 min dive in a sea water pool, the peak-flow, vascular gas emboli (VGE) grade, micro-circulatory reactivity, inflammatory biomarkers, thrombotic factors, and plasmatic aldosterone concentration were assessed at different times post-dive. Although VGE were recorded in all divers, no cases of decompression sickness (DCS) occurred. Compared to the control, the latency to VGE peak was increased in the DLCO group (60 vs. 30 min) along with a higher maximal VGE grade (p < 0.0001). P-selectin was higher in the DLCO group, both pre- and post-dive. The plasmatic aldosterone concentration was significantly decreased in the control group (-30.4 ± 24.6%) but not in the DLCO group. Apart from a state of hypocoagulability in all divers, other measured parameters remained unchanged. Our results suggest that divers with decreased DLCO might have a higher risk of DCS. Further studies are required to confirm these preliminary results.
Collapse
Affiliation(s)
- Brice Loddé
- ORPHY Laboratory, EA 4324, Western Brittany University (UBO), 29238 Brest, France
- Occupational Diseases Center, Brest University Hospital, 29609 Brest, France
| | - Marie-Agnès Giroux-Metges
- ORPHY Laboratory, EA 4324, Western Brittany University (UBO), 29238 Brest, France
- Respiratory Functional Exploration Unit, Brest University Hospital, 29609 Brest, France
| | - Hubert Galinat
- Department of Biological Hematology, Brest University Hospital, 29609 Brest, France
| | - Hèlène Kerspern
- Department of Biochemistry and Pharmaco-Toxicology, Brest University Hospital, 29609 Brest, France
| | - Richard Pougnet
- Occupational Diseases Center, Brest University Hospital, 29609 Brest, France
| | - Philippe Saliou
- ISERM, EFS, UMR 1078, GGB, Infection Control Unit, Western Brittany University (UBO), 29238 Brest, France
| | - François Guerrero
- ORPHY Laboratory, EA 4324, Western Brittany University (UBO), 29238 Brest, France
| | - Pierre Lafère
- ORPHY Laboratory, EA 4324, Western Brittany University (UBO), 29238 Brest, France
- Environmental, Occupational, Ageing (Integrative) Physiology Laboratory, HE2B, 1160 Brussels, Belgium
- DAN Europe Research Department, 1160 Brussels, Belgium
| |
Collapse
|
3
|
Garcia-Parraga D, Crespo-Picazo JL, Sterba-Boatwright B, Marco V, Muñoz-Baquero M, Robinson NJ, Stacy B, Fahlman A. New insights into risk variables associated with gas embolism in loggerhead sea turtles ( Caretta caretta) caught in trawls and gillnets. CONSERVATION PHYSIOLOGY 2023; 11:coad048. [PMID: 37425482 PMCID: PMC10326834 DOI: 10.1093/conphys/coad048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 06/02/2023] [Accepted: 06/26/2023] [Indexed: 07/11/2023]
Abstract
Tissue and blood gas embolism (GE) associated with fisheries bycatch are likely a widespread, yet underestimated, cause of sea turtle mortality. Here, we evaluated risk factors associated with tissue and blood GE in loggerhead turtles caught incidentally by trawl and gillnet fisheries on the Valencian coastline of Spain. Of 413 turtles (303 caught by trawl, 110 by gillnet fisheries), 54% (n = 222) exhibited GE. For sea turtles caught in trawls, the probability and severity of GE increased with trawl depth and turtle body mass. In addition, trawl depth and the GE score together explained the probability of mortality (P[mortality]) following recompression therapy. Specifically, a turtle with a GE score of 3 caught in a trawl deployed at 110 m had a P[mortality] of ~50%. For turtles caught in gillnets, no risk variables were significantly correlated with either the P[GE] or GE score. However, gillnet depth or GE score, separately, explained P[mortality], and a turtle caught at 45 m or with a GE score between 3 and 4 had a P[mortality] of 50%. Differences in the fishery characteristics precluded direct comparison of GE risk and mortality between these gear types. Although P[mortality] is expected to be significantly higher in untreated turtles released at sea, our findings can improve estimates of sea turtle mortality associated with trawls and gillnets, and help guide associate conservation efforts.
