1
|
Yoneshiro T, Matsushita M, Sakai J, Saito M. Brown fat thermogenesis and cold adaptation in humans. J Physiol Anthropol 2025; 44:11. [PMID: 40259336 PMCID: PMC12010580 DOI: 10.1186/s40101-025-00391-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/30/2025] [Indexed: 04/23/2025] Open
Abstract
Brown adipose tissue (BAT) is a site of non-shivering thermogenesis (NST) in mammals. Since the rediscovery of BAT in adult humans, there has been a remarkable advance in human BAT researches, revealing the significant roles of this thermogenic tissue in cold-induced NST and cold adaptation. Cold stress influences BAT in various time spans: acute cold exposure promptly activates BAT to induce NST, which contributes to immediate maintenance of body temperature. Prolonged cold exposure recruits BAT, resulting in increased capacity of NST and improved cold tolerance. Such BAT adaptation not only occurs in the exposed individual but also is passed on to the next generation, probably via the paternal lineage. As such, BAT plays a role in acute, chronic, and transgenerational adaptation to cold environment in humans.
Collapse
Affiliation(s)
- Takeshi Yoneshiro
- Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980 - 8575, Japan.
| | - Mami Matsushita
- Department of Nutrition, School of Nursing and Nutrition, Tenshi College, Sapporo, Hokkaido, 065 - 0013, Japan
| | - Juro Sakai
- Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980 - 8575, Japan
| | - Masayuki Saito
- Department of Nutrition, School of Nursing and Nutrition, Tenshi College, Sapporo, Hokkaido, 065 - 0013, Japan
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060 - 0818, Japan
| |
Collapse
|
2
|
Wakabayashi H, Sakaue H, Nishimura T. Recent updates on cold adaptation in population and laboratory studies, including cross-adaptation with nonthermal factors. J Physiol Anthropol 2025; 44:7. [PMID: 39972479 PMCID: PMC11837704 DOI: 10.1186/s40101-025-00387-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/16/2025] [Indexed: 02/21/2025] Open
Abstract
This review aims to update our understanding of human cold adaptation. First, an overview of the thermoregulatory response to cold is provided, with some recent updates in human brown adipose tissue (BAT). Variation in BAT activity and multiorgan contributions to cold-induced thermogenesis were introduced. We found that individuals with less BAT activity rely more on shivering to compensate for less non-shivering thermogenesis (NST). The mechanisms of cold-induced vasoconstriction are summarized, including the role of arteriovenous anastomoses, adrenergic neural function, and inhibition of the nitric oxide vasodilator pathway. In addition, cold-induced vasodilation (CIVD) during cold immersion of the distal extremities is summarized with some recent updates in physiological mechanism. Furthermore, the cold shock response at the onset of cold immersion is introduced. Next, categorization of cold acclimatization/acclimation into habituation of shivering and metabolic and insulative adaptation are provided, with some recent updates. Especially, the rediscovery of human BAT has clarified metabolic acclimation, where increased NST replace shivering. Then, a greater CIVD response in populations in cold regions has been reported, whereas recent laboratory studies suggest no increase in CIVD after repeated cold exposure. To prevent cold injuries, individuals should not rely on habituation through repeated cold exposure. In addition, habituation to the cold shock response after repeated cold water immersion could help reduce the number of drownings. Furthermore, cross-adaptation between cold and nonthermal factors in the thermoregulatory response is summarized. Recent studies explored the relationship between exercise training and BAT activity, although this remains unresolved, depending on the exercise intensity and environmental conditions. The effects of exercise with cold exposure on the thermoregulatory response to cold are summarized in studies including divers working in cold water. We investigated the effect of exercise training in cold water, which resulted in increased muscle deoxygenation during submaximal exercise and greater anerobic power. Moreover, the effects of a hypoxic environment on cold adaptation are summarized. Elevated basal metabolism and higher distal skin temperature in highlanders could improve their cold tolerance. Finally, factors affecting cold adaptation are discussed. The type of cold adaptation may depend on the specific thermoregulatory responses repeated during the adaptation process.
