1
|
Vrindten KL, Lonati DP, Mazzocca JL, Matzkin EG. Thermal Modalities Including Hot Baths and Cold Plunges Play a Unique Role in Injury Prevention and Recovery. Arthrosc Sports Med Rehabil 2025; 7:101143. [PMID: 40297095 PMCID: PMC12034083 DOI: 10.1016/j.asmr.2025.101143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/17/2024] [Indexed: 04/30/2025] Open
Abstract
There are several different modalities for injury prevention to consider in order to help our patients' reach their ultimate goals. The purpose of this review is to analyze the use of hot and cold therapies to prevent injury. Thermotherapy has been used in clinical rehabilitation settings to treat health conditions. The therapeutic use of cold, known as cryotherapy, is historically the most popular treatment for acute musculoskeletal injury or fatigue. Cold therapy was seen to decrease delayed-onset muscle soreness and help resolve global or generalized muscle injury or fatigue. In sum, both cold and hot therapy play similar but unique roles in injury prevention and recovery. The key to effective use of either depends on understanding the nature of the injury and mastering the appropriate timing of therapeutic application. By leveraging the unique mechanisms of each modality, athletes can optimize their recovery process and reduce the risk of future injury. Level of Evidence Level V, expert opinion.
Collapse
Affiliation(s)
- Kiera L. Vrindten
- Rutgers Robert Wood Johnson Medical School, New Brunswick/Piscataway, New Jersey, U.S.A
| | - Danielle P. Lonati
- Frank H. Netter MD School of Medicine, Quinnipiac University, North Haven, Connecticut, U.S.A
| | - Jillian L. Mazzocca
- Department of Orthopaedic Surgery, Brigham and Women’s Hospital, Boston, Massachusetts, U.S.A
| | - Elizabeth G. Matzkin
- Department of Orthopaedic Surgery, Brigham and Women’s Hospital, Boston, Massachusetts, U.S.A
- Harvard Medical School, Boston, Massachusetts, U.S.A
| |
Collapse
|
2
|
Normand-Gravier T, Solsona R, Dablainville V, Racinais S, Borrani F, Bernardi H, Sanchez AMJ. Effects of thermal interventions on skeletal muscle adaptations and regeneration: perspectives on epigenetics: a narrative review. Eur J Appl Physiol 2025; 125:277-301. [PMID: 39607529 PMCID: PMC11829912 DOI: 10.1007/s00421-024-05642-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/12/2024] [Indexed: 11/29/2024]
Abstract
Recovery methods, such as thermal interventions, have been developed to promote optimal recovery and maximize long-term training adaptations. However, the beneficial effects of these recovery strategies remain a source of controversy. This narrative review aims to provide a detailed understanding of how cold and heat interventions impact long-term training adaptations. Emphasis is placed on skeletal muscle adaptations, particularly the involvement of signaling pathways regulating protein turnover, ribosome and mitochondrial biogenesis, as well as the critical role of satellite cells in promoting myofiber regeneration following atrophy. The current literature suggests that cold interventions can blunt molecular adaptations (e.g., protein synthesis and satellite cell activation) and oxi-inflammatory responses after resistance exercise, resulting in diminished exercise-induced hypertrophy and lower gains in isometric strength during training protocols. Conversely, heat interventions appear promising for mitigating skeletal muscle degradation during immobilization and atrophy. Indeed, heat treatments (e.g., passive interventions such as sauna-bathing or diathermy) can enhance protein turnover and improve the maintenance of muscle mass in atrophic conditions, although their effects on uninjured skeletal muscles in both humans and rodents remain controversial. Nonetheless, heat treatment may serve as an important tool for attenuating atrophy and preserving mitochondrial function in immobilized or injured athletes. Finally, the potential interplay between exercise, thermal interventions and epigenetics is discussed. Future studies must be encouraged to clarify how repeated thermal interventions (heat and cold) affect long-term exercise training adaptations and to determine the optimal modalities (i.e., method of application, temperature, duration, relative humidity, and timing).
