1
|
Lanza MB, de Souza CDC, Gray VL. The Influence of Aging on Hip Abductor Muscle Torque, Power, Velocity and the Association With Lower Limb Physical Function. J Geriatr Phys Ther 2025; 48:E129-E137. [PMID: 39774903 DOI: 10.1519/jpt.0000000000000431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
BACKGROUND AND PURPOSE Muscle strength, power, and mass decline with aging, leading to functional loss highly correlated with balance and falls in older adults. Lower limb muscle function is critical for fall prevention in older adults, and hip abductor force and rapid force development have been shown to be important during stepping tasks. However, it remains unclear whether hip abductor muscle function changes with aging. Therefore, the primary aim of this study was to compare maximum torque, submaximal power, and submaximal velocity of hip abductor muscles, as well as hip abductor strength and power clinical assessments, between young and older adults. The secondary aim was to investigate whether there is a relationship between the clinical assessments and hip abduction maximum torque, submaximal power, and submaximal velocity in young and older adults. METHODS The volunteers young (n = 20, 26.5 ± 3.9) and older (n = 20, 71.9 ± 5.3) adults performed a hip abduction estimated 1-repetition maximum (e1RM) and submaximal tests (40%, 60%, and 70% of e1RM) and clinical assessments (stair climb power test and the 30-second chair stand test). RESULTS Older adults exhibited a statistically significant decline in hip abduction torque, power, and velocity, accompanied by lower scores in clinical assessments in comparison to young adults. However, young adults did not exhibit any significant associations between clinical assessments and hip abduction maximum torque, power, and velocity, whereas older adults demonstrated strong correlations (r ≥ 0.52, P ≤ .02). DISCUSSION Older adults have a significant reduction in their ability to produce hip abduction torque, power, and velocity, as well as poor performance in clinical assessments compared to young adults. The declines in hip abductor maximum torque, power, and velocity with aging may be related to functional performance, as shown by the significant correlations between these variables and clinical assessments in older adults. CONCLUSION Health care professionals should consider declines in the ability to generate muscle force rapidly, given its significance to lower limb function and overall physical capabilities.
Collapse
Affiliation(s)
- Marcel Bahia Lanza
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, Maryland
| | | | | |
Collapse
|
2
|
Škarabot J, Casolo A, Balshaw TG, Maeo S, Lanza MB, Holobar A, Farina D, Folland JP, Del Vecchio A. Greater motor unit discharge rate during rapid contractions in chronically strength-trained individuals. J Neurophysiol 2024; 132:1896-1906. [PMID: 39527019 PMCID: PMC11687832 DOI: 10.1152/jn.00017.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 10/10/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
Though similar motor unit (MU) discharge properties have been observed during slow sustained contractions between chronically strength-trained (ST) and untrained (UT) individuals, it is currently unknown whether differences between these groups exist for when maximal in vivo MU discharge rate is assessed during rapid, maximal rate of force development (RFD) contractions. Therefore, we compared MU discharge characteristics and RFD during rapid contractions in chronic ST and UT individuals. The investigations were performed in two independent cohorts of chronically ST men, with trained elbow flexors (experiment 1, n = 13, 6 ± 4 yr of training experience) or knee extensors (experiment 2, n = 11, 9 ± 4 yr of experience), and compared with those of UT (n = 12 and n = 10, respectively). ST individuals had greater absolute elbow flexion and knee extension RFD throughout the first 150 ms of rapid contractions compared with UT, but this difference was absent for relative RFD. ST exhibited higher initial MU discharge rate in both biceps brachii (74 [68, 80] vs. 56 [50, 63] pulses per second (pps), P < 0.0001) and vastus lateralis (102 [90, 115] vs. 76 [63, 90] pps, P = 0.0025) and a greater average number of MU discharges per second in both trained muscles in the early phase of rapid contractions. We provide novel evidence for a higher maximal MU discharge rate in strength-trained individuals. Interestingly, despite the augmented output of the spinal cord, no differences in relative RFD were observed, which suggests either greater maximal force enhancement of ST compared with UT and/or slowing of the intrinsic contractile properties by prolonged strength training.NEW & NOTEWORTHY Chronically strength-trained and untrained individuals show similar motor unit discharge rates during slow sustained contractions, however, potential differences in motor unit discharge rates during rapid contractions remained unclear. Here, we show greater maximal motor unit discharge rates during rapid contractions of chronically strength-trained individuals. However, the augmented spinal cord output of strength-trained individuals did not lead to greater relative maximal rate of force development compared with untrained men.
Collapse
Affiliation(s)
- Jakob Škarabot
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Andrea Casolo
- Department of Biomedical Sciences, University of Padua, Padova, Italy
| | - Thomas G Balshaw
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
- Versus Arthritis Centre for Sport, Exercise and Osteoarthritis Research, Loughborough University, Leicestershire, United Kingdom
| | - Sumiaki Maeo
- Faculty of Sport and Health Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Marcel Bahia Lanza
- Department of Physical Therapy and Rehabilitation Science, University of Maryland, Baltimore, Maryland, United States
| | - Aleš Holobar
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
| | - Dario Farina
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Jonathan P Folland
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
- Versus Arthritis Centre for Sport, Exercise and Osteoarthritis Research, Loughborough University, Leicestershire, United Kingdom
| | - Alessandro Del Vecchio
- Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander University, Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
3
|
Sigrist S, Abel MG, Best SA, Bollinger LM. Sleep restriction reduces voluntary isometric quadriceps strength through reduced neuromuscular efficiency, not impaired contractile performance. Eur J Appl Physiol 2024; 124:3351-3363. [PMID: 38935151 DOI: 10.1007/s00421-024-05535-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
Acute sleep restriction (SR) reduces strength through an unknown mechanism. PURPOSE To determine how SR affects quadriceps contractile function and recruitment. METHODS Eighteen healthy subjects (9 M, 9F, age 23.8 ± 2.8y) underwent isometric (maximal and submaximal), isokinetic (300-60°·s-1), and interpolated twitch (ITT) assessment of knee extensors following 3d of adequate sleep (SA; 7-9 h·night-1), 3d of SR (5 h·night-1), and 7d of washout (WO; 7-9 h·night-1). RESULTS Compared to SA (227.9 ± 76.6Nm) and WO (228.19 ± 62.9Nm), MVIC was lesser following SR (209.9 ± 73.9Nm; p = 0.006) and this effect was greater for males (- 9.8 v. - 4.8%). There was no significant effect of sleep or sleep x speed interaction on peak isokinetic torque. Peak twitch torque was greater in the potentiated state, but no significant effect of sleep was noted. Males displayed greater potentiation of peak twitch torque (12 v. 7.5%) and rate of torque development (16.7 v. 8.2%) than females but this was not affected by sleep condition. ITT-assessed voluntary activation did not vary among sleep conditions (SA: 81.8 ± 13.1% v. SR: 84.4 ± 12.6% v. WO 84.9 ± 12.6%; p = 0.093). SR induced a leftward shift in Torque-EMG relationship at high torque output in both sexes. Compared to SA, females displayed greater y-intercept and lesser slope with SR and WO and males displayed lesser y-intercept and greater slope with SR and WO. CONCLUSIONS Three nights of SR decreases voluntary isometric knee extensor strength, but not twitch contractile properties. Sex-specific differences in neuromuscular efficiency may explain the greater MVIC reduction in males following SR.
