1
|
Chambion-Diaz M, Manferdelli G, Narang BJ, Giardini G, Debevec T, Pialoux V, Millet GP. Oxidative stress and nitric oxide metabolism responses during prolonged high-altitude exposure in preterm born adults. JOURNAL OF SPORT AND HEALTH SCIENCE 2025; 14:101034. [PMID: 40021057 PMCID: PMC12060470 DOI: 10.1016/j.jshs.2025.101034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/14/2024] [Accepted: 12/27/2024] [Indexed: 03/03/2025]
Abstract
BACKGROUND Prematurely-born individuals tend to exhibit higher resting oxidative stress, although evidence suggests they may be more resistant to acute hypoxia-induced redox balance alterations. We aimed to investigate the redox balance changes across a 3-day hypobaric hypoxic exposure at 3375 m in healthy adults born preterm (gestational age ≤ 32 weeks) and their term-born (gestational age ≥ 38 weeks) counterparts. METHODS Resting venous blood was obtained in normoxia (prior to altitude exposure), immediately upon arrival to altitude, and the following 3 mornings. Antioxidant (superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), and ferric reducing antioxidant power (FRAP)), pro-oxidant (xanthine oxidase (XO) and myeloperoxidase (MPO)) enzyme activity, oxidative stress markers (advanced oxidation protein product (AOPP) and malondialdehyde (MDA)), nitric oxide (NO) metabolites (nitrites, nitrates, and total nitrite and nitrate (NOx)), and nitrotyrosine were measured in plasma. RESULTS SOD increased only in the preterm group (p < 0.05). Catalase increased at arrival in preterm group (p < 0.05). XO activity increased at Day 3 for the preterm group, while it increased acutely (arrival and Day 1) in control group. MPO increased in both groups throughout the 3 days (p < 0.05). AOPP only increased at arrival in the preterm (p < 0.05) whereas it decreased at arrival up to Day 3 (p < 0.05) for control. MDA decreased in control group from arrival onward. Nitrotyrosine decreased in both groups (p < 0.05). Nitrites increased on Day 3 (p < 0.05) in control group and decreased on Day 1 (p < 0.05) in preterm group. CONCLUSION These data indicate that antioxidant enzymes seem to increase immediately upon hypoxic exposure in preterm adults. Conversely, the blunted pro-oxidant enzyme response to prolonged hypoxia exposure suggests that these enzymes may be less sensitive in preterm individuals. These findings lend further support to the potential hypoxic preconditioning effect of preterm birth.
Collapse
Affiliation(s)
- Marie Chambion-Diaz
- Laboratoire Interuniversitaire de biologie de la motricité (LIBM), Université Lyon 1 Claude Bernard, Villeurbanne 69100, France; Laboratoire de kinésiologie du PEPS, Département de kinésiologie, Faculté de médecine, Université Laval, Québec G1V 0A6, Canada
| | - Giorgio Manferdelli
- Institute of Sport Sciences, University of Lausanne, Lausanne 1015, Switzerland
| | - Benjamin J Narang
- Department of Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana 1000, Slovenia; Faculty for Sport, University of Ljubljana, Ljubljana 1600, Slovenia
| | - Guido Giardini
- Mountain Medicine and Neurology Centre, Valle D'Aosta Regional Hospital, Aosta 11100, Italy
| | - Tadej Debevec
- Faculty for Sport, University of Ljubljana, Ljubljana 1600, Slovenia; Mountain Medicine and Neurology Centre, Valle D'Aosta Regional Hospital, Aosta 11100, Italy
| | - Vincent Pialoux
- Laboratoire Interuniversitaire de biologie de la motricité (LIBM), Université Lyon 1 Claude Bernard, Villeurbanne 69100, France; Institut Universitaire de France, Paris 75231, France.