Collapse
Affiliation(s)
- Tom Normand-Gravier
- UMR866, Dynamique du Muscle et Métabolisme (DMeM), INRAE, University of Montpellier, Montpellier, France
- Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), Faculty of Sports Sciences, University of Perpignan Via Domitia, UR 4640, 7 Avenue Pierre de Coubertin, 66120, Font-Romeu, France
| | - Robert Solsona
- Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), Faculty of Sports Sciences, University of Perpignan Via Domitia, UR 4640, 7 Avenue Pierre de Coubertin, 66120, Font-Romeu, France
| | - Valentin Dablainville
- UMR866, Dynamique du Muscle et Métabolisme (DMeM), INRAE, University of Montpellier, Montpellier, France
- Research and Scientific Support Department, Aspetar Orthopedic and Sports Medicine Hospital, 29222, Doha, Qatar
| | - Sébastien Racinais
- Environmental Stress Unit, CREPS Montpellier-Font-Romeu, Montpellier, France
| | - Fabio Borrani
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Henri Bernardi
- UMR866, Dynamique du Muscle et Métabolisme (DMeM), INRAE, University of Montpellier, Montpellier, France
| | - Anthony M J Sanchez
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.
- Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), Faculty of Sports Sciences, University of Perpignan Via Domitia, UR 4640, 7 Avenue Pierre de Coubertin, 66120, Font-Romeu, France.
| |
Collapse
|
3
|
Fuchs CJ, Betz MW, Petrick HL, Weber J, Senden JM, Hendriks FK, Bels JLM, van Loon LJC, Snijders T. Repeated passive heat treatment increases muscle tissue capillarization, but does not affect postprandial muscle protein synthesis rates in healthy older adults. J Physiol 2025; 603:167-186. [PMID: 39373667 DOI: 10.1113/jp286986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/13/2024] [Indexed: 10/08/2024] Open
Abstract
Prolonged passive heat treatment (PHT) has been suggested to trigger skeletal muscle adaptations that may improve muscle maintenance in older individuals. To assess the effects of PHT on skeletal muscle tissue capillarization, perfusion capacity, protein synthesis rates, hypertrophy and leg strength, 14 older adults (9 males, 5 females; 73 ± 6 years) underwent 8 weeks of PHT (infrared sauna: 3× per week, 45 min at ∼60°C). Before and after PHT we collected muscle biopsies to assess skeletal muscle capillarization and fibre cross-sectional area (CSA). Basal and postprandial muscle tissue perfusion kinetics and protein synthesis rates were assessed using contrast-enhanced ultrasound and primed continuous l-[ring-13C6]phenylalanine infusions, respectively. One-repetition maximum (1RM) leg strength and vastus lateralis muscle CSA were assessed. Type I and type II muscle fibre capillarization strongly increased following PHT (capillary-to-fibre perimeter exchange index: +31 ± 18 and +33 ± 30%, respectively; P < 0.001). No changes were observed in basal (0.24 ± 0.27 vs. 0.18 ± 0.11 AU; P = 0.266) or postprandial (0.20 ± 0.12 vs. 0.18 ± 0.14 AU; P = 0.717) microvascular blood flow following PHT. Basal (0.048 ± 0.014 vs. 0.051 ± 0.019%/h; P = 0.630) and postprandial (0.041 ± 0.012 vs. 0.051 ± 0.024%/h; P = 0.199) muscle protein synthesis rates did not change in response to prolonged PHT. Furthermore, no changes in vastus lateralis muscle CSA (15.3 ± 4.6 vs. 15.2 ± 4.6 cm2; P = 0.768) or 1RM leg strength (46 ± 12 vs. 47 ± 12 kg; P = 0.087) were observed over time. In conclusion, prolonged PHT increases muscle tissue capillarization but this does not improve muscle microvascular blood flow or increase muscle protein synthesis rates in healthy, older adults. Prolonged PHT does not induce skeletal muscle hypertrophy or increase leg strength in healthy, older adults. KEY POINTS: Repeated exposure to heat has been suggested to trigger skeletal muscle adaptive responses. We investigated the effect of 8 weeks of whole-body passive heat treatment (PHT; infrared sauna: 3× per week for 45 min at ∼60°C) on skeletal muscle tissue capillarization, perfusion capacity, basal, and postprandial muscle protein synthesis rates, muscle (fibre) hypertrophy, and leg strength in healthy, older adults. Prolonged PHT increases muscle tissue capillarization, but this does not improve muscle microvascular blood flow or increase muscle protein synthesis rates. Despite increases in muscle tissue capillarization, prolonged PHT does not suffice to induce skeletal muscle hypertrophy or increase leg strength in healthy, older adults.