Collapse
Affiliation(s)
- S Sigrist
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, KY, 40506, USA
| | - M G Abel
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, KY, 40506, USA
| | - S A Best
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, KY, 40506, USA
| | - L M Bollinger
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, KY, 40506, USA.
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
4
|
Ando R. Association of the rate of torque development and joint angle with passive muscle stiffness. Eur J Appl Physiol 2024; 124:2665-2673. [PMID: 38630263 DOI: 10.1007/s00421-024-05483-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/03/2024] [Indexed: 09/02/2024]
Abstract
PURPOSE The purpose of this study was to statistically compare the rate of torque development normalized by maximal strength (relative RTD) across ankle angles. Additionally, this study was aimed at exploring the correlation coefficients between relative RTD and passive stiffness of the medial gastrocnemius (MG) at different ankle angles. METHODS Twenty-two healthy men and women (age: 31 ± 4 years) performed randomly-ordered explosive isometric plantar flexions at plantarflexed (15°), neutral (0°), and dorsiflexed (- 15°) angles; relative RTD comprised the slope of the time-torque curve normalized to maximal torque. The shear wave velocity (SWV; index of stiffness) of the MG at rest was measured at each angle using ultrasound shear wave elastography. RESULTS The relative RTD was greater at 15° than - 15° for 0-50, 0-100, and 0-150 ms time-windows and at 15° than 0° for the 0-150 ms time-window (P < 0.05), although peak torque was lower at 15° than 0° and - 15° (P < 0.05). The relative RTD for the 0-50 ms time-window correlated with SWV at - 15° (rs = 0.475, P < 0.05), but not at 15º and 0º. Furthermore, the correlation coefficient of RTD for the 0-100 ms time-window with SWV was significantly greater at - 15° (rs = 0.420) than 0 ° (rs = - 0.109). CONCLUSIONS A greater relative RTD occurs at plantarflexed angles (i.e., the ascending limb of the force-length curve) in the triceps surae, and relative RTD is strongly related to passive MG stiffness at dorsiflexed angles (i.e., longer muscle lengths).
Collapse
Affiliation(s)
- Ryosuke Ando
- Department of Sport Science and Research, Japan Institute of Sports Sciences (JISS), 3-15-1, Nishigaoka, Kita-Ku, Tokyo, 115-0056, Japan.
| |
Collapse
|
5
|
Oranchuk DJ, Diewald SN, McGrath JW, Nelson AR, Storey AG, Cronin JB. Kinetic and kinematic profile of eccentric quasi-isometric loading. Sports Biomech 2024; 23:758-771. [PMID: 33666143 DOI: 10.1080/14763141.2021.1890198] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/09/2021] [Indexed: 10/22/2022]
Abstract
Eccentric quasi-isometric (EQI) contractions (maintaining a yielding contraction for as long as possible, beyond task failure) have gained interest in research and applied settings. However, little is known regarding the biomechanical profile of EQIs. Fourteen well-trained males performed four maximal effort knee-extensor EQIs, separated by 180 seconds. Angular impulse, velocity, and time-under-tension through the 30-100º range of motion (ROM), and in eight ROM brackets were quantified. Statistical parametric mapping, analyses of variance, and standardised effects (Hedges' g (ES), %Δ) detected between-contraction joint-angle-specific differences in time-normalised and absolute variables. Mean velocity was 1.34º·s-1 with most (62.5 ± 4.9%) of the angular impulse imparted between 40-70º. Most between-contraction changes occurred between 30-50º (p≤ 0.067, ES = 0.53 ± 0.31, 60 ± 52%), while measures remained constant between 50-100º (= 0.069-0.83, ES = 0.10 ± 0.26, 14.3 ± 24.6%). EQIs are a time-efficient means to impart high cumulative mechanical tension, especially at short to medium muscle lengths. However, angular impulse distribution shifts towards medium to long muscle lengths with repeat contractions. Practitioners may utilise EQIs to emphasize the initial portion of the ROM, and limit ROM, or apply EQIs in a fatigued state to emphasize longer muscle lengths.
Collapse
Affiliation(s)
- Dustin J Oranchuk
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
- Institute of Health and Sport, Victoria University, Melbourne, Australia
| | - Shelley N Diewald
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Joey W McGrath
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - André R Nelson
- Institute of Health and Sport, Victoria University, Melbourne, Australia
| | - Adam G Storey
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - John B Cronin
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
6
|
Li M, Meng X, Guan L, Kim Y, Kim S. Comparing the Effects of Static Stretching Alone and in Combination with Post-Activation Performance Enhancement on Squat Jump Performance at Different Knee Starting Angles. J Sports Sci Med 2023; 22:769-777. [PMID: 38045747 PMCID: PMC10690507 DOI: 10.52082/jssm.2023.769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023]
Abstract
We aimed to investigate the impact of isolated static stretching (4 sets of 30 seconds) and its combined form with 10 repetitive drop jumps on lower limb performance during squat jumps at different knee joint starting angles (60°, 90°, and 120°). Thirteen participants completed three randomly ordered experimental visits, each including a standardized warm-up and squat jumps at three angles, apart from the intervention or control. Information was gathered through a three-dimensional movement tracking system, electromyography system, and force platform. The electromyography data underwent wavelet analysis to compute the energy values across the four wavelet frequency bands. The average power (Pavg), peak power (Ppeak), peak ground reaction force (GRFpeak), peak center of mass velocity (Vpeak), and force-velocity relationship at peak power (SFv) were extracted from the force and velocity-time data. The results revealed no significant influence of isolated static stretching, or its combined form with drop jumps, on the energy values across the frequency bands of the gastrocnemius, biceps femoris and rectus femoris, or the Pavg or Ppeak (P > 0.05). However, at 120°, static stretching reduced the GRFpeak (P = 0.001, d = 0.86) and SFv (P < 0.001, d = 1.12), and increased the Vpeak (P = 0.001, d = 0.5). The GRFpeak, Pavg, Ppeak, and SFv increased with an increase in the joint angle (P < 0.05), whereas the Vpeak decreased (P < 0.05). These findings suggest that static stretching does not diminish power output during squat jumps at the three angles; however, it alters GRFpeak, Vpeak, and the relative contributions of force and velocity to peak power at 120°, which can be eliminated by post-activation performance enhancement. Moreover, compared to 60° and 90°, 120° was more favorable for power and peak force output.