Collapse
Affiliation(s)
- Daniel Garcia-Parraga
- Fundación Oceanogràfic de la Comunitat Valenciana, Gran Vía Marqués del Turia 19, 46005 Valencia, Spain
| | - Jose Luis Crespo-Picazo
- Fundación Oceanogràfic de la Comunitat Valenciana, Gran Vía Marqués del Turia 19, 46005 Valencia, Spain
| | | | - Vicente Marco
- Fundación Oceanogràfic de la Comunitat Valenciana, Gran Vía Marqués del Turia 19, 46005 Valencia, Spain
| | - Marta Muñoz-Baquero
- Fundación Oceanogràfic de la Comunitat Valenciana, Gran Vía Marqués del Turia 19, 46005 Valencia, Spain
| | - Nathan J Robinson
- Fundación Oceanogràfic de la Comunitat Valenciana, Gran Vía Marqués del Turia 19, 46005 Valencia, Spain
- Institut de Ciències del Mar, Spanish National Research Council - Consejo Superior de Investigaciones Científicas, Barcelona 08003, Spain
| | - Brian Stacy
- National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Office of Protected Resources, University of Florida (Duty Station), PO Box 110885, 2187 Mowry Road, Gainesville, FL 32611, USA
| | | |
Collapse
|
4
|
Currens J, Dayton PA, Buzzacott P, Papadopoulou V. Hyperbaric exposure in rodents with non-invasive imaging assessment of decompression bubbles: A scoping review protocol. PLoS One 2022; 17:e0274241. [PMID: 36084114 PMCID: PMC9462730 DOI: 10.1371/journal.pone.0274241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/24/2022] [Indexed: 11/18/2022] Open
Abstract
Hyperbaric pressure experiments have provided researchers with valuable insights into the effects of pressure changes, using various species as subjects. Notably, extensive work has been done to observe rodents subjected to hyperbaric pressure, with differing imaging modalities used as an analytical tool. Decompression puts subjects at a greater risk for injury, which often justifies conducting such experiments using animal models. Therefore, it is important to provide a broad view of previously utilized methods for decompression research to describe imaging tools available for researchers to conduct rodent decompression experiments, to prevent duplicate experimentation, and to identify significant gaps in the literature for future researchers. Through a scoping review of published literature, we will provide an overview of decompression bubble information collected from rodent experiments using various non-invasive methods of ultrasound for decompression bubble assessment. This review will adhere to methods outlined by the Joanna Briggs Institute Manual for Evidence Synthesis and be reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses for Scoping Reviews (PRISMA-ScR). Literature will be obtained from the PubMed, Embase, and Scopus databases. Extracted sources will first be sorted to a list for inclusion based on title and abstract. Two independent researchers will then conduct full-text screening to further refine included papers to those relevant to the scope. The final review manuscript will cover methods, data, and findings for each included publication relevant to non-invasive in vivo bubble imaging.
Collapse
Affiliation(s)
- Joshua Currens
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina, United States of America
| | - Paul A. Dayton
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina, United States of America
| | - Peter Buzzacott
- Curtin School of Nursing, Curtin University, Perth, Australia
| | - Virginie Papadopoulou
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
5
|
Lagier P, Lucas D, Dewitte J, Pougnet R, Loddé B. Motifs d’arrêt de la surveillance médicale de recours des plongeurs professionnels. ARCH MAL PROF ENVIRO 2022. [DOI: 10.1016/j.admp.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
6
|
Karimpour K, Brenner RJ, Dong GZ, Cleve J, Martina S, Harris C, Graf GJ, Kistler BJ, Hoang AH, Jackson O, Papadopoulou V, Tillmans F. Comparison of Newer Hand-Held Ultrasound Devices for Post-Dive Venous gas Emboli Quantification to Standard Echocardiography. Front Physiol 2022; 13:907651. [PMID: 35755430 PMCID: PMC9222333 DOI: 10.3389/fphys.2022.907651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/16/2022] [Indexed: 11/22/2022] Open
Abstract
Decompression sickness (DCS) can result from the growth of bubbles in tissues and blood during or after a reduction in ambient pressure, for example in scuba divers, compressed air workers or astronauts. In scuba diving research, post-dive bubbles are detectable in the venous circulation using ultrasound. These venous gas emboli (VGE) are a marker of decompression stress, and larger amounts of VGE are associated with an increased probability of DCS. VGE are often observed for hours post-dive and differences in their evolution over time have been reported between individuals, but also for the same individual, undergoing a same controlled exposure. Thus, there is a need for small, portable devices with long battery lives to obtain more ultrasonic data in the field to better assess this inter- and intra-subject variability. We compared two new handheld ultrasound devices against a standard device that is currently used to monitor post-dive VGE in the field. We conclude that neither device is currently an adequate replacement for research studies where precise VGE grading is necessary.
Collapse
Affiliation(s)
- Kamellia Karimpour
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, United States
| | | | | | - Jayne Cleve
- Divers Alert Network, Durham, NC, United States
| | | | | | | | | | - Andrew H Hoang
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, United States
| | | | - Virginie Papadopoulou
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, United States
| | | |
Collapse
|
7
|
Lambrechts K, Germonpré P, Vandenheede J, Delorme M, Lafère P, Balestra C. Mini Trampoline, a New and Promising Way of SCUBA Diving Preconditioning to Reduce Vascular Gas Emboli? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:5410. [PMID: 35564805 PMCID: PMC9105492 DOI: 10.3390/ijerph19095410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 12/31/2022]
Abstract
Background: Despite evolution in decompression algorithms, decompression illness is still an issue nowadays. Reducing vascular gas emboli (VGE) production or preserving endothelial function by other means such as diving preconditioning is of great interest. Several methods have been tried, either mechanical, cardiovascular, desaturation aimed or biochemical, with encouraging results. In this study, we tested mini trampoline (MT) as a preconditioning strategy. Methods: In total, eight (five females, three males; mean age 36 ± 16 years; body mass index 27.5 ± 7.1 kg/m2) healthy, non-smoking, divers participated. Each diver performed two standardized air dives 1 week apart with and without preconditioning, which consisted of ±2 min of MT jumping. All dives were carried out in a pool (NEMO 33, Brussels, Belgium) at a depth of 25 m for 25 min. VGE counting 30 and 60 min post-dive was recorded by echocardiography together with an assessment of endothelial function by flow-mediated dilation (FMD). Results: VGE were significantly reduced after MT (control: 3.1 ± 4.9 VGE per heartbeat vs. MT: 0.6 ± 1.1 VGE per heartbeat, p = 0.031). Post-dive FMD exhibited a significant decrease in the absence of preconditioning (92.9% ± 7.4 of pre-dive values, p = 0.03), as already described. MT preconditioning prevented this FMD decrease (103.3% ± 7.1 of pre-dive values, p = 0.30). FMD difference is significant (p = 0.03). Conclusions: In our experience, MT seems to be a very good preconditioning method to reduce VGE and endothelial changes. It may become the easiest, cheapest and more efficient preconditioning for SCUBA diving.