Collapse
Affiliation(s)
- Hitoshi Wakabayashi
- Faculty of Engineering, Hokkaido University, N13 W8 Kita-Ku, Sapporo, 060-8628, Japan
| | - Hiroyuki Sakaue
- Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8574, Japan
| | - Takayuki Nishimura
- Faculty of Design, Kyushu University, 4-9-1 Shiobaru, Minami-Ku, Fukuoka, 815-8540, Japan.
| |
Collapse
|
3
|
Ishida Y, Matsushita M, Yoneshiro T, Saito M, Nakayama K. Association between thermogenic brown fat and genes under positive natural selection in circumpolar populations. J Physiol Anthropol 2024; 43:19. [PMID: 39160621 PMCID: PMC11331686 DOI: 10.1186/s40101-024-00368-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/11/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Adaptation to cold was essential for human migration across Eurasia. Non-shivering thermogenesis through brown adipose tissue (BAT) participates in cold adaptation because some genes involved in the differentiation and function of BAT exhibit signatures of positive natural selection in populations at high latitudes. Whether these genes are associated with the inter-individual variability in BAT thermogenesis remains unclear. In this study, we evaluated the potential associations between BAT activity and single nucleotide polymorphisms (SNPs) in candidate gene regions in East Asian populations. METHODS BAT activity induced by mild cold exposure was measured in 399 healthy Japanese men and women using fluorodeoxyglucose-positron emission tomography and computed tomography (FDG-PET/CT). The capacity for cold-induced thermogenesis and fat oxidation was measured in 56 men. Association analyses with physiological traits were performed for 11 SNPs at six loci (LEPR, ANGPTL8, PLA2G2A, PLIN1, TBX15-WARS2, and FADS1) reported to be under positive natural selection. Associations found in the FDG-PET/CT population were further validated in 84 healthy East Asian men and women, in whom BAT activity was measured using infrared thermography. Associations between the SNP genotypes and BAT activity or other related traits were tested using multiple logistic and linear regression models. RESULTS Of the 11 putative adaptive alleles of the six genes, two intronic SNPs in LEPR (rs1022981 and rs12405556) tended to be associated with higher BAT activity. However, these did not survive multiple test comparisons. Associations with lower body fat percentage, plasma triglyceride, insulin, and HOMA-IR levels were observed in the FDG-PET/CT population (P < 0.05). Other loci, including TBX15-WARS2, which is speculated to mediate cold adaptation in Greenland Inuits, did not show significant differences in BAT thermogenesis. CONCLUSIONS Our results suggest a marginal but significant association between LEPR SNPs. However, robust supporting evidence was not established for the involvement of other loci under positive natural selection in cold adaptation through BAT thermogenesis in East Asian adults. Given the pleiotropic function of these genes, factors other than cold adaptation through BAT thermogenesis, such as diet adaptation, may contribute to positive natural selection at these loci.
Collapse
Affiliation(s)
- Yuka Ishida
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| | - Mami Matsushita
- Department of Nutrition, School of Nursing and Nutrition, Tenshi College, Sapporo, Hokkaido, 065-0013, Japan
| | - Takeshi Yoneshiro
- Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Masayuki Saito
- Department of Nutrition, School of Nursing and Nutrition, Tenshi College, Sapporo, Hokkaido, 065-0013, Japan
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Kazuhiro Nakayama
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan.
| |
Collapse
|
4
|
Carpentier AC. Tracers and Imaging of Fatty Acid and Energy Metabolism of Human Adipose Tissues. Physiology (Bethesda) 2024; 39:0. [PMID: 38113392 PMCID: PMC11283904 DOI: 10.1152/physiol.00012.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/22/2023] [Accepted: 12/19/2023] [Indexed: 12/21/2023] Open
Abstract
White adipose tissue and brown adipose tissue (WAT and BAT) regulate fatty acid metabolism and control lipid fluxes to other organs. Dysfunction of these key metabolic processes contributes to organ insulin resistance and inflammation leading to chronic diseases such as type 2 diabetes, metabolic dysfunction-associated steatohepatitis, and cardiovascular diseases. Metabolic tracers combined with molecular imaging methods are powerful tools for the investigation of these pathogenic mechanisms. Herein, I review some of the positron emission tomography and magnetic resonance imaging methods combined with stable isotopic metabolic tracers to investigate fatty acid and energy metabolism, focusing on human WAT and BAT metabolism. I will discuss the complementary strengths offered by these methods for human investigations and current gaps in the field.
