1
|
Cognitive Functions in Scuba, Technical and Saturation Diving. BIOLOGY 2023; 12:biology12020229. [PMID: 36829505 PMCID: PMC9953147 DOI: 10.3390/biology12020229] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Scuba diving as a recreational activity is becoming increasingly popular. However, the safety of this activity, especially in the out-of-comfort zone, has been discussed worldwide. The latest publications bring conclusions regarding negative effects on cognitive functions. We compare the acute and chronic effects of diving on cognitive functioning depending on the type of dive performed, including recreational, technical and saturation diving. However, the results of research show that acute and chronic effects on cognitive functions can be negative. While acute effects are reversible after the ascent, chronic effects include white matter lesions in magnetic resonance imaging scans. We believe that more investigations should be performed to determine the chronic effects that could be observed after a few months of observations in a group of regular, intense divers. In addition, publications referring to technical divers are very limited, which is disquieting, as this particular group of divers seems to be neglected in research concerning the effects of diving on cognitive functions.
Collapse
|
2
|
Rosén A, Gennser M, Oscarsson N, Kvarnström A, Sandström G, Seeman-Lodding H, Simrén J, Zetterberg H. Protein tau concentration in blood increases after SCUBA diving: an observational study. Eur J Appl Physiol 2022; 122:993-1005. [PMID: 35142945 PMCID: PMC8926952 DOI: 10.1007/s00421-022-04892-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/05/2022] [Indexed: 11/27/2022]
Abstract
Purpose It is speculated that diving might be harmful to the nervous system. The aim of this study was to determine if established markers of neuronal injury were increased in the blood after diving. Methods Thirty-two divers performed two identical dives, 48 h apart, in a water-filled hyperbaric chamber pressurized to an equivalent of 42 m of sea water for 10 min. After one of the two dives, normobaric oxygen was breathed for 30 min, with air breathed after the other. Blood samples were obtained before and at 30–45 and 120 min after diving. Concentrations of glial fibrillary acidic, neurofilament light, and tau proteins were measured using single molecule array technology. Doppler ultrasound was used to detect venous gas emboli. Results Tau was significantly increased at 30–45 min after the second dive (p < 0.0098) and at 120 min after both dives (p < 0.0008/p < 0.0041). Comparison of matching samples showed that oxygen breathing after diving did not influence tau results. There was no correlation between tau concentrations and the presence of venous gas emboli. Glial fibrillary acidic protein was decreased 30–45 min after the first dive but at no other point. Neurofilament light concentrations did not change. Conclusions Tau seems to be a promising marker of dive-related neuronal stress, which is independent of the presence of venous gas emboli. Future studies could validate these results and determine if there is a quantitative relationship between dive exposure and change in tau blood concentration. Supplementary Information The online version contains supplementary material available at 10.1007/s00421-022-04892-9.
Collapse
Affiliation(s)
- Anders Rosén
- Department of Anaesthesia and Intensive Care Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden.
- Department of Anaesthesia and Intensive Care Medicine, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Mikael Gennser
- Swedish Aerospace Physiology Centre, Division of Environmental Physiology, Department of Biomedical Engineering and Health Systems, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, KTH, Stockholm, Sweden
| | - Nicklas Oscarsson
- Department of Anaesthesia and Intensive Care Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Anaesthesia and Intensive Care Medicine, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Andreas Kvarnström
- Department of Anaesthesia and Intensive Care Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Anaesthesia and Intensive Care Medicine, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Göran Sandström
- Department of Anaesthesia and Intensive Care Medicine, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Swedish Armed Forces, Center for Defence Medicine, Gothenburg, Sweden
| | - Helen Seeman-Lodding
- Department of Anaesthesia and Intensive Care Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Anaesthesia and Intensive Care Medicine, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Joel Simrén
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute, University College London, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| |
Collapse
|