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne 1015, Switzerland
| |
Collapse
|
2
|
Shushanyan RA, Avtandilyan NV, Grigoryan AV, Karapetyan AF. The role of oxidative stress and neuroinflammatory mediators in the pathogenesis of high-altitude cerebral edema in rats. Respir Physiol Neurobiol 2024; 327:104286. [PMID: 38825093 DOI: 10.1016/j.resp.2024.104286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
High-altitude environments present extreme conditions characterized by low barometric pressure and oxygen deficiency, which can disrupt brain functioning and cause edema formation. The objective of the present study is to investigate several biomolecule expressions and their role in the development of High Altitude Cerebral Edema in a rat model. Specifically, the study focuses on analyzing the changes in total arginase, nitric oxide, and lipid peroxidation (MDA) levels in the brain following acute hypobaric hypoxic exposure (7620 m, SO2=8.1 %, for 24 h) along with the histopathological assessment. The histological examination revealed increased TNF-α activity, and an elevated number of mast cells in the brain, mainly in the hippocampus and cerebral cortex. The research findings demonstrated that acute hypobaric hypoxic causes increased levels of apoptotic cells, shrinkage, and swelling of neurons, accompanied by the formation of protein aggregation in the brain parenchyma. Additionally, the level of nitric oxide and MDA was found to have increased (p<0.0001), however, the level of arginase decreased indicating active lipid peroxidation and redox imbalance in the brain. This study provides insights into the pathogenesis of HACE by evaluating some biomolecules that play a pivotal role in the inflammatory response and the redox landscape in the brain. The findings could have significant implications for understanding the neuronal dysfunction and the pathological mechanisms underlying HACE development.
Collapse
Affiliation(s)
| | - Nikolay V Avtandilyan
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, Yerevan, Armenia
| | - Anna V Grigoryan
- Department of Human and Animal Physiology, Yerevan State University, Armenia
| | - Anna F Karapetyan
- Department of Human and Animal Physiology, Yerevan State University, Armenia
| |
Collapse
|
3
|
Guo Y, Liu X, Zhang Q, Shi Z, Zhang M, Chen J. Can acute high-altitude sickness be predicted in advance? REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:27-36. [PMID: 36165715 DOI: 10.1515/reveh-2022-0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
In high-altitude environments, the oxygen and air density are decreased, and the temperature and humidity are low. When individuals enter high-altitude areas, they are prone to suffering from acute mountain sickness (AMS) because they cannot tolerate hypoxia. Headache, fatigue, dizziness, and gastrointestinal reactions are the main symptoms of AMS. When these symptoms cannot be effectively alleviated, they can progress to life-threatening high-altitude pulmonary edema or high-altitude cerebral edema. If the risk of AMS can be effectively assessed before people enter high-altitude areas, then the high-risk population can be promptly discouraged from entering the area, or drug intervention can be established in advance to prevent AMS occurrence and avoid serious outcomes. This article reviews recent studies related to the early-warning biological indicators of AMS to provide a new perspective on the prevention of AMS.
Collapse
Affiliation(s)
- Yan Guo
- Medical College of Soochow University, Suzhou, Jiangsu Province, China
- Department of Pathology, Qinghai Provincial People's Hospital, Xining, Qinghai Province, China
| | - Xiao Liu
- Department of Basic Medical Sciences, The 960th Hospital of PLA, Jinan, Shandong Province, China
| | - Qiang Zhang
- Department of Neurosurgery, Qinghai Provincial People's Hospital, Xining, Qinghai Province, China
| | - Zhongshan Shi
- Department of Intensive Care Medicine, Ge er mu People's Hospital, Ge er mu, Qinghai Province, China
| | - Menglan Zhang
- Department of Pathology, Qinghai Provincial People's Hospital, Xining, Qinghai Province, China
| | - Jie Chen
- Department of Pathology, Qinghai Provincial People's Hospital, Xining, Qinghai Province, China
| |
Collapse
|
4
|
Li X, Zhang J, Liu G, Wu G, Wang R, Zhang J. High altitude hypoxia and oxidative stress: The new hope brought by free radical scavengers. Life Sci 2024; 336:122319. [PMID: 38035993 DOI: 10.1016/j.lfs.2023.122319] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/05/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
Various strategies can be employed to prevent and manage altitude illnesses, including habituation, oxygenation, nutritional support, and medication. Nevertheless, the utilization of drugs for the prevention and treatment of hypoxia is accompanied by certain adverse effects. Consequently, the quest for medications that exhibit minimal side effects while demonstrating high efficacy remains a prominent area of research. In this context, it is noteworthy that free radical scavengers exhibit remarkable anti-hypoxia activity. These scavengers effectively eliminate excessive free radicals and mitigate the production of reactive oxygen species (ROS), thereby safeguarding the body against oxidative damage induced by plateau hypoxia. In this review, we aim to elucidate the pathogenesis of plateau diseases that are triggered by hypoxia-induced oxidative stress at high altitudes. Additionally, we present a range of free radical scavengers as potential therapeutic and preventive approaches to mitigate the occurrence of common diseases associated with hypoxia at high altitudes.