Collapse
Affiliation(s)
- André C Carpentier
- Department of Medicine, Division of Endocrinology, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
5
|
Zhu Y, Liu W, Qi Z. Adipose tissue browning and thermogenesis under physiologically energetic challenges: a remodelled thermogenic system. J Physiol 2024; 602:23-48. [PMID: 38019069 DOI: 10.1113/jp285269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/16/2023] [Indexed: 11/30/2023] Open
Abstract
Metabolic diseases such as obesity and diabetes are often thought to be caused by reduced energy expenditure, which poses a serious threat to human health. Cold exposure, exercise and caloric restriction have been shown to promote adipose tissue browning and thermogenesis. These physiological interventions increase energy expenditure and thus have emerged as promising strategies for mitigating metabolic disorders. However, that increased adipose tissue browning and thermogenesis elevate thermogenic consumption is not a reasonable explanation when humans and animals confront energetic challenges imposed by these interventions. In this review, we collected numerous results on adipose tissue browning and whitening and evaluated this bi-directional conversion of adipocytes from the perspective of energy homeostasis. Here, we propose a new interpretation of the role of adipose tissue browning under energetic challenges: increased adipose tissue browning and thermogenesis under energy challenge is not to enhance energy expenditure, but to reestablish a more economical thermogenic pattern to maintain the core body temperature. This can be achieved by enhancing the contribution of non-shivering thermogenesis (adipose tissue browning and thermogenesis) and lowering shivering thermogenesis and high intensity shivering. Consequently, the proportion of heat production in fat increases and that in skeletal muscle decreases, enabling skeletal muscle to devote more energy reserves to overcoming environmental stress.
Collapse
Affiliation(s)
- Yupeng Zhu
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai, China
- School of Physical Education and Health, East China Normal University, Shanghai, China
- Sino-French Joint Research Center of Sport Science, East China Normal University, Shanghai, China
| | - Weina Liu
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai, China
- School of Physical Education and Health, East China Normal University, Shanghai, China
| | - Zhengtang Qi
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai, China
- School of Physical Education and Health, East China Normal University, Shanghai, China
| |
Collapse
|
6
|
Uchida Y, Izumizaki M. Modulation of acyl and des-acyl ghrelin on autonomic and behavioral thermoregulation in various ambient temperatures. J Therm Biol 2023; 113:103543. [PMID: 37055119 DOI: 10.1016/j.jtherbio.2023.103543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/13/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023]
Abstract
Maintenance of body temperature (Tb) at various ambient temperatures (Ta) during fasting is important for homeotherms. Fasting decreases Tb in thermoneutral and cold conditions and facilitates thermoregulatory behavior in the cold in rats; however, the mechanism is unknown. We focused on ghrelin, a hormone secreted by the stomach during fasting, in two circulatory forms: acyl ghrelin (AG) and des-acyl ghrelin (DAG). AG is called active ghrelin, while DAG, the non-active ghrelin, was unknown for a long time before its many functions were recently clarified. In the present review, we present the modulation of AG and DAG on autonomic and behavioral thermoregulation at various Ta and discuss the differences between their modulation on thermoregulation. AG decreases Tb in thermoneutral and cold conditions but does not affect the thermoregulatory behavior of rodents in cold conditions. The DAG decreases Tb in thermoneutral and hot conditions, but it does not affect Tb and facilitates the thermoregulatory behavior of rodents in the cold. These findings indicate that the actions of AG and DAG on thermoregulation are similar in thermoneutral conditions but are different in cold conditions.
Collapse
|
7
|
Umehara T, Mori R, Murase T, Tanaka T, Kasai K, Ikematsu K, Sato H. rno-miR-203a-3p and Mex3B contribute to cell survival of iliopsoas muscle via the Socs3-Casp3 axis under severe hypothermia in rats. Leg Med (Tokyo) 2022; 59:102150. [PMID: 36198254 DOI: 10.1016/j.legalmed.2022.102150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/06/2022] [Accepted: 09/16/2022] [Indexed: 02/05/2023]
Abstract
Forensic diagnosis of fatal hypothermia is considered difficult because no specific findings, such as molecular markers, have been identified. Therefore, determining the molecular mechanism in hypothermia and identifying novel molecular markers to assist in diagnosing fatal hypothermia are important. This study aimed to investigate microRNA (miRNA) and mRNA expression in iliopsoas muscle, which plays a role in homeostasis in mammals, to resolve the molecular mechanism in hypothermia. We generated rat models of mild, moderate, and severe hypothermia, then performed body temperature-dependent miRNA and mRNA expression analysis of the iliopsoas muscle using microarray and next-generation sequencing. Analysis showed that rno-miR-203a-3p expression was lower with decreasing body temperature, while Socs3 expression was significantly increased only by severe hypothermia. Luciferase reporter assays suggested that Socs3 expression is regulated by rno-miR-203a-3p. Socs3 and Mex3B small interfering RNA-mediated knockdown showed that suppressing Mex3B could induce the activation of Socs3, followed by a change in caspase 3/7 activity and adenosine triphosphate levels in iliopsoas muscle cells. These findings indicate that rno-miR-203a-3p and Mex3B are deactivated by a decrease in body temperature, whereby it contributes to suppressing apoptosis by accelerating Socs3. Accordingly, the rno-miR-203a-3p-Socs3-Casp3 or Mex3B-Socs3-Casp3 axis may be the part of the biological defense response to maintain homeostasis under extreme hypothermia.
