1
|
Hartman ME. Prefrontal NIRS signal is unaffected by forehead Doppler flux during incremental cycling exercise. Clin Physiol Funct Imaging 2023; 43:393-403. [PMID: 37243413 DOI: 10.1111/cpf.12837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 05/28/2023]
Abstract
Near-infrared spectroscopy (NIRS) is used to measure tissue concentrations of oxyhemoglobin (O2 Hb) and deoxyhemoglobin (HHb). In the context of exercise, NIRS confers a higher signal-to-noise ratio than other neuroimaging techniques. However, part of the signal may be influenced by thermoregulatory hyperemia in the superficial cutaneous capillaries of the forehead. The degree to which NIRS signals during exercise reflect cerebral or extracerebral hemodynamic changes is a continuing source of controversy. However, the influence of skin blood flow may be attenuated depending on the NIRS technique (e.g., frequency domain machines with maximal optode separation distances >3.5 cm). The purpose of this study was to compare the changes in forehead skin blood flow and cerebral hemoglobin concentration during incremental exercise versus direct vasodilation of the forehead skin induced by gradual local heating. Thirty participants (12 females, 18 males; age: 20.8 ± 3.2 years; body mass index: 23.8 ± 3.7 kg·m-2 ) participated in the study. Forehead skin blood flow was quantified laser Doppler flux and absolute concentrations of cerebral O2 Hb and HHb were measured by NIRS. Local heating significantly increased the Doppler flux signal across time and these changes were significantly correlated with skin temperature. During incremental exercise, skin temperature, Doppler flux, O2 Hb and HHb increased however, the only significant change that was consistently correlated with Doppler flux was skin temperature. Therefore, a significant change in forehead skin blood flow may not significantly the NIRS hemoglobin data, depending on the type of NIRS device used.
Collapse
Affiliation(s)
- Mark E Hartman
- Department of Kinesiology, University of Rhode Island, Kingston, Rhode Island, USA
| |
Collapse
|
2
|
Kurazumi T, Kato T, Konishi T, Ogawa Y, Iwasaki KI. Alteration in facial skin blood flow during acute exposure to -10 and -30° head-down tilt in young human volunteers. Exp Physiol 2022; 107:1432-1439. [PMID: 36183235 DOI: 10.1113/ep090734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/26/2022] [Indexed: 12/14/2022]
Abstract
NEW FINDINGS What is the central question of this study? Facial skin blood flow (SBF) might increase during head-down tilt (HDT). However, the effect of HDT on facial SBF remains controversial. In addition, the changes in facial SBF in the cheek (cheek SBF) during a steeper angle of HDT (>-12° HDT) have not been investigated. What is the main finding and its importance? This study showed that cheek SBF decreased during -30° HDT, alongside increased vascular resistance. Furthermore, vascular impedance was suggested to be elevated, accompanied by an increased hydrostatic pressure gradient caused by HDT. Constriction of the facial skin vascular bed and congestion of venous return owing to the steep angle of HDT can decrease facial SBF. ABSTRACT Head-down tilt (HDT) has been used to simulate microgravity in ground-based studies and clinical procedures including the Trendelenburg position or in certain surgical operations. Facial skin blood flow (SBF) might be altered by HDT, but the effect of a steeper angle of HDT (>-12° HDT) on facial SBF remains unclear. We examined alterations in facial SBF in the cheek (cheek SBF) using two different angles (-10 and -30°) of HDT and lying horizontal (0°) in a supine position for 10 min, to test the hypothesis that cheek SBF would increase with a steeper angle of HDT. Cheek SBF was measured continuously by laser Doppler flowmetry. Cheek skin vascular resistance and the pulsatility index of cheek SBF were calculated to assess the circulatory effects on the facial skin vascular bed in the cheek. Cheek SBF decreased significantly during -30° HDT. In addition, the resistance in cheek SBF increased significantly during -30° HDT. The pulsatility index of cheek SBF increased during both -10 and -30° HDT. Contrary to our hypothesis, cheek SBF decreased during -30° HDT along with increased skin vascular resistance. Vascular impedance, estimated by the pulsatility index in the cheek SBF, was elevated during both -10 and -30° HDT, and elevated vascular impedance would be related to increased hydrostatic pressure induced by HDT. Skin vascular constriction and venous return congestion would be induced by -30° HDT, leading to deceased cheek SBF. The present study suggested that facial SBF in the cheek decreased during acute exposure to a steep angle of HDT (∼-30° HDT).