Collapse
Affiliation(s)
- Cas J Fuchs
- Department of Human Biology, Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Milan W Betz
- Department of Human Biology, Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Heather L Petrick
- Department of Human Biology, Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Jil Weber
- Department of Human Biology, Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Joan M Senden
- Department of Human Biology, Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Floris K Hendriks
- Department of Human Biology, Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Julia L M Bels
- Department of Intensive Care, Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Luc J C van Loon
- Department of Human Biology, Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Tim Snijders
- Department of Human Biology, Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| |
Collapse
|
4
|
McGlynn ML, Rosales AM, Collins CW, Slivka DR. The combined influences of local heat application and resistance exercise on the acute mRNA response of skeletal muscle. Front Physiol 2024; 15:1473241. [PMID: 39497702 PMCID: PMC11532036 DOI: 10.3389/fphys.2024.1473241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/23/2024] [Indexed: 11/07/2024] Open
Abstract
Introduction The development and maintenance of the skeletal muscle is crucial for the support of daily function. Heat, when applied locally, has shown substantial promise in the maintenance of the muscle. The purpose of this study was to determine the combined effects of local heat application and acute resistance exercise on gene expression associated with the human muscle growth program. Materials and methods Participants (n = 12, 26 ± 7 years, 1.77 ± 0.07 m, 79.6 ± 15.4 kg, and 16.1 ± 11.6 %BF) completed an acute bilateral bout of resistance exercise consisting of leg press (11 ± 2 reps; 170 ± 37 kg) and leg extension (11 ± 1 reps; 58 ± 18 kg). Participants wore a thermal wrap containing circulating fluid (40°C, exercise + heat; EX + HT) during the entire experimental period and 4 h post-exercise, while the other leg served as an exercise-only (EX) control. Biopsies of the vastus lateralis were collected (Pre, Post, and 4hPost) for gene expression analyses. Results Intramuscular temperatures increased (Post, +2.2°C ± 0.7°C, and p < 0.001; 4hPost, +2.5°C ± 0.6°C, and p < 0.001) and were greater in the EX + HT leg post-exercise (+0.35°C ± 0.3°C, and p = 0.005) and after 4hPost (+2.1°C ± 0.8°C and p < 0.001). MYO-D1 mRNA was greater in the EX + HT leg vs. the EX (fold change = 2.74 ± 0.42 vs. 1.70 ± 0.28, p = 0.037). No other genes demonstrated temperature sensitivity when comparing both legs (p > 0.05). mRNA associated with the negative regulator, myostatin (MSTN), decreased post-exercise (p = 0.001) and after 4 h (p = 0.001). mRNA associated with proteolysis decreased post-exercise (FBXO32, p = 0.001; FOXO3a, p = 0.001) and after 4 h (FBXO32, p = 0.001; FOXO3a, p = 0.027). Conclusion The elevated transcription of the myogenic differentiation factor 1 (MYO-D1) after exercise in the heated condition may provide a mechanism by which muscle growth could be enhanced.