Collapse
Affiliation(s)
- Xuefeng Li
- College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Juanhong Zhang
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Guoan Liu
- College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Guofan Wu
- College of Life Science, Northwest Normal University, Lanzhou 730070, China.
| | - Rong Wang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; Key Laboratory for Prevention and Remediation of Plateau Environmental Damage, 940th Hospital of Joint Logistics Support Force of CPLA, Lanzhou 730050, China.
| | - Junmin Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
5
|
Narang BJ, Manferdelli G, Millet GP, Debevec T. Respiratory responses to hypoxia during rest and exercise in individuals born pre-term: a state-of-the-art review. Eur J Appl Physiol 2022; 122:1991-2003. [PMID: 35589858 DOI: 10.1007/s00421-022-04965-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/28/2022] [Indexed: 11/28/2022]
Abstract
The pre-term birth survival rate has increased considerably in recent decades, and research investigating the long-term effects of premature birth is growing. Moreover, altitude sojourns are increasing in popularity and are often accompanied by various levels of physical activity. Individuals born pre-term appear to exhibit altered acute ventilatory responses to hypoxia, potentially predisposing them to high-altitude illness. These impairments are likely due to the use of perinatal hyperoxia stunting the maturation of carotid body chemoreceptors, but may also be attributed to limited lung diffusion capacity and/or gas exchange inefficiency. Aerobic exercise capacity also appears to be reduced in this population. This may relate to the aforementioned respiratory impairments, or could be due to physiological limitations in pulmonary blood flow or at the exercising muscle (e.g. mitochondrial efficiency). However, surprisingly, the debilitative effects of exercise when performed at altitude do not seem to be exacerbated by premature birth. In fact, it is reasonable to speculate that pre-term birth could protect against the consequences of exercise combined with hypoxia. The mechanisms that underlie this assertion might relate to differences in oxidative stress responses or in cardiopulmonary morphology in pre-term individuals, compared to their full-term counterparts. Further research is required to elucidate the independent effects of neonatal treatment, sex differences and chronic lung disease, and to establish causality in some of the proposed mechanisms that could underlie the differences discussed throughout this review. A more in-depth understanding of the acclimatisation responses to chronic altitude exposures would also help to inform appropriate interventions in this clinical population.
Collapse
Affiliation(s)
- Benjamin J Narang
- Department of Automation, Biocybernetics and Robotics, Jožef Stefan Institute, Jamova Cesta 39, 1000, Ljubljana, Slovenia. .,Faculty for Sport, University of Ljubljana, Ljubljana, Slovenia.
| | | | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Tadej Debevec
- Department of Automation, Biocybernetics and Robotics, Jožef Stefan Institute, Jamova Cesta 39, 1000, Ljubljana, Slovenia.,Faculty for Sport, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
6
|
Pena E, El Alam S, Siques P, Brito J. Oxidative Stress and Diseases Associated with High-Altitude Exposure. Antioxidants (Basel) 2022; 11:267. [PMID: 35204150 PMCID: PMC8868315 DOI: 10.3390/antiox11020267] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 12/12/2022] Open
Abstract
Several diseases associated with high-altitude exposure affect unacclimated individuals. These diseases include acute mountain sickness (AMS), high-altitude cerebral edema (HACE), high-altitude pulmonary edema (HAPE), chronic mountain sickness (CMS), and, notably, high-altitude pulmonary hypertension (HAPH), which can eventually lead to right ventricle hypertrophy and heart failure. The development of these pathologies involves different molecules and molecular pathways that might be related to oxidative stress. Studies have shown that acute, intermittent, and chronic exposure to hypobaric hypoxia induce oxidative stress, causing alterations to molecular pathways and cellular components (lipids, proteins, and DNA). Therefore, the aim of this review is to discuss the oxidative molecules and pathways involved in the development of high-altitude diseases. In summary, all high-altitude pathologies are related to oxidative stress, as indicated by increases in the malondialdehyde (MDA) biomarker and decreases in superoxide dismutase (SOD) and glutathione peroxidase (GPx) antioxidant activity. In addition, in CMS, the levels of 8-iso-PGF2α and H2O2 are increased, and evidence strongly indicates an increase in Nox4 activity in HAPH. Therefore, antioxidant treatments seem to be a promising approach to mitigating high-altitude pathologies.
Collapse
Affiliation(s)
- Eduardo Pena
- Institute of Health Studies, Arturo Prat University, Iquique 1100000, Chile; (E.P.); (P.S.); (J.B.)
| | - Samia El Alam
- Institute of Health Studies, Arturo Prat University, Iquique 1100000, Chile; (E.P.); (P.S.); (J.B.)
| | - Patricia Siques
- Institute of Health Studies, Arturo Prat University, Iquique 1100000, Chile; (E.P.); (P.S.); (J.B.)
| | - Julio Brito
- Institute of Health Studies, Arturo Prat University, Iquique 1100000, Chile; (E.P.); (P.S.); (J.B.)
| |
Collapse
|
7
|
Tanner V, Faiss R, Saugy J, Bourdillon N, Schmitt L, Millet GP. Similar Supine Heart Rate Variability Changes During 24-h Exposure to Normobaric vs. Hypobaric Hypoxia. Front Neurosci 2021; 15:777800. [PMID: 34955728 PMCID: PMC8695977 DOI: 10.3389/fnins.2021.777800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/22/2021] [Indexed: 01/22/2023] Open
Abstract
Purpose: This study aimed to investigate the differences between normobaric (NH) and hypobaric hypoxia (HH) on supine heart rate variability (HRV) during a 24-h exposure. We hypothesized a greater decrease in parasympathetic-related parameters in HH than in NH. Methods: A pooling of original data from forty-one healthy lowland trained men was analyzed. They were exposed to altitude either in NH (FIO2 = 15.7 ± 2.0%; PB = 698 ± 25 mmHg) or HH (FIO2 = 20.9%; PB = 534 ± 42 mmHg) in a randomized order. Pulse oximeter oxygen saturation (SpO2), heart rate (HR), and supine HRV were measured during a 7-min rest period three times: before (in normobaric normoxia, NN), after 12 (H12), and 24 h (H24) of either NH or HH exposure. HRV parameters were analyzed for time- and frequency-domains. Results: SpO2 was lower in both hypoxic conditions than in NN and was higher in NH than HH at H24. Subjects showed similarly higher HR during both hypoxic conditions than in NN. No difference in HRV parameters was found between NH and HH at any time. The natural logarithm of root mean square of the successive differences (LnRMSSD) and the high frequency spectral power (HF), which reflect parasympathetic activity, decreased similarly in NH and HH when compared to NN. Conclusion: Despite SpO2 differences, changes in supine HRV parameters during 24-h exposure were similar between NH and HH conditions indicating a similar decrease in parasympathetic activity. Therefore, HRV can be analyzed similarly in NH and HH conditions.