Collapse
Affiliation(s)
- Kate Lambrechts
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1180 Brussels, Belgium; (K.L.); (P.G.); (J.V.); (M.D.); (P.L.)
| | - Peter Germonpré
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1180 Brussels, Belgium; (K.L.); (P.G.); (J.V.); (M.D.); (P.L.)
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
- Centre for Hyperbaric Oxygen Therapy, Queen Astrid Military Hospital, 1120 Brussels, Belgium
| | - Joaquim Vandenheede
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1180 Brussels, Belgium; (K.L.); (P.G.); (J.V.); (M.D.); (P.L.)
- Motor Sciences Department, Physical Activity Teaching Unit, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Manon Delorme
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1180 Brussels, Belgium; (K.L.); (P.G.); (J.V.); (M.D.); (P.L.)
| | - Pierre Lafère
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1180 Brussels, Belgium; (K.L.); (P.G.); (J.V.); (M.D.); (P.L.)
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
- Laboratoire ORPHY, EA4324, Université de Bretagne Occidentale (UBO), 29238 Brest, France
| | - Costantino Balestra
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1180 Brussels, Belgium; (K.L.); (P.G.); (J.V.); (M.D.); (P.L.)
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
- Motor Sciences Department, Physical Activity Teaching Unit, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| |
Collapse
|
8
|
„Cardiovascular Top Three” - Can Patients with the Most Common Cardiovascular Conditions Become Candidates for Recreational Scuba Diving? POLISH HYPERBARIC RESEARCH 2022. [DOI: 10.2478/phr-2020-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
Cardiovascular diseases such as coronary artery disease, hypertension, and diabetes are some of the most common conditions among the population. An ever-increasing number of recreational divers forces us to consider the impact on unprepared diving patients with cardiovascular diseases, in whom profound changes occur during the dive. People in at-risk groups should have a medical check-up before diving to minimise the risk of possible complications.
Collapse
|
9
|
Rosén A, Gennser M, Oscarsson N, Kvarnström A, Sandström G, Seeman-Lodding H, Simrén J, Zetterberg H. Protein tau concentration in blood increases after SCUBA diving: an observational study. Eur J Appl Physiol 2022; 122:993-1005. [PMID: 35142945 PMCID: PMC8926952 DOI: 10.1007/s00421-022-04892-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/05/2022] [Indexed: 11/27/2022]
Abstract
Purpose It is speculated that diving might be harmful to the nervous system. The aim of this study was to determine if established markers of neuronal injury were increased in the blood after diving. Methods Thirty-two divers performed two identical dives, 48 h apart, in a water-filled hyperbaric chamber pressurized to an equivalent of 42 m of sea water for 10 min. After one of the two dives, normobaric oxygen was breathed for 30 min, with air breathed after the other. Blood samples were obtained before and at 30–45 and 120 min after diving. Concentrations of glial fibrillary acidic, neurofilament light, and tau proteins were measured using single molecule array technology. Doppler ultrasound was used to detect venous gas emboli. Results Tau was significantly increased at 30–45 min after the second dive (p < 0.0098) and at 120 min after both dives (p < 0.0008/p < 0.0041). Comparison of matching samples showed that oxygen breathing after diving did not influence tau results. There was no correlation between tau concentrations and the presence of venous gas emboli. Glial fibrillary acidic protein was decreased 30–45 min after the first dive but at no other point. Neurofilament light concentrations did not change. Conclusions Tau seems to be a promising marker of dive-related neuronal stress, which is independent of the presence of venous gas emboli. Future studies could validate these results and determine if there is a quantitative relationship between dive exposure and change in tau blood concentration. Supplementary Information The online version contains supplementary material available at 10.1007/s00421-022-04892-9.
Collapse
Affiliation(s)
- Anders Rosén
- Department of Anaesthesia and Intensive Care Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden.