Collapse
Affiliation(s)
- Ming Li
- Department of Physical Education, Jeonbuk National University, Republic of Korea
| | - Xiangwei Meng
- Department of Physical Education, Jeonbuk National University, Republic of Korea
| | - Lihao Guan
- Department of Physical Education, Jeonbuk National University, Republic of Korea
| | - Youngsuk Kim
- Department of Physical Education, Jeonbuk National University, Republic of Korea
| | - Sukwon Kim
- Department of Physical Education, Jeonbuk National University, Republic of Korea
| |
Collapse
|
7
|
Ma MK, Cho T, Lee JW, Moon HI. Torque Onset Angle of the Knee Extensor as a Predictor of Walking Related Balance in Stroke Patients. Ann Rehabil Med 2023; 47:291-299. [PMID: 37644715 PMCID: PMC10475816 DOI: 10.5535/arm.23061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/31/2023] Open
Abstract
OBJECTIVE To investigate the relationship between the torque onset angle (TOA) of the isokinetic test for knee extensors in the paretic side and walking related balance in subacute stroke patients. METHODS We retrospectively reviewed patients with first-ever strokes who have had at least two isokinetic tests within 6 months of onset. 102 patients satisfied the inclusion criteria. The characteristics of walking related balance were measured with the Berg Balance Scale sub-score (sBBS), Timed Up and Go test (TUG), 10-m Walk Test (10MWT) and Functional Independence Measure sub-score (sFIM). The second isokinetic test values of the knee extensor such as peak torque, peak torque to weight ratio, hamstring/quadriceps ratio, TOA, torque stop angle, torque at 30 degrees, and peak torque asymmetry ratio between paretic and non-paretic limb were also taken into account. Pearson's correlation, simple regression and multiple regression analysis were used to analyze the correlation between TOA and walking related balance. RESULTS TOA of the knee extensor of the paretic limb showed significant correlations with BBS, sBBS, TUG, 10MWT, and sFIM according to Pearson's correlation analysis. TOA also had moderate to good correlations with walking related balance parameters in partial correlation analysis. In multiple regression analysis, TOA of the paretic knee extensor was significantly associated with walking related balance parameters. CONCLUSION This study demonstrated that TOA of the paretic knee extensor is a predictable parameter of walking related balance. Moreover, we suggest that the ability to recruit muscle quickly is important in walking related balance.
Collapse
Affiliation(s)
- Min Kyeong Ma
- Department of Rehabilitation Medicine, Bundang Jesaeng Hospital, Seongnam, Korea
| | - TaeHwan Cho
- Department of Rehabilitation Medicine, Gwangju Veterans Hospital, Gwangju, Korea
| | - Joo Won Lee
- Department of Rehabilitation Medicine, Bundang Jesaeng Hospital, Seongnam, Korea
| | - Hyun Im Moon
- Department of Rehabilitation Medicine, Bundang Jesaeng Hospital, Seongnam, Korea
| |
Collapse
|
8
|
Crotty ED, Furlong LAM, Harrison AJ. Reliability of mechanical properties of the plantar flexor muscle tendon unit with consideration to joint angle and sex. PLoS One 2023; 18:e0287431. [PMID: 37352329 PMCID: PMC10289375 DOI: 10.1371/journal.pone.0287431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 06/05/2023] [Indexed: 06/25/2023] Open
Abstract
The reliability of mechanical measures can be impacted by the protocol used, including factors such as joint angle and the sex of participants. This study aimed to determine the inter-day reliability of plantar flexor mechanical measures across ankle joint angles and contraction types and consider potential sex-specific effects. 14 physically-active individuals participated in two identical measurement sessions involving involuntary and voluntary plantar flexor contractions, at three ankle angles (10° plantarflexion (PF), 0° (anatomical zero (AZ)), and 10° dorsiflexion (DF)), while torque and surface EMG were recorded. The reliability of mechanical parameters of maximal voluntary torque (MVT), rate of torque development (RTD), electromechanical delay, and tendon stiffness were assessed using absolute and relative reliability measures. MVT measures were reliable across ankle angles. RTD measures showed good group level reliability and moderate reliability for an individual during the early phase of contraction across ankle angles. Explosive voluntary torque measures tended to be less reliable from 50 ms onward, with varied reliability across angles for late-phase RTD. Tendon stiffness demonstrated the best reliability at the DF angle. Sex-based differences in the reliability of tendon measures found that females had significantly different initial tendon length between testing sessions. Despite this, tendon excursion, force, and stiffness measures demonstrated similar reliability compared to males. Ankle angle changes influence the reliability of plantar flexor mechanical measurements across contraction types, particularly for voluntary contractions. These results highlight the importance of establishing potential protocol effects on measurement reliability prior to quantifying plantar flexor mechanical measures.
Collapse
Affiliation(s)
- Evan D. Crotty
- Sport and Human Performance Research Centre, University of Limerick, Limerick, Ireland
| | - Laura-Anne M. Furlong
- Sport and Human Performance Research Centre, University of Limerick, Limerick, Ireland
| | - Andrew J. Harrison
- Sport and Human Performance Research Centre, University of Limerick, Limerick, Ireland
| |
Collapse
|
9
|
Škarabot J, Folland JP, Forsyth J, Vazoukis A, Holobar A, Del Vecchio A. Motor Unit Discharge Characteristics and Conduction Velocity of the Vastii Muscles in Long-Term Resistance-Trained Men. Med Sci Sports Exerc 2023; 55:824-836. [PMID: 36729054 DOI: 10.1249/mss.0000000000003105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE Adjustments in motor unit (MU) discharge properties have been shown after short-term resistance training; however, MU adaptations in long-term resistance-trained (RT) individuals are less clear. Here, we concurrently assessed MU discharge characteristics and MU conduction velocity in long-term RT and untrained (UT) men. METHODS Motor unit discharge characteristics (discharge rate, recruitment, and derecruitment threshold) and MU conduction velocity were assessed after the decomposition of high-density electromyograms recorded from vastus lateralis (VL) and vastus medialis (VM) of RT (>3 yr; n = 14) and UT ( n = 13) during submaximal and maximal isometric knee extension. RESULTS Resistance-trained men were on average 42% stronger (maximal voluntary force [MVF], 976.7 ± 85.4 N vs 685.5 ± 123.1 N; P < 0.0001), but exhibited similar relative MU recruitment (VL, 21.3% ± 4.3% vs 21.0% ± 2.3% MVF; VM, 24.5% ± 4.2% vs 22.7% ± 5.3% MVF) and derecruitment thresholds (VL, 20.3% ± 4.3% vs 19.8% ± 2.9% MVF; VM, 24.2% ± 4.8% vs 22.9% ± 3.7% MVF; P ≥ 0.4543). There were also no differences between groups in MU discharge rate at recruitment and derecruitment or at the plateau phase of submaximal contractions (VL, 10.6 ± 1.2 pps vs 10.3 ± 1.5 pps; VM, 10.7 ± 1.6 pps vs 10.8 ± 1.7 pps; P ≥ 0.3028). During maximal contractions of a subsample population (10 RT, 9 UT), MU discharge rate was also similar in RT compared with UT (VL, 21.1 ± 4.1 pps vs 14.0 ± 4.5 pps; VM, 19.5 ± 5.0 pps vs 17.0 ± 6.3 pps; P = 0.7173). Motor unit conduction velocity was greater in RT compared with UT individuals in both VL (4.9 ± 0.5 m·s -1 vs 4.5 ± 0.3 m·s -1 ; P < 0.0013) and VM (4.8 ± 0.5 m·s -1 vs 4.4 ± 0.3 m·s -1 ; P < 0.0073). CONCLUSIONS Resistance-trained and UT men display similar MU discharge characteristics in the knee extensor muscles during maximal and submaximal contractions. The between-group strength difference is likely explained by superior muscle morphology of RT as suggested by greater MU conduction velocity.