Collapse
Affiliation(s)
- Takahiro Umehara
- Department of Forensic Medicine, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555, Japan.
| | - Ryoichi Mori
- Department of Pathology, Nagasaki University, School of Medicine and Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, Nagasaki 852-8523, Japan
| | - Takehiko Murase
- Division of Forensic Pathology and Science, Unit of Social Medicine, Course of Medical and Dental Sciences, Graduate School of Biomedical Sciences, Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki, Nagasaki 852-8523, Japan
| | - Toshiko Tanaka
- Department of Forensic Medicine, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Kentaro Kasai
- Department of Forensic Medicine, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Kazuya Ikematsu
- Division of Forensic Pathology and Science, Unit of Social Medicine, Course of Medical and Dental Sciences, Graduate School of Biomedical Sciences, Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki, Nagasaki 852-8523, Japan
| | - Hiroaki Sato
- Department of Forensic Medicine, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| |
Collapse
|
8
|
Maushart CI, Senn JR, Loeliger RC, Siegenthaler J, Bur F, Fischer JGW, Betz MJ. Resting Energy Expenditure and Cold-induced Thermogenesis in Patients With Overt Hyperthyroidism. J Clin Endocrinol Metab 2022; 107:450-461. [PMID: 34570185 PMCID: PMC8764338 DOI: 10.1210/clinem/dgab706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Thyroid hormone (TH) is crucial for the adaptation to cold. OBJECTIVE To evaluate the effect of hyperthyroidism on resting energy expenditure (REE), cold-induced thermogenesis (CIT) and changes in body composition and weight. METHODS This was a prospective cohort study at the endocrine outpatient clinic of a tertiary referral center. Eighteen patients with overt hyperthyroidism were included. We measured REE during hyperthyroidism, after restoring euthyroid TH levels and after 3 months of normal thyroid function. In 14 of the 18 patients, energy expenditure (EE) was measured before and after a mild cold exposure of 2 hours and CIT was the difference between EEcold and EEwarm. Skin temperatures at 8 positions were recorded during the study visits. Body composition was assessed by dual X-ray absorption. RESULTS Free thyroxine (fT4) and free triiodothyronine (fT3) decreased significantly over time (fT4, P = .0003; fT3, P = .0001). REE corrected for lean body mass (LBM) decreased from 42 ± 6.7 kcal/24 hour/kg LBM in the hyperthyroid to 33 ± 4.4 kcal/24 hour/kg LBM (-21%, P < .0001 vs hyperthyroid) in the euthyroid state and 3 months later to 33 ± 5.2 kcal/24 hour/kg LBM (-21%, P = .0022 vs hyperthyroid, overall P < .0001). fT4 (P = .0001) and fT3 (P < 0.0001) were predictors of REE. CIT did not change from the hyperthyroid to the euthyroid state (P = .96). Hyperthyroidism led to increased skin temperature at warm ambient conditions but did not alter core body temperature, nor skin temperature after cold exposure. Weight regain and body composition were not influenced by REE and CIT during the hyperthyroid state. CONCLUSION CIT is not increased in patients with overt hyperthyroidism.
Collapse
Affiliation(s)
- Claudia I Maushart
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel, University of Basel, Petersgraben 4, CH-4031 Basel, Switzerland
| | - Jaël R Senn
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel, University of Basel, Petersgraben 4, CH-4031 Basel, Switzerland
| | - Rahel C Loeliger
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel, University of Basel, Petersgraben 4, CH-4031 Basel, Switzerland
| | - Judith Siegenthaler
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel, University of Basel, Petersgraben 4, CH-4031 Basel, Switzerland
| | - Fabienne Bur
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel, University of Basel, Petersgraben 4, CH-4031 Basel, Switzerland
| | - Jonas G W Fischer
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel, University of Basel, Petersgraben 4, CH-4031 Basel, Switzerland
| | - Matthias J Betz
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel, University of Basel, Petersgraben 4, CH-4031 Basel, Switzerland
| |
Collapse
|