- Department of Anaesthesia and Intensive Care Medicine, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Mikael Gennser
- Swedish Aerospace Physiology Centre, Division of Environmental Physiology, Department of Biomedical Engineering and Health Systems, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, KTH, Stockholm, Sweden
| | - Nicklas Oscarsson
- Department of Anaesthesia and Intensive Care Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Anaesthesia and Intensive Care Medicine, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Andreas Kvarnström
- Department of Anaesthesia and Intensive Care Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Anaesthesia and Intensive Care Medicine, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Göran Sandström
- Department of Anaesthesia and Intensive Care Medicine, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Swedish Armed Forces, Center for Defence Medicine, Gothenburg, Sweden
| | - Helen Seeman-Lodding
- Department of Anaesthesia and Intensive Care Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Anaesthesia and Intensive Care Medicine, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Joel Simrén
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute, University College London, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| |
Collapse
|
10
|
Ånell R, Grönkvist M, Eiken O, Elia A, Gennser M. Intra-Individual Test-Retest Variation Regarding Venous Gas Bubble Formation During High Altitude Exposures. Aerosp Med Hum Perform 2022; 93:46-49. [PMID: 35063055 DOI: 10.3357/amhp.5938.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
INTRODUCTION: Hypobaric decompression sickness remains a problem during high-altitude aviation. The prevalence of venous gas emboli (VGE) serves as a marker of decompression stress and has been used as a method in evaluating the safety/risk associated with aviation profiles and/or gas mixtures. However, information is lacking concerning the variability of VGE formation when exposed to the same hypobaric profile on different occasions. In this paper, intra-individual test-retest variation regarding bubble formation during repeated hypobaric exposures is presented. The data can be used to determine the sample size needed for statistical power.METHOD: A total of 19 male, nonsmoking subjects volunteered for altitude exposures to 24,000 ft (7315 m). VGE was measured using ultrasound scanning and scored according to the Eftedal-Brubakk (EB) scale. Intraindividual test-retest variation in bubble formation (maximum VGE) was evaluated in subjects exposed more than once to hypobaric pressure. The statistical reliability was examined between paired exposures using the Intraclass Correlation test. G*Power version 3.1.9.6 was used for power calculations.RESULTS: During repeated 20-30 and 70-min exposures to 24,000 ft, 42% (N = 19, CI 23-67%) and 29% (N = 7, CI 5-70%) of the subjects varied between maximum EB scores < 3 and ≥ 3. The sample size needed to properly reject statistical significance of 1 EB step nominal difference between two paired exposures varied between 29-51 subjects.CONCLUSION: The large intraindividual test-retest variations in bubble grades during repeated hypobaric exposures highlight the need for relatively large numbers of subjects to reach statistical power when there are no or small differences in decompression stress between the exposures.Ånell R, Grönkvist M, Eiken O, Elia A, Gennser M. Intra-individual test-retest variation regarding venous gas bubble formation during high altitude exposures. Aerosp Med Hum Perform. 2022; 93(1):46-49.
Collapse
|
11
|
Balestra C, Guerrero F, Theunissen S, Germonpré P, Lafère P. Physiology of repeated mixed gas 100-m wreck dives using a closed-circuit rebreather: a field bubble study. Eur J Appl Physiol 2021; 122:515-522. [PMID: 34839432 PMCID: PMC8627581 DOI: 10.1007/s00421-021-04856-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/19/2021] [Indexed: 10/25/2022]
Abstract
PURPOSE Data regarding decompression stress after deep closed-circuit rebreather (CCR) dives are scarce. This study aimed to monitor technical divers during a wreck diving expedition and provide an insight in venous gas emboli (VGE) dynamics. METHODS Diving practices of ten technical divers were observed. They performed a series of three consecutive daily dives around 100 m. VGE counts were measured 30 and 60 min after surfacing by both cardiac echography and subclavian Doppler graded according to categorical scores (Eftedal-Brubakk and Spencer scale, respectively) that were converted to simplified bubble grading system (BGS) for the purpose of analysis. Total body weight and fluids shift using bioimpedancemetry were also collected pre- and post-dive. RESULTS Depth-time profiles of the 30 recorded man-dives were 97.3 ± 26.4 msw [range: 54-136] with a runtime of 160 ± 65 min [range: 59-270]. No clinical decompression sickness (DCS) was detected. The echographic frame-based bubble count par cardiac cycle was 14 ± 13 at 30 min and 13 ± 13 at 60 min. There is no statistical difference neither between dives, nor between time of measurements (P = 0.07). However, regardless of the level of conservatism used, a high incidence of high-grade VGE was detected. Doppler recordings with the O'dive were highly correlated with echographic recordings (Spearman r of 0.81, P = 0.008). CONCLUSION Although preliminary, the present observation related to real CCR deep dives questions the precedence of decompression algorithm over individual risk factors and pleads for an individual approach of decompression.
Collapse
Affiliation(s)
- Costantino Balestra
- Environmental, Occupational, Ageing (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), Avenue Schaller, 91, 1160, Brussels, Belgium.,Physical Activity Teaching Unit, Motor Sciences Department, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium.,DAN Europe Research Department, Brussels, Belgium
| | - François Guerrero
- Laboratoire ORPHY, EA 4324, Université de Bretagne Occidentale, Brest, France
| | - Sigrid Theunissen
- Environmental, Occupational, Ageing (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), Avenue Schaller, 91, 1160, Brussels, Belgium
| | - Peter Germonpré
- Environmental, Occupational, Ageing (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), Avenue Schaller, 91, 1160, Brussels, Belgium.,Centre for Hyperbaric Oxygen Therapy, Military Hospital Queen Astrid, Brussels, Belgium.,DAN Europe Research Department, Brussels, Belgium
| | - Pierre Lafère
- Environmental, Occupational, Ageing (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), Avenue Schaller, 91, 1160, Brussels, Belgium. .,Centre for Hyperbaric Oxygen Therapy, Military Hospital Queen Astrid, Brussels, Belgium. .,Laboratoire ORPHY, EA 4324, Université de Bretagne Occidentale, Brest, France. .,DAN Europe Research Department, Brussels, Belgium.
| |
Collapse
|
12
|
Abstract
An air embolism is induced by intravascular bubbles that block the blood flow in vessels, which causes a high risk of pulmonary hypertension and myocardial and cerebral infarction. However, it is still unclear how a moving bubble is stopped in the blood flow to form an air embolism in small vessels. In this work, microfluidic experiments, in vivo and in vitro, are performed in small vessels, where bubbles are seen to deform and stop gradually in the flow. A clot is always found to originate at the tail of a moving bubble, which is attributed to the special flow field around the bubble. As the clot grows, it breaks the lubrication film between the bubble and the channel wall; thus, the friction force is increased to stop the bubble. This study illustrates the stopping process of elongated bubbles in small vessels and brings insight into the formation of air embolism.