Collapse
Affiliation(s)
- Jakob Škarabot
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UNITED KINGDOM
| | | | - Jules Forsyth
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UNITED KINGDOM
| | - Apostolos Vazoukis
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UNITED KINGDOM
| | - Aleš Holobar
- Systems Software Laboratory, Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, SLOVENIA
| | - Alessandro Del Vecchio
- Department Artificial Intelligence in Biomedical Engineering, Faculty of Engineering, Friedrich Alexander University, Erlangen-Nuremberg, GERMANY
| |
Collapse
|
10
|
Ren M, Tian Y, McNeill C, Lenetsky S, Uthoff A. The Role and Development of Strength for Elite Judo Athletes. Strength Cond J 2023. [DOI: 10.1519/ssc.0000000000000778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
11
|
Rock K, Addison O, Gray VL, Henshaw RM, Ward C, Marchese V. Skeletal Muscle Measurements in Pediatric Hematology and Oncology: Essential Components to a Comprehensive Assessment. CHILDREN (BASEL, SWITZERLAND) 2023; 10:114. [PMID: 36670664 PMCID: PMC9856749 DOI: 10.3390/children10010114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Children with hematologic and oncologic health conditions are at risk of impaired skeletal muscle strength, size, and neuromuscular activation that may limit gross motor performance. A comprehensive assessment of neuromuscular function of these children is essential to identify the trajectory of changes in skeletal muscle and to prescribe therapeutic exercise and monitor its impact. Therefore, this review aims to (a) define fundamental properties of skeletal muscle; (b) highlight methods to quantify muscle strength, size, and neuromuscular activation; (c) describe mechanisms that contribute to muscle strength and gross motor performance in children; (d) recommend clinical assessment measures; and (e) illustrate comprehensive muscle assessment in children using examples of sickle cell disease and musculoskeletal sarcoma.
Collapse
Affiliation(s)
- Kelly Rock
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Odessa Addison
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Vicki L. Gray
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Robert M. Henshaw
- Department of Orthopedic Oncology, MedStar Washington Hospital Center, Washington, DC 20010, USA
- Department of Orthopedic Oncology, Children’s National Health System, Washington, DC 20010, USA
- Department of Clinical Orthopedic Surgery (Orthopedic Oncology), Georgetown University School of Medicine, Washington, DC 20057, USA
| | - Christopher Ward
- Departments of Orthopedics and Biochemistry & Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Victoria Marchese
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
12
|
Wen L, Wei M, Yang H, Yang P. FUNCTIONAL EXERCISE ON PATIENTS AFTER SPORTS MENISCUS INJURY. REV BRAS MED ESPORTE 2022. [DOI: 10.1590/1517-8692202228062022_0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT Introduction Knee meniscus injury is a common sports injury, and minimally invasive surgery under knee arthroscopy has become an ideal method to treat meniscus injuries. This surgery rehabilitation has been improved, and several studies on the effects of functional exercise in the range of treatment are still inconclusive. Objective Study the functional exercise rehabilitation effects in patients after sports meniscus injury. Methods Twenty patients with meniscus-medial injury being operated on were selected, including eight men and 12 women. They were randomly divided into neuromuscular and strength training groups (11). Signs and symptoms were assessed before and eight weeks after treatment. JOA score indices and gait tests were compared. The impact of rehabilitation differences was evaluated in each group. Results Eight weeks after rehabilitation in both groups, the scores of the strength training group were higher than the neuromuscular group; the difference between the groups was statistically significant (P<0.05). Conclusion Functional exercise accelerates joint recovery, reflected in increased strength of adjacent muscles. The muscle and joint training effects on postoperative meniscus injury are worthy of recognition. The baropodometry revealed distinctions in walking patterns between different rehabilitation methods. From the perspective of this research, rehabilitation methods combined with proprioceptive exercises are complementary. Evidence Level II; Therapeutic Studies - Investigating the result.
Collapse
|
13
|
Diong J, Kishimoto KC, Butler JE, Héroux ME. Muscle electromyographic activity normalized to maximal muscle activity, not to Mmax, better represents voluntary activation. PLoS One 2022; 17:e0277947. [PMID: 36409688 PMCID: PMC9678282 DOI: 10.1371/journal.pone.0277947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022] Open
Abstract
In human applied physiology studies, the amplitude of recorded muscle electromyographic activity (EMG) is often normalized to maximal EMG recorded during a maximal voluntary contraction. When maximal contractions cannot be reliably obtained (e.g. in people with muscle paralysis, anterior cruciate ligament injury, or arthritis), EMG is sometimes normalized to the maximal compound muscle action potiential evoked by stimulation, the Mmax. However, it is not known how these two methods of normalization affect the conclusions and comparability of studies. To address this limitation, we investigated the relationship between voluntary muscle activation and EMG normalized either to maximal EMG or to Mmax. Twenty-five able-bodied adults performed voluntary isometric ankle plantarflexion contractions to a range of percentages of maximal voluntary torque. Ankle torque, plantarflexor muscle EMG, and voluntary muscle activation measured by twitch interpolation were recorded. EMG recorded at each contraction intensity was normalized to maximal EMG or to Mmax for each plantarflexor muscle, and the relationship between the two normalization approaches quantified. A slope >1 indicated EMG amplitude normalized to maximal EMG (vertical axis) was greater than EMG normalized to Mmax (horizontal axis). Mean estimates of the slopes were large and had moderate precision: soleus 8.7 (95% CI 6.9 to 11.0), medial gastrocnemius 13.4 (10.5 to 17.0), lateral gastrocnemius 11.4 (9.4 to 14.0). This indicates EMG normalized to Mmax is approximately eleven times smaller than EMG normalized to maximal EMG. Normalization to maximal EMG gave closer approximations to the level of voluntary muscle activation assessed by twitch interpolation.