Collapse
Affiliation(s)
- Valérian Tanner
- Medicine School, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Raphael Faiss
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.,REDs, Research and Expertise in Anti-Doping Sciences, University of Lausanne, Lausanne, Switzerland
| | - Jonas Saugy
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.,REDs, Research and Expertise in Anti-Doping Sciences, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Bourdillon
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Laurent Schmitt
- National Centre of Nordic-Ski, Research and Performance, Prémanon, France
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
8
|
Debevec T, Poussel M, Osredkar D, Willis SJ, Sartori C, Millet GP. Post-exercise accumulation of interstitial lung water is greater in hypobaric than normobaric hypoxia in adults born prematurely. Respir Physiol Neurobiol 2021; 297:103828. [PMID: 34890833 DOI: 10.1016/j.resp.2021.103828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/24/2021] [Accepted: 12/05/2021] [Indexed: 10/19/2022]
Abstract
We aimed to gauge the interstitial lung water accumulation following moderate-intensity exercise under normobaric and hypobaric hypoxic conditions in a group of preterm born but otherwise healthy young adults. Sixteen pre-term-born individuals (age = 21±2yrs.; gestational age = 29±3wk.; birth weight = 1160±273 g) underwent two 8 -h hypoxic/altitude exposures in a cross-over manner: 1) Normobaric hypoxic exposure (NH; FIO2 = 0.142±0.001; PIO2 = 90.6±0.9 mmHg) 2) Hypobaric hypoxic exposure (HH; terrestrial high-altitude 3840 m; PIO2 = 90.2±0.5 mmHg). Interstitial lung water was assessed via quantification of B-Lines (using lung ultrasound) before (normoxia) and after 4-h and 8-h of respective exposures. At each time point, B-Lines were quantified before (Pre) and immediately after (Post) a 6-min moderate-intensity exercise. The baseline B-lines count were comparable between both conditions (P = 0.191). A higher B-lines count was noted at Pre-H4 in HH versus NH (P = 0.0420). At Post-H8 B-lines score was significantly higher in HH (4.6 ± 1.6) than in NH (3.1 ± 1.4; P = 0.0073). Furthermore, at this time point, a significantly higher number of individuals with B-line scores ≥5 was observed in HH (n = 7) than in NH (n = 3; P = 0.0420). These findings suggest that short moderate-intensity exercise provokes a significant increase in the interstitial lung water accumulation after 8 h of exposure to terrestrial but not simulated altitude (≈3840 m) in prematurely born adults. Further work is needed to elucidate the exact mechanisms of (moderate-intensity) exercise-induced interstitial lung water accumulation in this population and directly compare the obtained data to full-term born adults.
Collapse
Affiliation(s)
- Tadej Debevec
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia; Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia.
| | - Mathias Poussel
- Department of Pulmonary Function Testing and Exercise Physiology, CHRU de Nancy, Nancy, France; Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Damjan Osredkar
- Department of Pediatric Neurology, University Children's Hospital Ljubljana, Ljubljana, Slovenia
| | - Sarah J Willis
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Claudio Sartori
- Department of Internal Medicine and the Botnar Center for Extreme Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
9
|
Wang X, Zhang Z, Lan X, Fu K, Xu G, Zhao J, Yuan H. Irisin Is Correlated with Blood Pressure in Obstructive Sleep Apnea Patients. Int J Hypertens 2021; 2021:4717349. [PMID: 34804606 PMCID: PMC8601862 DOI: 10.1155/2021/4717349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/27/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Despite approximately 95% primary cases of hypertension, secondary hypertension seems to be common with resistant forms. Notably, obstructive sleep apnea (OSA) is known as a common cause of secondary hypertension and has a major characteristic of obesity. Irisin acts as a link between muscles and adipose tissues in obesity, playing an essential role in human blood pressure (BP) regulation. However, whether irisin is associated with secondary hypertension caused by OSA and how it takes effect essentially have not been elucidated. PURPOSE To investigate the changes of irisin and its relationship with BP in OSA. METHODS 72 snoring patients finished Epworth Sleep Scale (ESS) evaluation before polysomnography (PSG). BP was the average of three brachial BP values by mercury sphygmomanometer. Serum irisin level was determined by enzyme-linked immunosorbent assay (ELISA). Results were analyzed by SPSS software. RESULTS Irisin was higher in the severe and quite severe group than that in control and nonsevere groups (p < 0.05). For BP, significant differences were found between the control group and the other three groups (p < 0.05) and between the quite severe and the other three groups (p ≤ 0.001). Positive correlations were found between irisin and apnea-hypopnea index (AHI), AHI and BP, and irisin level and BP. Negative correlations were between irisin and SpO2 nadir and SpO2 nadir and BP. Positive correlation still existed between AHI and irisin even after adjusting for some obesity-related variables. CONCLUSIONS Irisin may serve as a potential biomarker for severity of OSA independently of obesity and imply the development of hypertension.