Collapse
|
13
|
Sartini S, Barbera P, Cutuli O, Frisoni P, Spena C, Tallone R. Convulsions in a Young Scuba Diver. Ann Emerg Med 2021; 77:124-137. [PMID: 33349362 DOI: 10.1016/j.annemergmed.2020.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Stefano Sartini
- Emergency Medicine Department, University Hospital San Martino, Genoa, Italy
| | - Paolo Barbera
- Emergency Medicine Department, University Hospital San Martino, Genoa, Italy
| | - Ombretta Cutuli
- Emergency Medicine Department, University Hospital San Martino, Genoa, Italy
| | - Paolo Frisoni
- Anesthesia and Intensive Care Department University Hospital San Martino, Genoa, Italy
| | - Claudio Spena
- Anesthesia and Intensive Care Department University Hospital San Martino, Genoa, Italy
| | - Roberto Tallone
- Emergency Medicine Department, University Hospital San Martino, Genoa, Italy
| |
Collapse
|
14
|
Germonpré P, Van der Eecken P, Van Renterghem E, Germonpré FL, Balestra C. First impressions: Use of the Azoth Systems O'Dive subclavian bubble monitor on a liveaboard dive vessel. Diving Hyperb Med 2020; 50:405-412. [PMID: 33325023 DOI: 10.28920/dhm50.4.405-412] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/07/2020] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The Azoth Systems O'Dive bubble monitor is marketed at recreational and professional divers as a tool to improve personal diving decompression safety. We report the use of this tool during a 12-day dive trip aboard a liveaboard vessel. METHODS Six divers were consistently monitored according to the user manual of the O'Dive system. Data were synchronised with the Azoth server whenever possible (depending on cell phone data signal). Information regarding ease of use, diver acceptance and influence on dive behaviour were recorded. RESULTS In total, 157 dives were completely monitored over 11 diving days. Formal evaluations were only available after six days because of internet connection problems. Sixty-one dives resulted in the detection of bubbles, mostly in one diver, none of which produced any symptoms of decompression illness. CONCLUSIONS The O'Dive system may contribute to increasing dive safety by making divers immediately aware of the potential consequences of certain types of diving behaviour. It was noted that bubble monitoring either reinforced divers in their safe diving habits or incited them to modify their dive planning. Whether this is a lasting effect is not known.
Collapse
Affiliation(s)
- Peter Germonpré
- Centre for Hyperbaric Oxygen Therapy, Military Hospital Brussels, Belgium.,Medyssea EVR, Expedition and Diving Medicine, Ghent, Belgium.,Environmental, Occupational, Ageing (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), Brussels, Belgium.,Corresponding author: Dr Peter Germonpré, Centre for Hyperbaric Oxygen Therapy, Military Hospital Brussels, Belgium,
| | | | - Elke Van Renterghem
- Medyssea EVR, Expedition and Diving Medicine, Ghent, Belgium.,Emergency Department, St Lucas Hospital, Ghent, Belgium
| | | | - Costantino Balestra
- Environmental, Occupational, Ageing (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), Brussels, Belgium.,DAN Europe Research Department, Brussels, Belgium and Roseto, Italy
| |
Collapse
|
15
|
Biomarkers of neuronal damage in saturation diving-a controlled observational study. Eur J Appl Physiol 2020; 120:2773-2784. [PMID: 32975632 PMCID: PMC7674315 DOI: 10.1007/s00421-020-04499-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 09/10/2020] [Indexed: 11/17/2022]
Abstract
Purpose A prospective and controlled observational study was performed to determine if the central nervous system injury markers glial fibrillary acidic protein (GFAp), neurofilament light (NfL) and tau concentrations changed in response to a saturation dive. Methods The intervention group consisted of 14 submariners compressed to 401 kPa in a dry hyperbaric chamber. They remained pressurized for 36 h and were then decompressed over 70 h. A control group of 12 individuals was used. Blood samples were obtained from both groups before, during and after hyperbaric exposure, and from the intervention group after a further 25–26 h. Results There were no statistically significant changes in the concentrations of GFAp, NfL and tau in the intervention group. During hyperbaric exposure, GFAp decreased in the control group (mean/median − 15.1/ − 8.9 pg·mL−1, p < 0.01) and there was a significant difference in absolute change of GFAp and NfL between the groups (17.7 pg·mL−1, p = 0.02 and 2.34 pg·mL−1, p = 0.02, respectively). Albumin decreased in the control group (mean/median − 2.74 g/L/ − 0.95 g/L, p = 0.02), but there was no statistically significant difference in albumin levels between the groups. In the intervention group, haematocrit and mean haemoglobin values were slightly increased after hyperbaric exposure (mean/median 2.3%/1.5%, p = 0.02 and 4.9 g/L, p = 0.06, respectively). Conclusion Hyperbaric exposure to 401 kPa for 36 h was not associated with significant increases in GFAp, NfL or tau concentrations. Albumin levels, changes in hydration or diurnal variation were unlikely to have confounded the results. Saturation exposure to 401 kPa seems to be a procedure not harmful to the central nervous system. Trial registration ClinicalTrials.gov NCT03192930.