Collapse
Affiliation(s)
- Joanna Diong
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
- Neuroscience Research Australia (NeuRA), Sydney, New South Wales, Australia
- * E-mail:
| | - Kenzo C. Kishimoto
- School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Jane E. Butler
- Neuroscience Research Australia (NeuRA), Sydney, New South Wales, Australia
- School of Medical Sciences, University of New South Wales, Kensington, New South Wales, Australia
| | - Martin E. Héroux
- Neuroscience Research Australia (NeuRA), Sydney, New South Wales, Australia
- School of Medical Sciences, University of New South Wales, Kensington, New South Wales, Australia
| |
Collapse
|
14
|
Lanza MB, Arbuco B, Ryan AS, Shipper AG, Gray VL, Addison O. Systematic Review of the Importance of Hip Muscle Strength, Activation, and Structure in Balance and Mobility Tasks. Arch Phys Med Rehabil 2022; 103:1651-1662. [PMID: 34998714 PMCID: PMC10089299 DOI: 10.1016/j.apmr.2021.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/02/2022]
Abstract
OBJECTIVE The aim of this systematic review was to identify the associations of the hip abductor muscle strength, structure, and neuromuscular activation on balance and mobility in younger, middle-aged, and older adults. DATA SOURCES We followed PRISMA guidelines and performed searches in PubMed, Embase, CINAHL, and Physiotherapy Evidence Database. STUDY SELECTION Study selection included: (1) studies with patients aged 18 years or older and (2) studies that measured hip abduction torque, surface electromyography, and/or muscle structure and compared these measures with balance or mobility outcomes. DATA EXTRACTION The extracted data included the study population, setting, sample size, sex, and measurement evaluated. DATA SYNTHESIS The present systematic review is composed of 59 research articles including a total of 2144 young, middle-aged, and older adults (1337 women). We found that hip abductor strength is critical for balance and mobility function, independent of age. Hip abductor neuromuscular activation is also important for balance and mobility, although it may differ across ages depending on the task. Finally, the amount of fat inside the muscle appears to be one of the important factors of muscle structure influencing balance. CONCLUSIONS In conclusion, a change in all investigated variables (hip abduction torque, neuromuscular activation, and intramuscular fat) appears to have an effect during balance or mobility tasks across age ranges and may elicit better performance. Future studies are necessary to confirm the effect of these variables across age ranges and the effects of interventions.
Collapse
Affiliation(s)
- Marcel B Lanza
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD.
| | - Breanna Arbuco
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD
| | - Alice S Ryan
- Department of Medicine, Division of Gerontology and Palliative Medicine, University of Maryland School of Medicine, Baltimore, MD; Baltimore Geriatric Research, Education, and Clinical Center, VAHMC, Baltimore, MD
| | - Andrea G Shipper
- Health Sciences and Human Services Library, University of Maryland, Baltimore, MD
| | - Vicki L Gray
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD
| | - Odessa Addison
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD; Baltimore Geriatric Research, Education, and Clinical Center, VAHMC, Baltimore, MD
| |
Collapse
|
15
|
Škarabot J, Folland JP, Holobar A, Baker SN, Del Vecchio A. Startling stimuli increase maximal motor unit discharge rate and rate of force development in humans. J Neurophysiol 2022; 128:455-469. [PMID: 35829632 PMCID: PMC9423775 DOI: 10.1152/jn.00115.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Maximal rate of force development in adult humans is determined by the maximal motor unit discharge rate, however the origin of the underlying synaptic inputs remains unclear. Here, we tested a hypothesis that the maximal motor unit discharge rate will increase in response to a startling cue, a stimulus that purportedly activates the pontomedullary reticular formation neurons that make mono- and disynaptic connections to motoneurons via fast-conducting axons. Twenty-two men were required to produce isometric knee extensor forces "as fast and as hard" as possible from rest to 75% of maximal voluntary force, in response to visual (VC), visual-auditory (VAC; 80 dB), or visual-startling cue (VSC; 110 dB). Motoneuron activity was estimated via decomposition of high-density surface electromyogram recordings over the vastus lateralis and medialis muscles. Reaction time was significantly shorter in response to VSC compared to VAC and VC. The VSC further elicited faster neuromechanical responses including a greater number of discharges per motor unit per second and greater maximal rate of force development, with no differences between VAC and VC. We provide evidence, for the first time, that the synaptic input to motoneurons increases in response to a startling cue, suggesting a contribution of subcortical pathways to maximal motoneuron output in humans.
Collapse
Affiliation(s)
- Jakob Škarabot
- School of Sport, Exercise and Health Sciences, grid.6571.5Loughborough University, Loughborough, United Kingdom
| | - Jonathan P Folland
- School of Sport, Exercise and Health Sciences, grid.6571.5Loughborough University, Loughborough, United Kingdom.,Versus Arthritis Centre for Sport, Exercise and Osteoarthritis, Loughborough University, Loughborough, United Kingdom
| | - Ales Holobar
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
| | - Stuart N Baker
- Medical Faculty, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alessandro Del Vecchio
- Department of Artificial Intelligence in Biomedical Engineering, University of Erlangen-Nuremberg, Erlangen, Bavaria, Germany
| |
Collapse
|
16
|
Lanza MB, Rock K, Marchese V, Addison O, Gray VL. Hip Abductor and Adductor Rate of Torque Development and Muscle Activation, but Not Muscle Size, Are Associated With Functional Performance. Front Physiol 2021; 12:744153. [PMID: 34721067 PMCID: PMC8551702 DOI: 10.3389/fphys.2021.744153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/14/2021] [Indexed: 11/13/2022] Open
Abstract
Understanding the physiological variables that contribute to a functional task provides important information for trainers and clinicians to improve functional performance. The hip abductors and adductors muscles appear to be important in determining the performance of some functional tasks; however, little is known about the relationship of the hip abductor/adductors muscle strength, activation, and size with functional performance. This study aimed to investigate the relationship of maximum torque, rate of torque development (RTD), rate of activation (RoA), and muscle thickness of the hip abductors [tensor fascia latae (TFL) and gluteus medius (GM)] and adductor magnus muscle with the Four Square Step Test (FSST) and the two-leg hop test in healthy young adults. Twenty participants (five males) attended one testing session that involved ultrasound image acquisition, maximal isometric voluntary contractions (hip abduction and hip adduction) while surface electromyography (EMG) was recorded, and two functional tests (FSST and two-leg side hop test). Bivariate correlations were performed between maximum voluntary torque (MVT), RTD at 50, 100, 200, and 300ms, RoA at 0-50, 0-100, 0-200, and 0-300, and muscle thickness with the dynamic stability tests. For the hip abduction, MVT (r=-0.455, p=0.044) and RTD300 (r=-0.494, p=0.027) was correlated with the FSST. GM RoA50 (r=-0.481, p=0.032) and RoA100 (r=-0.459, p=0.042) were significantly correlated with the two-leg side hop test. For the hip adduction, there was a significant correlation between the FSST and RTD300 (r=-0.500, p=0.025), while the two-leg side hop test was correlated with RTD200 (r=0.446, p=0.049) and RTD300 (r=0.594, p=0.006). Overall, the ability of the hip abductor and adductor muscles to produce torque quickly, GM rapid activation, and hip abductor MVT is important for better performance on the FSST and two-leg hop tests. However, muscle size appears not to influence the same tests.