Collapse
Affiliation(s)
- Mark L. McGlynn
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE, United States
| | - Alejandro M. Rosales
- School of Integrative Physiology and Athletic Training, University of Montana, Missoula, MT, United States
| | - Christopher W. Collins
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE, United States
| | - Dustin R. Slivka
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE, United States
- School of Integrative Physiology and Athletic Training, University of Montana, Missoula, MT, United States
| |
Collapse
|
5
|
Labidi M, Alhammoud M, Mtibaa K, Ihsan M, Deldicque L, Nasir N, Papakostas E, Olory B, Cruz F, Farooq M, Sanchez AM, d’Hooghe P, Tourny C, Racinais S. The Effects of Heat Therapy During Immobilization and Rehabilitation on Muscle Atrophy and Strength Loss at Return to Sports in Healthy Humans. Orthop J Sports Med 2024; 12:23259671241281727. [PMID: 39444938 PMCID: PMC11497528 DOI: 10.1177/23259671241281727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/05/2024] [Indexed: 10/25/2024] Open
Abstract
Background Animal research suggests that repeated heat exposures may stimulate skeletal muscle protein synthesis and downregulate protein degradation. Hypothesis Repeated heat exposures during ankle immobilization and rehabilitation would preserve human muscle strength and mass. Study Design Controlled laboratory study. Methods A total of 20 male participants (age, 33.6 ± 2.8 years; weight, 83.8 ± 9.2 kg; height, 182 ± 6 cm) underwent 4 weeks of supervised training, 2 weeks of single-lower leg immobilization, and 2 weeks of supervised rehabilitation before return to sports (RTS). Participants were split into 2 groups: (1) whole-body heat therapy (HEAT) and (2) sham treatment (SHAM) throughout the immobilization and rehabilitation periods. Measures of muscle strength (isometric and isokinetic), volume (magnetic resonance imaging and ultrasound), and muscle biopsies were obtained preimmobilization, postimmobilization, and at RTS. Results Maximal isometric strength of the plantarflexors was lower at RTS compared with preimmobilization in SHAM (P = .027) but not HEAT (P = .301). Isokinetic strength during a fatigue test was higher at RTS compared with preimmobilization in HEAT (P = .039) but not SHAM (P = .245). Pennation angle and muscle thickness were lower at postimmobilization compared with preimmobilization only in SHAM (P≤ .027). Muscle cross-sectional area decreased in soleus and both gastrocnemius medialis and lateralis (all P≤ .035) in SHAM, but only in gastrocnemius medialis in HEAT. There was a large (d = 0.91) but not significant (P = .054) decrease in the ratio of phosphorylated/total nuclear factor-kappa B (NFκB) from preimmobilization to postimmobilization in HEAT only. There was an increase in phosphorylated fork head box O proteins (FoxO) only in HEAT (P = .034), suggesting a decrease in FoxO activity. Caspase 3 expression increased from preimmobilization to postimmobilization in SHAM only (P = .004). Conclusion These results indicate that using heat therapy throughout immobilization and rehabilitation reduces skeletal muscle atrophy and maintains plantarflexor strength in healthy humans. Moreover, heat therapy may lead to the inactivation of the FoxO and NFκB signaling pathways involved in atrophy. Clinical Relevance Repeated heat exposures should be considered a novel therapeutic intervention to counteract muscle atrophy during immobilization.
Collapse
Affiliation(s)
- Mariem Labidi
- Investigation performed at Aspetar Orthopaedic and Sports Medicine Hospital, Research and Scientific Support Department, Doha, Qatar
| | - Marine Alhammoud
- Investigation performed at Aspetar Orthopaedic and Sports Medicine Hospital, Research and Scientific Support Department, Doha, Qatar
| | - Khouloud Mtibaa
- Investigation performed at Aspetar Orthopaedic and Sports Medicine Hospital, Research and Scientific Support Department, Doha, Qatar
| | - Mohammed Ihsan
- Investigation performed at Aspetar Orthopaedic and Sports Medicine Hospital, Research and Scientific Support Department, Doha, Qatar
| | - Louise Deldicque
- Investigation performed at Aspetar Orthopaedic and Sports Medicine Hospital, Research and Scientific Support Department, Doha, Qatar
| | - Nada Nasir
- Investigation performed at Aspetar Orthopaedic and Sports Medicine Hospital, Research and Scientific Support Department, Doha, Qatar
| | - Emmanouil Papakostas
- Investigation performed at Aspetar Orthopaedic and Sports Medicine Hospital, Research and Scientific Support Department, Doha, Qatar
| | - Bruno Olory
- Investigation performed at Aspetar Orthopaedic and Sports Medicine Hospital, Research and Scientific Support Department, Doha, Qatar
| | - Flavio Cruz
- Investigation performed at Aspetar Orthopaedic and Sports Medicine Hospital, Research and Scientific Support Department, Doha, Qatar
| | - Mohammed Farooq
- Investigation performed at Aspetar Orthopaedic and Sports Medicine Hospital, Research and Scientific Support Department, Doha, Qatar
| | - Antony M.J. Sanchez
- Investigation performed at Aspetar Orthopaedic and Sports Medicine Hospital, Research and Scientific Support Department, Doha, Qatar