Collapse
|
16
|
Schirato SR, El-Dash I, El-Dash V, Bizzarro B, Marroni A, Pieri M, Cialoni D, Chaui-Berlinck JG. Association Between Heart Rate Variability and Decompression-Induced Physiological Stress. Front Physiol 2020; 11:743. [PMID: 32714210 PMCID: PMC7351513 DOI: 10.3389/fphys.2020.00743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/08/2020] [Indexed: 01/09/2023] Open
Abstract
The purpose of this study was to analyze the correlation between decompression-related physiological stress markers, given by inflammatory processes and immune system activation and changes in Heart Rate Variability, evaluating whether Heart Rate Variability can be used to estimate the physiological stress caused by the exposure to hyperbaric environments and subsequent decompression. A total of 28 volunteers participated in the experimental protocol. Electrocardiograms were performed; blood samples were obtained for the quantification of red cells, hemoglobin, hematocrit, neutrophils, lymphocytes, platelets, aspartate transaminase (AST), alanine aminotransferase (ALT), and for immunophenotyping and microparticles (MP) research through Flow Cytometry, before and after each experimental protocol from each volunteer. Also, myeloperoxidase (MPO) expression and microparticles (MPs) deriving from platelets, neutrophils and endothelial cells were quantified. Negative associations between the standard deviation of normal-to-normal intervals (SDNN) in the time domain, the High Frequency in the frequency domain and the total number of circulating microparticles was observed (p-value = 0.03 and p-value = 0.02, respectively). The pre and post exposure ratio of variation in the number of circulating microparticles was negatively correlated with SDNN (p-value = 0.01). Additionally, a model based on the utilization of Radial Basis Function Neural Networks (RBF-NN) was created and was able to predict the SDNN ratio of variation based on the variation of specific inflammatory markers (RMSE = 0.06).
Collapse
Affiliation(s)
- Sergio Rhein Schirato
- Department of Physiology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Ingrid El-Dash
- Department of Physiology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Vivian El-Dash
- Department of Physiology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Bruna Bizzarro
- Peter Murányi Experimental Research Center, Albert Einstein Hospital, São Paulo, Brazil
| | | | - Massimo Pieri
- DAN Europe Research Division, Roseto degli Abruzzi, Italy
| | - Danilo Cialoni
- DAN Europe Research Division, Roseto degli Abruzzi, Italy
- Environmental Physiology and Medicine Laboratory, Department of Biomedical Sciences, University of Padova, Padua, Italy
| | | |
Collapse
|
17
|
Blasselle A, Theron M, Gardette B, Dugrenot E. A new form of admissible pressure for Haldanian decompression models. Comput Biol Med 2019; 115:103518. [PMID: 31699677 DOI: 10.1016/j.compbiomed.2019.103518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/20/2019] [Accepted: 10/20/2019] [Indexed: 11/17/2022]
Abstract
In this article, we propose and study a new form of admissible pressure in the Haldanian framework. We then use it to study the surjectivity of the Gradient Factors on the space of the reachable decompression profiles, and investigate a particular case. This case leads to the proposition of a decompression strategy, whose crucial parameter is the ascent rate. An appropriate ascent rate is suggested as recommended by COMEX, through a physiologically relevantmethod. This new strategy enables the unification of the COMEX approach (not based on a tissuesaturation theory), with the Haldanian method.
Collapse
Affiliation(s)
| | - Michael Theron
- ORPHY laboratory, University of Western Brittany, IBSAM, Brest, France
| | | | - Emmanuel Dugrenot
- Tek Diving SAS, Brest, France; ORPHY laboratory, University of Western Brittany, IBSAM, Brest, France
| |
Collapse
|
18
|
Mayer D, Ferenz KB. Perfluorocarbons for the treatment of decompression illness: how to bridge the gap between theory and practice. Eur J Appl Physiol 2019; 119:2421-2433. [PMID: 31686213 PMCID: PMC6858394 DOI: 10.1007/s00421-019-04252-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/28/2019] [Indexed: 12/16/2022]
Abstract
Decompression illness (DCI) is a complex clinical syndrome caused by supersaturation of respiratory gases in blood and tissues after abrupt reduction in ambient pressure. The resulting formation of gas bubbles combined with pulmonary barotrauma leads to venous and arterial gas embolism. Severity of DCI depends on the degree of direct tissue damage caused by growing bubbles or indirect cell injury by impaired oxygen transport, coagulopathy, endothelial dysfunction, and subsequent inflammatory processes. The standard therapy of DCI requires expensive and not ubiquitously accessible hyperbaric chambers, so there is an ongoing search for alternatives. In theory, perfluorocarbons (PFC) are ideal non-recompressive therapeutics, characterized by high solubility of gases. A dual mechanism allows capturing of excess nitrogen and delivery of additional oxygen. Since the 1980s, numerous animal studies have proven significant benefits concerning survival and reduction in DCI symptoms by intravenous application of emulsion-based PFC preparations. However, limited shelf-life, extended organ retention and severe side effects have prevented approval for human usage by regulatory authorities. These negative characteristics are mainly due to emulsifiers, which provide compatibility of PFC to the aqueous medium blood. The encapsulation of PFC with amphiphilic biopolymers, such as albumin, offers a new option to achieve the required biocompatibility avoiding toxic emulsifiers. Recent studies with PFC nanocapsules, which can also be used as artificial oxygen carriers, show promising results. This review summarizes the current state of research concerning DCI pathology and the therapeutic use of PFC including the new generation of non-emulsified formulations based on nanocapsules.