Collapse
Affiliation(s)
- Xing Wang
- Department of Respiratory Medicine and Sleep Center, First Hospital of Jilin University, Changchun 130021, China
| | - Zhengjiao Zhang
- Department of Neurology and Sleep Center, People's Hospital of Jilin Province, Changchun, China
| | - Xiaoxin Lan
- Department of Respiratory Medicine and Sleep Center, First Hospital of Jilin University, Changchun 130021, China
| | - Keyou Fu
- Department of Respiratory Medicine and Sleep Center, First Hospital of Jilin University, Changchun 130021, China
| | - Guanhua Xu
- Department of Respiratory Medicine and Sleep Center, First Hospital of Jilin University, Changchun 130021, China
| | - Jingyi Zhao
- Department of Respiratory Medicine and Sleep Center, First Hospital of Jilin University, Changchun 130021, China
| | - Haibo Yuan
- Department of Respiratory Medicine and Sleep Center, First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
10
|
Limmer M, de Marées M, Platen P. Alterations in acid-base balance and high-intensity exercise performance after short-term and long-term exposure to acute normobaric hypoxic conditions. Sci Rep 2020; 10:13732. [PMID: 32792614 PMCID: PMC7426914 DOI: 10.1038/s41598-020-70762-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/04/2020] [Indexed: 11/21/2022] Open
Abstract
This investigation assessed the course of renal compensation of hypoxia-induced respiratory alkalosis by elimination of bicarbonate ions and impairments in anaerobic exercise after different durations of hypoxic exposure. Study A: 16 participants underwent a resting 12-h exposure to normobaric hypoxia (3,000 m). Blood gas analysis was assessed hourly. While blood pH was significantly increased, PO2, PCO2, and SaO2 were decreased within the first hour of hypoxia, and changes remained consistent. A substantial reduction in [HCO3-] levels was observed after 12 h of hypoxic exposure (- 1.35 ± 0.29 mmol/L, p ≤ 0.05). Study B: 24 participants performed in a randomized, cross-over trial portable tethered sprint running (PTSR) tests under normoxia and after either 1 h (n = 12) or 12 h (n = 12) of normobaric hypoxia (3,000 m). No differences occurred for PTSR-related performance parameters, but the reduction in blood lactate levels was greater after 12 h compared with 1 h (- 1.9 ± 2.2 vs 0.0 ± 2.3 mmol/L, p ≤ 0.05). These results indicate uncompensated respiratory alkalosis after 12 h of hypoxia and similar impairment of high-intensity exercise after 1 and 12 h of hypoxic exposure, despite a greater reduction in blood lactate responses after 12 h compared with 1 h of hypoxic exposure.
Collapse
Affiliation(s)
- Mirjam Limmer
- Institute of Sports Medicine and Sports Nutrition, Ruhr-University Bochum, Bochum, Germany.
- Institute of Outdoor Sports and Environmental Science, German Sports University Cologne, Cologne, Germany.
| | - Markus de Marées
- Institute of Sports Medicine and Sports Nutrition, Ruhr-University Bochum, Bochum, Germany
| | - Petra Platen
- Institute of Sports Medicine and Sports Nutrition, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|