| | - Pieter d’Hooghe
- Investigation performed at Aspetar Orthopaedic and Sports Medicine Hospital, Research and Scientific Support Department, Doha, Qatar
| | - Claire Tourny
- Investigation performed at Aspetar Orthopaedic and Sports Medicine Hospital, Research and Scientific Support Department, Doha, Qatar
| | - Sebastien Racinais
- Investigation performed at Aspetar Orthopaedic and Sports Medicine Hospital, Research and Scientific Support Department, Doha, Qatar
| |
Collapse
|
6
|
Pryor JL, Sweet D, Rosbrook P, Qiao J, Hess HW, Looney DP. Resistance Training in the Heat: Mechanisms of Hypertrophy and Performance Enhancement. J Strength Cond Res 2024; 38:1350-1357. [PMID: 38775794 DOI: 10.1519/jsc.0000000000004815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
ABSTRACT Pryor, JL, Sweet, D, Rosbrook, P, Qiao, J, Hess, HW, and Looney, DP. Resistance training in the heat: Mechanisms of hypertrophy and performance enhancement. J Strength Cond Res 38(7): 1350-1357, 2024-The addition of heat stress to resistance exercise or heated resistance exercise (HRE) is growing in popularity as emerging evidence indicates altered neuromuscular function and an amplification of several mechanistic targets of protein synthesis. Studies demonstrating increased protein synthesis activity have shown temperature-dependent mammalian target of rapamycin phosphorylation, supplemental calcium release, augmented heat shock protein expression, and altered immune and hormone activity. These intriguing observations have largely stemmed from myotube, isolated muscle fiber, or rodent models using passive heating alone or in combination with immobilization or injury models. A growing number of translational studies in humans show comparable results employing local tissue or whole-body heat with and without resistance exercise. While few, these translational studies are immensely valuable as they are most applicable to sport and exercise. As such, this brief narrative review aims to discuss evidence primarily from human HRE studies detailing the neuromuscular, hormonal, and molecular responses to HRE and subsequent strength and hypertrophy adaptations. Much remains unknown in this exciting new area of inquiry from both a mechanistic and functional perspective warranting continued research.
Collapse
Affiliation(s)
- J Luke Pryor
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York; and
| | - Daniel Sweet
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York; and
| | - Paul Rosbrook
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York; and
| | - JianBo Qiao
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York; and
| | - Hayden W Hess
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York; and
| | - David P Looney
- United States Army Research Institute of Environmental Medicine (USARIEM), Natick, Massachusetts
| |
Collapse
|
7
|
Fennel ZJ, Ducharme JB, Berkemeier QN, Specht JW, McKenna ZJ, Simpson SE, Nava RC, Escobar KA, Hafen PS, Deyhle MR, Amorim FT, Mermier CM. Effect of heat stress on heat shock protein expression and hypertrophy-related signaling in the skeletal muscle of trained individuals. Am J Physiol Regul Integr Comp Physiol 2023; 325:R735-R749. [PMID: 37842742 DOI: 10.1152/ajpregu.00031.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/17/2023]
Abstract
Muscle mass is balanced between hypertrophy and atrophy by cellular processes, including activation of the protein kinase B-mechanistic target of rapamycin (Akt-mTOR) signaling cascade. Stressors apart from exercise and nutrition, such as heat stress, can stimulate the heat shock protein A (HSPA) and C (HSPC) families alongside hypertrophic signaling factors and muscle growth. The effects of heat stress on HSP expression and Akt-mTOR activation in human skeletal muscle and their magnitude of activation compared with known hypertrophic stimuli are unclear. Here, we show a single session of whole body heat stress following resistance exercise increases the expression of HSPA and activation of the Akt-mTOR cascade in skeletal muscle compared with resistance exercise in a healthy, resistance-trained population. Heat stress alone may also exert similar effects, though the responses are notably variable and require further investigation. In addition, acute heat stress in C2C12 muscle cells enhanced myotube growth and myogenic fusion, albeit to a lesser degree than growth factor-mediated hypertrophy. Though the mechanisms by which heat stress stimulates hypertrophy-related signaling and the potential mechanistic role of HSPs remain unclear, these findings provide additional evidence implicating heat stress as a novel growth stimulus when combined with resistance exercise in human skeletal muscle and alone in isolated murine muscle cells. We believe these findings will help drive further applied and mechanistic investigation into how heat stress influences muscular hypertrophy and atrophy.NEW & NOTEWORTHY We show that acute resistance exercise followed by whole body heat stress increases the expression of HSPA and increases activation of the Akt-mTOR cascade in a physically active and resistance-trained population.