Collapse
Affiliation(s)
- Marcel Bahia Lanza
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Kelly Rock
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Victoria Marchese
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Odessa Addison
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Veterans Affairs and Veterans Affairs Medical Center, Geriatric Research, Education and Clinical Centers, Baltimore, Maryland
| | - Vicki L Gray
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
17
|
Škarabot J, Balshaw TG, Maeo S, Massey GJ, Lanza MB, Maden-Wilkinson TM, Folland JP. Neural adaptations to long-term resistance training: evidence for the confounding effect of muscle size on the interpretation of surface electromyography. J Appl Physiol (1985) 2021; 131:702-715. [PMID: 34166110 DOI: 10.1152/japplphysiol.00094.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study compared elbow flexor (EF; experiment 1) and knee extensor (KE; experiment 2) maximal compound action potential (Mmax) amplitude between long-term resistance trained (LTRT; n = 15 and n = 14, 6 ± 3 and 4 ± 1 yr of training) and untrained (UT; n = 14 and n = 49) men, and examined the effect of normalizing electromyography (EMG) during maximal voluntary torque (MVT) production to Mmax amplitude on differences between LTRT and UT. EMG was recorded from multiple sites and muscles of EF and KE, Mmax was evoked with percutaneous nerve stimulation, and muscle size was assessed with ultrasonography (thickness, EF) and magnetic resonance imaging (cross-sectional area, KE). Muscle-electrode distance (MED) was measured to account for the effect of adipose tissue on EMG and Mmax. LTRT displayed greater MVT (+66%-71%, P < 0.001), muscle size (+54%-56%, P < 0.001), and Mmax amplitudes (+29%-60%, P ≤ 0.010) even when corrected for MED (P ≤ 0.045). Mmax was associated with the size of both muscle groups (r ≥ 0.466, P ≤ 0.011). Compared with UT, LTRT had higher absolute voluntary EMG amplitude for the KE (P < 0.001), but not the EF (P = 0.195), and these differences/similarities were maintained after correction for MED; however, Mmax normalization resulted in no differences between LTRT and UT for any muscle and/or muscle group (P ≥ 0.652). The positive association between Mmax and muscle size, and no differences when accounting for peripheral electrophysiological properties (EMG/Mmax), indicates the greater absolute voluntary EMG amplitude of LTRT might be confounded by muscle morphology, rather than providing a discrete measure of central neural activity. This study therefore suggests limited agonist neural adaptation after LTRT.NEW & NOTEWORTHY In a large sample of long-term resistance-trained individuals, we showed greater maximal M-wave amplitude of the elbow flexors and knee extensors compared with untrained individuals, which appears to be at least partially mediated by differences in muscle size. The lack of group differences in voluntary EMG amplitude when normalized to maximal M-wave suggests that differences in muscle morphology might impair interpretation of voluntary EMG as an index of central neural activity.
Collapse
Affiliation(s)
- Jakob Škarabot
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, United Kingdom
| | - Thomas G Balshaw
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, United Kingdom.,Versus Arthritis Centre for Sport, Exercise and Osteoarthritis Research, Loughborough University, Leicestershire, United Kingdom
| | - Sumiaki Maeo
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, United Kingdom.,Faculty of Sport and Health Science, Ritsumeikan University, Shiga, Japan
| | - Garry J Massey
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, United Kingdom.,School of Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| | - Marcel B Lanza
- Department of Physical Therapy and Rehabilitation, University of Maryland, Baltimore, Maryland
| | - Thomas M Maden-Wilkinson
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, United Kingdom.,Academy of Sport and Physical Activity, Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield, United Kingdom
| | - Jonathan P Folland
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, United Kingdom.,Versus Arthritis Centre for Sport, Exercise and Osteoarthritis Research, Loughborough University, Leicestershire, United Kingdom
| |
Collapse
|
18
|
Tecchio P, Monte A, Zamparo P. Low-cost electromyography: validity against a commercial system depends on exercise type and intensity. Eur J Transl Myol 2021; 31. [PMID: 34210115 PMCID: PMC8274228 DOI: 10.4081/ejtm.2021.9735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/02/2021] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to assess the validity of a custom-made low cost (LC) and a commercial surface EMG apparatus in controlled experimental conditions and different exercise types: maximal voluntary contractions (MVC) at 105, 90, 75, 60, 45 and 30° knee angle and explosive fix-end contractions of the knee extensors (75°) at an isometric dynamometer. sEMG of vastus lateralis was recorded from the same electrodes simultaneously, then analyzed in the same way; sEMG were finally expressed in percentage of those collected at 75°MVC. LC underestimated the sEMG signal at the more extended knee angles (30-60°), significant difference was observed only at 30°. In the explosive contractions no differences between devices were observed in average and peak sEMG, as well as in the time to peak and the activation time. Bland-Altman tests and correlation parameters indicate the LC device is not sensible enough to detect the time to peak and the peak values of the sEMG signal properly. Results suggest low-cost systems might be a valid alternative to commercial ones, but attention must be paid when analyzing rapid events.
Collapse
Affiliation(s)
- Paolo Tecchio
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona.
| | - Andrea Monte
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona.
| | - Paola Zamparo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona.
| |
Collapse
|
19
|
Balshaw TG, Maden-Wilkinson TM, Massey GJ, Folland JP. The Human Muscle Size and Strength Relationship: Effects of Architecture, Muscle Force, and Measurement Location. Med Sci Sports Exerc 2021; 53:2140-2151. [PMID: 33935234 DOI: 10.1249/mss.0000000000002691] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE This study aimed to determine the best muscle size index of muscle strength by establishing if incorporating muscle architecture measurements improved the human muscle size-strength relationship. The influence of calculating muscle force, and the location of anatomical cross-sectional area (ACSA) measurements on this relationship were also examined. METHODS Fifty-two recreationally active males completed unilateral isometric knee extension strength assessments and MRI scans of the dominant thigh and knee to determine quadriceps femoris (QF) size variables (ACSA along the length of the femur, maximum ACSA [ACSAMAX] and volume [VOL]) and patellar tendon moment arm. Ultrasound images (2 sites per constituent muscle) were analyzed to quantify muscle architecture (fascicle length, pennation angle), and when combined with VOL (from MRI), facilitated calculation of QF effective PCSA (EFFPCSA) as potentially the best muscle size determinant of strength. Muscle force was calculated by dividing maximum voluntary torque (MVT) by the moment arm and addition of antagonist torque (derived from hamstring EMG). RESULTS The associations of EFFPCSA (r=0.685), ACSAMAX (r=0.697), or VOL (r=0.773) with strength did not differ, although qualitatively VOL explained 59.8% of the variance in strength, ~11-13% greater than EFFPCSA or ACSAMAX. All muscle size variables had weaker associations with muscle force than MVT. The association of strength-ACSA at 65% of femur length (r=0.719) was greater than for ACSA measured between 10-55% and 75-90% (r=-0.042-0.633) of femur length. CONCLUSIONS In conclusion, using contemporary methods to assess muscle architecture and calculate EFFPCSA did not enhance the muscle strength-size association. For understanding/monitoring muscle size, the major determinant of strength, these findings support the assessment of muscle volume, that is independent of architecture measurements, and was most highly correlated to strength.