Collapse
Affiliation(s)
- Dirk Mayer
- Department of Gastroenterology, REGIOMED Klinikum Coburg, 96450, Coburg, Germany
| | - Katja Bettina Ferenz
- Institute of Physiology, CENIDE, University of Duisburg-Essen, University Hospital Essen, Hufelandstr. 55, 45122, Essen, Germany.
| |
Collapse
|
19
|
Abstract
Introduction: Internationally it is estimated that six million people participate in self-contained underwater breathing apparatus (SCUBA) diving each year. Registries suggest a significant proportion of divers have a current or historical diagnosis of asthma. Previously individuals with asthma were prohibited from diving, however, several contemporary guidelines suggest a select population of patients with asthma may be able to dive with an acceptable degree of risk. Areas covered: Divers with asthma may be at an increased risk of a variety of diving-related medical injuries including; pulmonary barotrauma (PBT), pneumothorax, pneumomediastinum, arterial gas embolism (AGE), reduction in pulmonary function, bronchospasm and decompression sickness (DCS). This article will discuss the latest evidence on the incidence of adverse events in diving with a focus on those caused by asthma. Expert opinion: Physicians can be faced with the difficult task of counseling patients with asthma who wish to dive. This review article will aim to explore the current guidelines which can assist a physician in providing a comprehensive dive safety assessment.
Collapse
Affiliation(s)
| | - Giles Dixon
- University of Bristol Medical School , Bristol , UK.,Great Western Hospital NHS Foundation Trust , Swindon , UK
| | | |
Collapse
|
20
|
Imbert JP, Egi SM, Germonpré P, Balestra C. Static Metabolic Bubbles as Precursors of Vascular Gas Emboli During Divers' Decompression: A Hypothesis Explaining Bubbling Variability. Front Physiol 2019; 10:807. [PMID: 31354506 PMCID: PMC6638188 DOI: 10.3389/fphys.2019.00807] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 06/06/2019] [Indexed: 12/15/2022] Open
Abstract
Introduction The risk for decompression sickness (DCS) after hyperbaric exposures (such as SCUBA diving) has been linked to the presence and quantity of vascular gas emboli (VGE) after surfacing from the dive. These VGE can be semi-quantified by ultrasound Doppler and quantified via precordial echocardiography. However, for an identical dive, VGE monitoring of divers shows variations related to individual susceptibility, and, for a same diver, dive-to-dive variations which may be influenced by pre-dive pre-conditioning. These variations are not explained by currently used algorithms. In this paper, we present a new hypothesis: individual metabolic processes, through the oxygen window (OW) or Inherent Unsaturation of tissues, modulate the presence and volume of static metabolic bubbles (SMB) that in turn act as precursors of circulating VGE after a dive. Methods We derive a coherent system of assumptions to describe static gas bubbles, located on the vessel endothelium at hydrophobic sites, that would be activated during decompression and become the source of VGE. We first refer to the OW and show that it creates a local tissue unsaturation that can generate and stabilize static gas phases in the diver at the surface. We then use Non-extensive thermodynamics to derive an equilibrium equation that avoids any geometrical description. The final equation links the SMB volume directly to the metabolism. Results and Discussion Our model introduces a stable population of small gas pockets of an intermediate size between the nanobubbles nucleating on the active sites and the VGE detected in the venous blood. The resulting equation, when checked against our own previously published data and the relevant scientific literature, supports both individual variation and the induced differences observed in pre-conditioning experiments. It also explains the variability in VGE counts based on age, fitness, type and frequency of physical activities. Finally, it fits into the general scheme of the arterial bubble assumption for the description of the DCS risk. Conclusion Metabolism characterization of the pre-dive SMB population opens new possibilities for decompression algorithms by considering the diver's individual susceptibility and recent history (life style, exercise) to predict the level of VGE during and after decompression.
Collapse
Affiliation(s)
| | - Salih Murat Egi
- Department of Computer Engineering, Galatasaray University, Istanbul, Turkey.,DAN Europe Research Division, Divers Alert Network (DAN), Roseto, Italy
| | - Peter Germonpré
- DAN Europe Research Division, Divers Alert Network (DAN), Roseto, Italy.,Centre for Hyperbaric Oxygen Therapy, Military Hospital Brussels, Brussels, Belgium
| | - Costantino Balestra
- DAN Europe Research Division, Divers Alert Network (DAN), Roseto, Italy.,Environmental, Occupational and Ageing Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), Brussels, Belgium
| |
Collapse
|
21
|
Balestra C, Germonpré P, Rocco M, Biancofiore G, Kot J. Diving physiopathology: the end of certainties? Food for thought. Minerva Anestesiol 2019; 85:1129-1137. [PMID: 31238641 DOI: 10.23736/s0375-9393.19.13618-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Our understanding of decompression physiopathology has slowly improved during this last decade and some uncertainties have disappeared. A better understanding of anatomy and functional aspects of patent foramen ovale (PFO) have slowly resulted in a more liberal approach toward the medical fitness to dive for those bearing a PFO. Circulating vascular gas emboli (VGE) are considered the key actors in development of decompression sickness and can be considered as markers of decompression stress indicating induction of pathophysiological processes not necessarily leading to occurrence of disease symptoms. During the last decade, it has appeared possible to influence post-dive VGE by a so-called "preconditioning" as a pre-dive denitrogenation, exercise or some pharmacological agents. In the text we have deeply examined all the scientific evidence about this complicated but challenging theme. Finally, the role of the "normobaric oxygen paradox" has been clarified and it is not surprising that it could be involved in neuroprotection and cardioprotection. However, the best level of inspired oxygen and the exact time frame to achieve optimal effect is still not known. The aim of this paper was to reflect upon the most actual uncertainties and distil out of them a coherent, balanced advice towards the researchers involved in gas-bubbles-related pathologies.