Collapse
Affiliation(s)
- Zachary J Fennel
- Department of Health, Exercise & Sports Sciences, University of New Mexico, Albuquerque, New Mexico, United States
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States
| | - Jeremy B Ducharme
- Department of Health, Exercise & Sports Sciences, University of New Mexico, Albuquerque, New Mexico, United States
| | - Quint N Berkemeier
- Department of Health, Exercise & Sports Sciences, University of New Mexico, Albuquerque, New Mexico, United States
| | - Jonathan W Specht
- Department of Health, Exercise & Sports Sciences, University of New Mexico, Albuquerque, New Mexico, United States
| | - Zachary J McKenna
- Department of Health, Exercise & Sports Sciences, University of New Mexico, Albuquerque, New Mexico, United States
- Institute for Exercise and Environmental Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Shandy E Simpson
- Department of Health, Exercise & Sports Sciences, University of New Mexico, Albuquerque, New Mexico, United States
| | - Roberto C Nava
- Fulcrum Therapeutics, Cambridge, Massachusetts, United States
| | - Kurt A Escobar
- Department of Kinesiology, California State University Long Beach, Long Beach, California, United States
| | - Paul S Hafen
- Division of Science, Indiana University Purdue University Columbus, Columbus, Indiana, United States
- Department of Anatomy, Cell Biology, and Physiology, Indiana Center for Musculoskeletal Health, Indiana University School of Medicine Indianapolis, Indianapolis, Indiana, United States
| | - Michael R Deyhle
- Department of Health, Exercise & Sports Sciences, University of New Mexico, Albuquerque, New Mexico, United States
- Department of Cell Biology and Physiology, School of Medicine, University of New Mexico, Albuquerque, New Mexico, United States
| | - Fabiano T Amorim
- Department of Health, Exercise & Sports Sciences, University of New Mexico, Albuquerque, New Mexico, United States
| | - Christine M Mermier
- Department of Health, Exercise & Sports Sciences, University of New Mexico, Albuquerque, New Mexico, United States
| |
Collapse
|
8
|
Ihsan M, Labidi M, Racinais S. Skeletal muscle oxidative adaptations following localized heat therapy. Eur J Appl Physiol 2023; 123:1629-1635. [PMID: 36952087 PMCID: PMC10363048 DOI: 10.1007/s00421-023-05159-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/10/2023] [Indexed: 03/24/2023]
Abstract
Repeated heat treatment has been shown to induce oxidative adaptations in cell cultures and rodents, but similar work within human models is scarce. This study investigated the effects of 6 weeks of localized heat therapy on near-infrared spectroscopy-(NIRS) derived indices of muscle oxidative and microvascular function. Twelve physically active participants (8 males and 4 females, age: 34.9 ± 5.9 years, stature: 175 ± 7 cm, body mass: 76.7 ± 13.3 kg) undertook a 6-week intervention, where adhesive heat pads were applied for 8 h/day, 5 days/week, on one calf of each participant, while the contralateral leg acted as control. Prior to and following the intervention, the microvascular function was assessed using NIRS-based methods, where 5 min of popliteal artery occlusion was applied, and the reperfusion (i.e., re-saturation rate, re-saturation amplitude, and hyperemic response) was monitored for 2 min upon release. Participants also performed a 1-min isometric contraction of the plantar flexors (30% maximal voluntary contraction), following which a further 2 min interval was undertaken for the assessment of recovery kinetics. A 20-min time interval was allowed before the assessment protocol was repeated on the contralateral leg. Repeated localized heating of the gastrocnemius did not influence any of the NIRS-derive indices of microvascular or oxidative function (p > 0.05) following 6 weeks of treatment. Our findings indicate that localized heating via the use of adhesive heat pads may not be a potent stimulus for muscle adaptations in physically active humans.