Collapse
Affiliation(s)
- Thomas G Balshaw
- Versus Arthritis, Centre for Sport, Exercise and Osteoarthritis, Loughborough University, Leicestershire, United Kingdom School of Sport, Exercise, and Health Sciences, Loughborough University, Leicestershire, United Kingdom Academy of Sport and Physical Activity, Faculty of Health and Wellbeing, Collegiate Campus, Sheffield Hallam University, Sheffield, United Kingdom School of Sport and Health Sciences, University of Exeter, United Kingdom
| | | | | | | |
Collapse
|
20
|
Martins-Costa HC, Lanza MB, Diniz RCR, Lacerda LT, Gomes MC, Lima FV, Chagas MH. The effect of different resistance training protocols equalized by time under tension on the force-position relationship after 10 weeks of training period. Eur J Sport Sci 2021; 22:846-856. [PMID: 33779514 DOI: 10.1080/17461391.2021.1910346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This study investigated the impact of performing two equalized resistance training (RT) protocols for 10 weeks that differ only by repetition duration and number in the force-position and EMG-position relationship. Participants performed an equalized (36 s of time under tension; 3-4 sets; 3 min between sets; 50-55% of one-repetition maximum; 3× week) RT intervention on the bench press and the only different change between protocols was repetition number (RN; 12 vs.6) or duration (RD; 3 s vs. 6 s). Two experimental groups (RN12RD3, n = 12; and RN6RD6, n = 12) performed the RT, while one group was the control (Control, n = 11). Maximal isometric contractions at 10%, 50% and 90% of total bench press range of motion were performed pre- and post-RT, while electromyography was recorded. It demonstrated an increase in isometric force (+14% to 24%, P < 0.001) shifting up the force-position relationship of the training groups after RT, although no difference was between training groups compared to the Control. Neuromuscular activation from pectoralis major presented an increase after training for both RT groups (+44%; P < 0.001) compared to the Control. However, although not significantly different, triceps brachii also presented an increase depending on the protocol (+25%). In conclusion, 10 weeks of an equalized RT with longer RN and shorter RD (or opposite) similarly increases the ability to produce maximal isometric force during the bench exercise across different angles, while neuromuscular activation of the pectoralis major partially explained the shift-up of the force-position relationship after training.
Collapse
Affiliation(s)
- Hugo C Martins-Costa
- Weight Training Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Department of Physical Education, Pontifical Catholic University of Minas Gerais, Belo Horizonte, Brazil
| | - Marcel B Lanza
- Weight Training Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Department of Physical Therapy and Rehabilitation, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Rodrigo C R Diniz
- Weight Training Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Lucas T Lacerda
- Weight Training Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Department of Physical Education, Pontifical Catholic University of Minas Gerais, Belo Horizonte, Brazil.,Department of Physical Education and Sports, Technological Education Federal Center of Minas Gerais, Belo Horizonte, Brazil.,Department of Physical Education, State University of Minas Gerais, Divinópolis, Brazil
| | - Mateus C Gomes
- Weight Training Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Fernando V Lima
- Weight Training Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Mauro H Chagas
- Weight Training Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
21
|
Muscle architecture and morphology as determinants of explosive strength. Eur J Appl Physiol 2021; 121:1099-1110. [PMID: 33458800 PMCID: PMC7966212 DOI: 10.1007/s00421-020-04585-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 12/12/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE Neural drive and contractile properties are well-defined physiological determinants of explosive strength, the influence of muscle architecture and related morphology on explosive strength is poorly understood. The aim of this study was to examine the relationships between Quadriceps muscle architecture (pennation angle [ΘP] and fascicle length [FL]) and size (e.g., volume; QVOL), as well as patellar tendon moment arm (PTMA) with voluntary and evoked explosive knee extension torque in 53 recreationally active young men. METHOD Following familiarisation, explosive voluntary torque at 50 ms intervals from torque onset (T50, T100, T150), evoked octet at 50 ms (8 pulses at 300-Hz; evoked T50), as well as maximum voluntary torque, were assessed on two occasions with isometric dynamometry. B-mode ultrasound was used to assess ΘP and FL at ten sites throughout the quadriceps (2-3 sites) per constituent muscle. Muscle size (QVOL) and PTMA were quantified using 1.5 T MRI. RESULT There were no relationships with absolute early phase explosive voluntary torque (≤ 50 ms), but θP (weak), QVOL (moderate to strong) and PTMA (weak) were related to late phase explosive voluntary torque (≥ 100 ms). Regression analysis revealed only QVOL was an independent variable contributing to the variance in T100 (34%) and T150 (54%). Evoked T50 was also related to QVOL and θP. When explosive strength was expressed relative to MVT there were no relationships observed. CONCLUSION It is likely that the weak associations of θP and PTMA with late phase explosive voluntary torque was via their association with MVT/QVOL rather than as a direct determinant.
Collapse
|
22
|
Early vs. late rate of torque development: Relation with maximal strength and influencing factors. J Electromyogr Kinesiol 2020; 55:102486. [DOI: 10.1016/j.jelekin.2020.102486] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/17/2020] [Accepted: 10/23/2020] [Indexed: 11/17/2022] Open
|
23
|
Lanza MB, Addison O, Ryan AS, J Perez W, Gray V. Kinetic, muscle structure, and neuromuscular determinants of weight transfer phase prior to a lateral choice reaction step in older adults. J Electromyogr Kinesiol 2020; 55:102484. [PMID: 33176230 PMCID: PMC8209691 DOI: 10.1016/j.jelekin.2020.102484] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/06/2020] [Accepted: 10/14/2020] [Indexed: 12/25/2022] Open
Abstract
The present study aimed to investigate the association between rate of torque development (RTD), rate of activation (RoA), and muscle structure [muscle cross-sectional area (CSA), intramuscular fat (IMAT) and high density lean muscle (HDL)] with the weight transfer phase (WTP) during a choice reaction step test (CST) in older adults. Fifteen healthy older adults (7 females) participated in this study. Stance leg hip adductors RTD at 100, 150, and 200 ms, showed a significant inverse correlation with WTP (r ≥ 0.658, P ≤ 0.010). There was a significant inverse relationship between WTP and adductor magnus and tensor fascia latae RoA at all time points (RoA0-50-RoA0-200; r ≥ 0.707, P ≤ 0.033). In contrast, the WTP was not significantly associated with the hip abductor RTD, gluteus medius RoA, or muscle structure (CSA, IMAT, and HDL). Swing leg showed no significant relationship between WTP and RTD, RoA or muscle structure of the hip abductor or adductor muscles. In conclusion, the present study showed that hip adductor torque-time capacity, as well as neuromuscular activation of the adductor magnus and tensor fascia latae of the stance leg during a maximal isometric test, is associated with the ability to transfer body weight before a step to the side occurs.