Collapse
Affiliation(s)
- Takuya Kurazumi
- Department of Social Medicine, Division of Hygiene, Nihon University School of Medicine, Tokyo, Japan.,Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, USA.,Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tomokazu Kato
- Department of Social Medicine, Division of Hygiene, Nihon University School of Medicine, Tokyo, Japan
| | - Toru Konishi
- Department of Social Medicine, Division of Hygiene, Nihon University School of Medicine, Tokyo, Japan.,Air Staff Office, Japan Air Self-Defense Force, Ministry of Defense, Tokyo, Japan
| | - Yojiro Ogawa
- Department of Social Medicine, Division of Hygiene, Nihon University School of Medicine, Tokyo, Japan
| | - Ken-Ichi Iwasaki
- Department of Social Medicine, Division of Hygiene, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Zhang Y, Chen S, Ruan Y, Lin J, Li C, Li C, Xu S, Yan Z, Liu X, Miao P, Jia J. The Facial Skin Blood Flow Change of Stroke Patients with Facial Paralysis after Peripheral Magnetic Stimulation: A Pilot Study. Brain Sci 2022; 12:brainsci12101271. [PMID: 36291205 PMCID: PMC9599644 DOI: 10.3390/brainsci12101271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/31/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Facial paralysis (FP) is a common symptom after stroke, which influences the quality of life and prognosis of patients. Recently, peripheral magnetic stimulation (PMS) shows potential effects on peripheral and central nervous system damage. However, the effect of PMS on FP after stroke is still unclear. Methods: In this study, we applied PMS on the facial nerve of nine stroke patients with FP. At the same time, laser speckle contrast imaging (LSCI) was used to explore the facial skin blood flow (SkBF) in 19 healthy subjects and nine stroke patients with FP before and after the PMS intervention. The whole face was divided into 14 regions to compare the SkBF in different sub-areas. Results: In baseline SkBF, we found that there were no significant differences in the SkBF between the left and right faces in the healthy subjects. However, there was a significant difference in the SkBF between the affected and unaffected faces in Region 7 (Chin area, p = 0.046). In the following five minutes after the PMS intervention (Pre_0–5 min), the SkBF increased in Region 5 (p = 0.014) and Region 7 (p = 0.046) and there was an increasing trend in Region 3 (p = 0.088) and Region 6 (p = 0.069). In the five to ten minutes after the intervention (Post_6–10 min), the SkBF increased in Region 5 (p = 0.009), Region 6 (p = 0.021) and Region 7 (p = 0.023) and there was an increasing trend in Region 3 (p = 0.080) and left and right whole face (p = 0.051). Conclusions: These pilot results indicate that PMS intervention could increase facial skin blood flow in stroke patients with FP. A further randomized controlled trial can be performed to explore its possible clinical efficacy.
Collapse
Affiliation(s)
- Yongli Zhang
- School of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Shugeng Chen
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yinglu Ruan
- Department of Rehabilitation Medicine, Shanghai Jing’an District Central Hospital, Shanghai 200040, China
| | - Jiaying Lin
- School of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Chengdong Li
- School of Biomedical Engineering, Shanghai Jiaotong University, Shanghai 200030, China
| | - Chong Li
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Shuo Xu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zhijie Yan
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiangyun Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Peng Miao
- School of Biomedical Engineering, Shanghai Jiaotong University, Shanghai 200030, China
| | - Jie Jia
- School of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- Department of Rehabilitation Medicine, Shanghai Jing’an District Central Hospital, Shanghai 200040, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Shanghai 200040, China
- National Regional Medical Center, Fuzhou 350200, China
- Correspondence:
| |
Collapse
|
4
|
Metzler-Wilson K, Wilson TE, Ausmus SM, Sventeckis AM. Effect of sensory blockade and rate of sensory stimulation on local heating induced axon reflex response in facial skin. Auton Neurosci 2021; 233:102809. [PMID: 33862476 DOI: 10.1016/j.autneu.2021.102809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/12/2021] [Accepted: 04/05/2021] [Indexed: 10/21/2022]
Abstract
Local neuronal circuits in non-glabrous skin drive the initial increase of the biphasic cutaneous vasodilation response to fast non-noxious heating. Voltage-sensitive Na+ (NaV) channel inhibition blocks the afferent limb of the non-glabrous forearm cutaneous axon reflex. Slow local heating does not engage this response. These mechanisms have not been adequately investigated or extended into areas associated with flushing pathology. We hypothesized that despite regional differences in sensory afferents, both sensory blockade and slowing the heating rate would abate the cutaneous axon reflex-mediated vasodilator responses in facial skin. We measured skin blood flow responses (laser-Doppler flowmetry) of 6 healthy subjects (5 female) to non-noxious forearm, cheek, and forehead local heating, expressed as a percentage of cutaneous vascular conductance at plateau (CVC = flux/mean arterial pressure). We assessed CVC during fast (1 °C/30s) and slow (1 °C/10 min) local heating to 43 °C in both NaV inhibition (topical 2.5% lidocaine/prilocaine) and control conditions. NaV inhibition decreased forearm (control: 84 ± 4, block: 34 ± 9%plateau, p < 0.001) and trended toward decreased forehead (control: 90 ± 3, block: 68 ± 3%plateau, p = 0.057) initial CVC peaks but did not alter cheek responses (control: 90 ± 3, block: 92 ± 13%plateau, p = 0.862) to fast heating. Slow heating eliminated the initial CVC peak incidence for all locations, and we observed similar results with combined slow heating and NaV inhibition. Slower sensory afferent activation rate eliminated the axon reflex response in facial and non-glabrous skin, but topical sensory blockade did not block axon reflex responses in flushing-prone cheek skin. Thus, slower heating protocols are needed to abate facial, particularly cheek, axon reflex responses.