Collapse
Affiliation(s)
- Mohammed Ihsan
- Research and Scientific Support, Aspetar Orthopedic and Sports Medicine Hospital, Doha, Qatar.
| | - Mariem Labidi
- Research and Scientific Support, Aspetar Orthopedic and Sports Medicine Hospital, Doha, Qatar
- Education Department, Aspetar Orthopedic and Sports Medicine Hospital, Doha, Qatar
- Faculty of Sport Sciences and Physical Education, CETAPS, University of Rouen, Mont-Saint-Aignan, France
| | - Sebastien Racinais
- Research and Scientific Support, Aspetar Orthopedic and Sports Medicine Hospital, Doha, Qatar
| |
Collapse
|
9
|
McGlynn ML, Rosales AM, Collins CW, Slivka DR. The independent effects of local heat application on muscle growth program associated mRNA and protein phosphorylation. J Therm Biol 2023; 115:103602. [PMID: 37331320 PMCID: PMC10528064 DOI: 10.1016/j.jtherbio.2023.103602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/10/2023] [Accepted: 05/21/2023] [Indexed: 06/20/2023]
Abstract
The development and maintenance of skeletal muscle is crucial for the support of daily function. Recent evidence suggests that genes coded for proteins associated with the human muscle growth program (myogenic and proteolytic genes) are sensitive to local heat application. Therefore, the purpose of this investigation was to determine the effect of 4 h of local heat application to the vastus lateralis at rest on acute phosphorylation (mTORSer2448, p70-S6K1Thr389, and 4E-BP1Thr47/36) and gene expression changes for proteins associated with the muscle growth program. Intramuscular temperature of the HOT limb was 1.2 ± 0.2 °C higher than CON limb after 4 h of local heating. However, this local heat stimulus did not influence transcription of genes associated with myogenesis (MSTN, p = 0.321; MYF5, p = 0.445; MYF6, p = 0.895; MEF2a, p = 0.809; MYO-G, p = 0.766; MYO-D1, p = 0.118; RPS3, p = 0.321; and RPL-3L, p = 0.577), proteolysis (Atrogin-1, p = 0.573; FOXO3a, p = 0.452; MURF-1, p = 0.284), nor protein phosphorylation (mTORSer2448, p = 0.981; P70-S6K1Thr389, p = 0.583; 4E-BP1Thr37/46, p = 0.238) associated with the muscle growth program. These findings suggest little to no association between the local application of heat, at rest, and the activation of the observed muscle growth program-related markers.
Collapse
Affiliation(s)
- Mark L McGlynn
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE, 68182, USA
| | - Alejandro M Rosales
- School of Integrated Physiology and Athletic Training, University of Montana, Missoula, MT, 59812, USA
| | - Christopher W Collins
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE, 68182, USA
| | - Dustin R Slivka
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE, 68182, USA; School of Integrated Physiology and Athletic Training, University of Montana, Missoula, MT, 59812, USA.