Collapse
Affiliation(s)
- Marcel B Lanza
- Department of Physical Therapy and Rehabilitation, University of Maryland Baltimore, Baltimore, United States.
| | - Odessa Addison
- Department of Physical Therapy and Rehabilitation, University of Maryland Baltimore, Baltimore, United States; Baltimore Geriatric Research, Education, and Clinical Center, VAHMC, Baltimore, MD, United States
| | - Alice S Ryan
- Department of Medicine, University of Maryland School of Medicine, Division of Gerontology and Geriatric Medicine, United States; Baltimore Geriatric Research, Education, and Clinical Center, VAHMC, Baltimore, MD, United States
| | - William J Perez
- Baltimore Geriatric Research, Education, and Clinical Center, VAHMC, Baltimore, MD, United States
| | - Vicki Gray
- Department of Physical Therapy and Rehabilitation, University of Maryland Baltimore, Baltimore, United States
| |
Collapse
|
24
|
Tillin NA, Hessel AL, Ang SXT. Rate of torque development scaled to maximum torque available is velocity dependent. J Biomech 2020; 114:110144. [PMID: 33278768 DOI: 10.1016/j.jbiomech.2020.110144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/09/2020] [Accepted: 11/12/2020] [Indexed: 10/22/2022]
Abstract
The influence of angular velocity on rate of torque development (RTD) is unknown, despite the inverse, curvilinear torque-velocity relationship for angle- and velocity-specific maximum available torque (Tmax) being well-established. This study investigated the relationship between angular velocity and RTD scaled to Tmax. In 17 participants, tetanic contractions (100-Hz) of the knee extensors were evoked as the knee was passively extended at different iso-velocities between 0° s-1 and 200° s-1. Each condition consisted of evoking 0.25-s contractions without pre-activation (for measuring RTD) commencing as the knee passed 95° of extension, and 1.25-s contractions with pre-activation (for measuring Tmax), commencing 1 s prior to the knee reaching 95°. Torque at 100 ms after torque onset (T100) and peak RTD (RTDpeak) in the contractions without pre-activation were normalised to Tmax. The torque-velocity relationship for T100 was flat in comparison to an inverse, curvilinear relationship for Tmax, resulting in linear increases in normalised T100 and RTDpeak with increased velocity. Results also showed normalised T100 and RTDpeak were likely overestimated due to shortening-induced force depression (FD) which would be greater in contractions with- than without- pre-activation. However, these effects of FD cannot explain the faster normalised RTD with increased velocity, as the relative difference in work done (a proxy for FD) between contractions with and without pre-activation decreased - and thus the overestimation of normalised RTD metrics likely decreased - with increased velocity. In conclusion, RTD scaled to Tmax increases with increased velocity, which appears to be an intrinsic contractile property independent of the effects of force depression.
Collapse
Affiliation(s)
- Neale A Tillin
- Department of Life Sciences, Roehampton University, London, UK.
| | | | - Shaun X T Ang
- Department of Life Sciences, Roehampton University, London, UK; National Junior College, Singapore
| |
Collapse
|
25
|
Hager R, Poulard T, Nordez A, Dorel S, Guilhem G. Influence of joint angle on muscle fascicle dynamics and rate of torque development during isometric explosive contractions. J Appl Physiol (1985) 2020; 129:569-579. [DOI: 10.1152/japplphysiol.00143.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Ankle angle influences the operating muscle fascicle lengths of gastrocnemius medialis and the rate of torque development during explosive isometric plantar flexions. The rate of torque development peaks in neutral angles where muscle fascicles shorten over the plateau of the force-length relationship. When fascicles operate over the plateau of the force-length relationship (neutral ankle positions), the force-velocity properties represent a limiting factor for the rapid force-generating capacity from 100 ms after the onset of explosive contractions.
Collapse
Affiliation(s)
- Robin Hager
- Laboratory Sport, Expertise, and Performance (EA 7370), French Institute of Sport (INSEP), Paris, France
| | - Thomas Poulard
- Laboratory “Movement, Interactions, Performance” (EA 4334), Faculty of Sport Sciences, University of Nantes, Nantes, France
| | - Antoine Nordez
- Laboratory “Movement, Interactions, Performance” (EA 4334), Faculty of Sport Sciences, University of Nantes, Nantes, France
- Health and Rehabilitation Research Institute, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Sylvain Dorel
- Laboratory “Movement, Interactions, Performance” (EA 4334), Faculty of Sport Sciences, University of Nantes, Nantes, France
| | - Gaël Guilhem
- Laboratory Sport, Expertise, and Performance (EA 7370), French Institute of Sport (INSEP), Paris, France
| |
Collapse
|
26
|
Relationship between vastus lateralis muscle ultrasound echography, knee extensors rate of torque development, and jump height in professional soccer athletes. SPORT SCIENCES FOR HEALTH 2020. [DOI: 10.1007/s11332-020-00681-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
27
|
Orssatto LBR, Wiest MJ, Moura BM, Collins DF, Diefenthaeler F. Neuromuscular determinants of explosive torque: Differences among strength-trained and untrained young and older men. Scand J Med Sci Sports 2020; 30:2092-2100. [PMID: 32749004 DOI: 10.1111/sms.13788] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 02/03/2023]
Abstract
This study compared the differences in neural and muscular mechanisms related to explosive torque in chronically strength-trained young and older men (>5 years). Fifty-four participants were allocated into four groups according to age and strength training level: older untrained (n = 14; 65.6 ± 2.9 years), older trained (n = 12; 63.6 ± 3.8 years), young untrained (n = 14; 26.2 ± 3.7 years), and young trained (n = 14; 26.7 ± 3.4 years). Knee extension isometric voluntary explosive torque (absolute and normalized as a percentage of maximal voluntary torque) was assessed at the beginning of the contraction (ie, 50, 100, and 150 ms-T50, T100, and T150, respectively), and surface electromyogram (sEMG) amplitude (normalized as a percentage of sEMG recorded during maximal voluntary isometric contraction) at 0-50, 50-100, and 100-150 time windows. Supramaximal electrically evoked T50 was assessed with octet trains delivered to the femoral nerve (8 pulses at 300 Hz). Voluntary T50, T100, and T150 were higher for trained than untrained in absolute (P < 0.001) and normalized (P < 0.030) terms, accompanied by higher sEMG at 0-50, 50-100, and 100-150 ms (P < 0.001), and voluntary T50/octet T50 ratio for trained. Greater octet T50 was observed for the young trained (P < 0.001) but not for the older trained (P = 0.273) compared to their untrained counterparts. Age effect was observed for voluntary T50, T100, and T150 (P < 0.050), but normalization removed these differences (P > 0.417). Chronically strength-trained young and older men presented a greater explosive torque than their untrained pairs. In young trained, the greater explosive performance was attributed to enhanced muscular and neural mechanisms, while in older trained to neural mechanisms only.
Collapse
Affiliation(s)
- Lucas B R Orssatto
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Matheus J Wiest
- Neural Engineering & Therapeutic Team, KITE, Toronto Rehab, University Health Network, Toronto, ON, Canada
| | - Bruno M Moura
- Biomechanics Laboratory, Federal University of Santa Catarina, Florianópolis, Brazil
| | - David F Collins
- Human Neurophysiology Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
28
|
Oranchuk DJ, Neville JG, Storey AG, Nelson AR, Cronin JB. Variability of concentric angle-specific isokinetic torque and impulse assessments of the knee extensors. Physiol Meas 2020; 41:01NT02. [DOI: 10.1088/1361-6579/ab635e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
29
|
Lanza MB, Balshaw TG, Folland JP. Is the joint-angle specificity of isometric resistance training real? And if so, does it have a neural basis? Eur J Appl Physiol 2019; 119:2465-2476. [DOI: 10.1007/s00421-019-04229-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/09/2019] [Indexed: 01/08/2023]
|