Collapse
Affiliation(s)
- Kristen Metzler-Wilson
- Department of Physical Therapy, School of Health & Human Sciences; and (2)Departments of Dermatology and Anatomy, Cell Biology, & Physiology, School of Medicine, Indiana University, Indianapolis, IN, USA; Departments of Dermatology and Anatomy, Cell Biology & Physiology, School of Medicine, Indiana University, Indianapolis, IN, USA.
| | - Thad E Wilson
- Division of Biomedical Sciences, College of Osteopathic Medicine, Marian University, Indianapolis, IN, USA; Department of Physiology and Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY, USA.
| | - Samantha M Ausmus
- Department of Physical Therapy, School of Health & Human Sciences; and (2)Departments of Dermatology and Anatomy, Cell Biology, & Physiology, School of Medicine, Indiana University, Indianapolis, IN, USA.
| | - Austin M Sventeckis
- Department of Physical Therapy, School of Health & Human Sciences; and (2)Departments of Dermatology and Anatomy, Cell Biology, & Physiology, School of Medicine, Indiana University, Indianapolis, IN, USA.
| |
Collapse
|
5
|
Hayashi N, Kashima H, Ikemura T. Facial Blood Flow Responses to Dynamic Exercise. Int J Sports Med 2020; 42:241-245. [PMID: 32947640 DOI: 10.1055/a-1244-9870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
We reported previously that a static handgrip exercise evoked regional differences in the facial blood flow. The present study examined whether regional differences in facial blood flow are also evoked during dynamic exercise. Facial blood flow was measured by laser speckle flowgraphy during 15 min of cycling exercise at heart rates of 120 bpm, 140 bpm and 160 bpm in 12 subjects. The facial vascular conductance index was calculated from the blood flow and mean arterial pressure. The regional blood flow and conductance index values were determined in the forehead, eyelid, nose, cheek, ear and lip. One-way ANOVA and Tukey's post-hoc test were used to examine effects of exercise intensity and target regions. The blood flow and conductance index in skin areas increased significantly with the exercise intensity. The blood flow and conductance index in the lip increased significantly at 120 bpm and 140 bpm compared to the control, while the values in the lip at 160 bpm did not change from the control values. These results suggest that the blood flow in facial skin areas, not in the lip, responds similarly to dynamic exercise, in contrast to the responses to static exercise.
Collapse
Affiliation(s)
- Naoyuki Hayashi
- Institute for Liberal Arts, Tokyo Institute of Technology, Meguro-ku
| | - Hideaki Kashima
- School of Health Sciences, Prefectural University of Hiroshima, Hiroshima
| | - Tsukasa Ikemura
- Institute for Liberal Arts, Tokyo Institute of Technology, Meguro-ku.,College of Liberal Arts and Sciences, Kitasato University, Sagamihara
| |
Collapse
|
6
|
Correlation between Blood Flow and Temperature of the Ocular Anterior Segment in Normal Subjects. Diagnostics (Basel) 2020; 10:diagnostics10090695. [PMID: 32942653 PMCID: PMC7554717 DOI: 10.3390/diagnostics10090695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 12/04/2022] Open
Abstract
Purpose: To determine a correlation between temperature and blood flow in the ocular anterior segment, and their effects on corneal temperature. Methods: In experiment 1, we recruited 40 eyes and measured the temperature and blood flow in the ocular anterior-segment (upper/lower eyelid skin, palpebral and bulbar conjunctiva, and cornea) before and after application of warm compresses. In experiment 2, we recruited 20 eyes and measured the same tissues before and during stimulation using water and capsaicin solution in the oral cavity. Results: In experiment 1, the temperatures of the upper/lower eyelid skin and cornea increased significantly until 15 min after the application of the warm compress; the temperatures of the palpebral and bulbar conjunctiva increased significantly until 10 min. The blood flow in the upper/lower eyelid skin and bulbar conjunctiva increased significantly until 10 min, and that of the palpebral conjunctiva increased significantly until 15 min. In experiment 2, the temperatures were correlated significantly with the blood flow in the upper and lower eyelid skin and palpebral and bulbar conjunctiva. The temperature of all locations and palpebral conjunctival blood flow contributed independently to the corneal temperature. Conclusions: In the ocular anterior segment, the temperature and blood flow were correlated significantly, and contributed to the corneal temperature.
Collapse
|