| |
Collapse
|
10
|
Mornas A, Brocherie F, Guilhem G, Guillotel A, LE Garrec S, Gouwy R, Gennisson JL, Beuve S, Racinais S. Active Heat Acclimation Does Not Alter Muscle-Tendon Unit Properties. Med Sci Sports Exerc 2023; 55:1076-1086. [PMID: 36719653 DOI: 10.1249/mss.0000000000003129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
PURPOSE Heat acclimation (HA) is recommended before competing in hot and humid conditions. HA has also been recently suggested to increase muscle strength, but its effects on human's muscle and tendon mechanical properties are not yet fully understood. This study investigated the effect of active HA on gastrocnemius medialis (GM) muscle-tendon properties. METHODS Thirty recreationally active participants performed 13 low-intensity cycling sessions, distributed over a 17-d period in hot (HA = ~38°C, ~58% relative humidity; n = 15) or in temperate environment (CON = ~23°C, ~35% relative humidity; n = 15). Mechanical data and high-frame rate ultrasound images were collected during electrically evoked and voluntary contractions pre- and postintervention. Shear modulus was measured at rest in GM, and vertical jump performance was assessed. RESULTS Core temperature decreased from the first to the last session in HA (-0.4°C ± 0.3°C; P = 0.015), while sweat rate increased (+0.4 ± 0.3 L·h -1 ; P = 0.010), suggesting effective HA, whereas no changes were observed in CON (both P ≥ 0.877). Heart rate was higher in HA versus CON and decreased throughout intervention in groups (both P ≤ 0.008), without an interaction effect ( P = 0.733). Muscle-tendon unit properties (i.e., maximal and explosive isometric torque production, contractile properties, voluntary activation, joint and fascicular force-velocity relationship, passive muscle, and active tendon stiffness) and vertical jump performance did not show training ( P ≥ 0.067) or group-training interaction ( P ≥ 0.232) effects. CONCLUSIONS Effective active HA does not alter muscle-tendon properties. Preparing hot and humid conditions with active HA can be envisaged in all sporting disciplines without the risk of impairing muscle performance.
Collapse
Affiliation(s)
| | - Franck Brocherie
- Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport (INSEP), Paris, FRANCE
| | - Gaël Guilhem
- Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport (INSEP), Paris, FRANCE
| | - Arthur Guillotel
- Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport (INSEP), Paris, FRANCE
| | | | | | - Jean-Luc Gennisson
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Orsay, FRANCE
| | - Steve Beuve
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Orsay, FRANCE
| | | |
Collapse
|
11
|
Fennel ZJ, Amorim FT, Deyhle MR, Hafen PS, Mermier CM. The Heat Shock Connection: Skeletal Muscle Hypertrophy and Atrophy. Am J Physiol Regul Integr Comp Physiol 2022; 323:R133-R148. [PMID: 35536704 DOI: 10.1152/ajpregu.00048.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Skeletal muscle is an integral tissue system that plays a crucial role in the physical function of all vertebrates and is a key target for maintaining or improving health and performance across the lifespan. Based largely on cellular and animal models, there is some evidence that various forms of heat stress with or without resistance exercise may enhance skeletal muscle growth or reduce its loss. It is not clear whether these stimuli are similarly effective in humans or meaningful in comparison to exercise alone across various heating methodologies. Furthermore, the magnitude by which heat stress may influence whole body thermoregulatory responses and the connection to skeletal muscle adaptation remains ambiguous. Finally, the underlying mechanisms, which may include interaction between relevant heat shock proteins and intracellular hypertrophy and atrophy related factors, remain unclear. In this narrative mini-review we examine the relevant literature regarding heat stress alone or in combination with resistance exercise emphasizing skeletal muscle hypertrophy and atrophy across cellular and animal models, as well as human investigations. Additionally, we present working mechanistic theories for heat shock protein mediated signaling effects regarding hypertrophy and atrophy related signaling processes. Importantly, continued research is necessary to determine the practical effects and mechanisms of heat stress with and without resistance exercise on skeletal muscle function via growth and maintenance.
Collapse
Affiliation(s)
| | | | | | - Paul Samuel Hafen
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, NM, United States.,Indiana University School of Medicine Department of Anatomy, Cell Biology, and Physiology; Indiana Center for Musculoskeletal Health, Indianapolis, IN, United States
| | | |
Collapse
|