Collapse
Affiliation(s)
- Costantino Balestra
- Laboratory of Environmental and Occupational (Integrative) Physiology, Haute Ecole Bruxelles-Brabant, Auderghem, Brussels, Belgium.,Division of Research, Divers Alert Network Europe, Gharghur, Malta
| | - Peter Germonpré
- Laboratory of Environmental and Occupational (Integrative) Physiology, Haute Ecole Bruxelles-Brabant, Auderghem, Brussels, Belgium.,Division of Research, Divers Alert Network Europe, Gharghur, Malta.,Center for Hyperbaric Oxygen Therapy, Military Hospital of Brussels, Brussels, Belgium
| | - Monica Rocco
- Unit of Intensive Care, Department of Surgical and Medical Science and Translational Medicine, Sapienza University, Rome, Italy -
| | | | - Jacek Kot
- National Center of Hyperbaric Medicine in Gdynia, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
22
|
Boussuges A, Chaumet G, Vallée N, Risso JJ, Pontier JM. High Bubble Grade After Diving: The Role of the Blood Pressure Regimen. Front Physiol 2019; 10:749. [PMID: 31281261 PMCID: PMC6595181 DOI: 10.3389/fphys.2019.00749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/31/2019] [Indexed: 01/20/2023] Open
Abstract
Introduction: Previous studies have suggested that the circulatory system was involved in the production of circulatory bubbles after diving. This study was designed to research the cardio-vascular function characteristics related to the production of high bubble grades after diving. Methods: Thirty trained divers were investigated both at baseline and after a 30-msw SCUBA dive. At baseline, the investigations included blood pressure measurement, echocardiography, and assessment of aerobic fitness using VO2 peak measurement. Blood samples were taken at rest, to measure the plasma concentration of NOx and endothelin-1. After diving, circulating bubbles were detected in the pulmonary artery by pulsed Doppler at 20-min intervals during the 90 min after surfacing. The global bubble quantity production was estimated by the KISS index. Results: Divers with a high bubble grade (KISS > 7.5) had systolic blood pressure, pulse pressure, weight, and height significantly higher than divers with a low bubble grade. By contrast, total arterial compliance, plasma NOx level, and percentage of predicted value of peak oxygen uptake were significantly lower in divers with a high bubble grade. Cardiac dimensions, left ventricular function, and plasma endothelin-1 concentration were not significantly different between groups. The multivariate analysis identified blood pressure as the main contributor of the quantity of bubble production. The model including pulse pressure, plasma NOx level, and percentage of predicted value of peak oxygen uptake has an explanatory power of 49.22%. Conclusion: The viscoelastic properties of the arterial tree appeared to be an important contributor to the circulating bubble production after a dive.
Collapse
Affiliation(s)
- Alain Boussuges
- ERRSO, Institut de Recherche Biomédicale des Armées (IRBA), Toulon, France.,Center for Cardiovascular and Nutrition Research (C2VN), INSERM, INRA, Aix Marseille Université, Marseille, France
| | | | - Nicolas Vallée
- ERRSO, Institut de Recherche Biomédicale des Armées (IRBA), Toulon, France
| | - Jean Jacques Risso
- ERRSO, Institut de Recherche Biomédicale des Armées (IRBA), Toulon, France
| | - Jean Michel Pontier
- Cephismer, Centre d'expertise plongée pour la Marine Nationale, Toulon, France
| |
Collapse
|
23
|
Mirasoglu B, Aktas S. Comments on unresponsive decompression illness case. J Intensive Care 2018; 6:77. [PMID: 30479773 PMCID: PMC6251120 DOI: 10.1186/s40560-018-0347-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/14/2018] [Indexed: 12/02/2022] Open
Abstract
We have read the case report about a decompression sickness that was unresponsive to hyperbaric oxygen treatment in your journal. Presented case is intriguing; however, we think there are some contradictive issues in the discussion of the case. In this letter, we aim to comment on these issues that may raise further question. Bubble formation plays a very important role for decompression sickness, but proposed mechanism is incorrect as nitrogen does not change state during decompression. Use of terminology for diving-related diseases and comments on properties of helium may cause misunderstandings. Also importance of history of the dive in evaluating an accident should be emphasized.
Collapse
Affiliation(s)
- Bengusu Mirasoglu
- Underwater and Hyperbaric Medicine Department, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Samil Aktas
- Underwater and Hyperbaric Medicine Department, Istanbul Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|